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Motivation

Lattice approximation:

3 Finite DoF

3 Solvable on Computer

3 Rigorous Definition of QFT

7 Unphysical Poles
Lattice regularization explicitly breaks Chiral Symmetry!

We consider (3 + 1)-D staggered fermion Hamiltonian

• Constructing Axial Charge [Susskind, 1977]

• Defining Onsager Algebra Ons31

• Deriving Axial Anomaly Equation
1Ons3 includes Yamaoka’s Onsager algebra [Onogi and Yamaoka, 2025].
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Staggered Fermion in Hamiltonian Formalism

We consider

Lattice

3 +

Continuous

1 -D spacetime.

The Hamiltonian is defined on the 3-D lattice space.

H =
∑
x

χ†(x)

[
ηi(x)

∇i −∇†
i

2ai
+mϵ(x)

]
χ(x)(

ηi(x) = (−1)x
1+···+xi−1

, ϵ(x) = (−1)x
1+x2+x3

)

=
∑
r

ψ†(r)

[
(αi ⊗ 1)

∇i −∇†
i

4ai
−

Wilson term

(βγ5 ⊗ tσi)
∇i +∇†

i

4ai
+m(β ⊗ 1)

]
ψ(r).

Two-Flavor Dirac Fermion System
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Shift Transformation as Axial Symmtery

When m = 0, there exist three shift symmetries under
[Golterman and Smit, 1984; Catterall et al., 2025]

Si : χ(x) 7→ ξi(x)χ(x+ î).

(ξ1(x) = (−1)x
2+x3

, ξ2(x) = (−1)x
3
, ξ3(x) = 1)

(ϵ(x) = (−1)x
i
ηi(x)ξi(x))

In the continuum limit, this shift converges to

Si → γ5 ⊗
Flavor Matrix

tσi (γ5 = −iα1α2α3).

We define the chiral operator as a diagonal shift [Susskind, 1977]

Γ = iS1S2S3 : χ(x) 7→ i(−1)x
2
χ(x+ T ) (T = 1̂ + 2̂ + 3̂).
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Axial Charge in (1 + 1)-D Staggered Fermion

In the (1 + 1)-dim case, there is a Z-valued charge QA such that

[QA, ψ] → γ5ψ (a→ 0).

The axial anomaly is described by

[QV , QA] 6= 0

{QV , QA} generates the Onsager algebra [Onsager, 1944;

Chatterjee et al., 2025]

We define the generalized Onsager algebra in (3 + 1)-dim case.

(2 + 1)-dim case is discussed in [Pace et al., 2025]
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Our Work

We investigate (3 + 1)-D staggered fermion Hamiltonian.

• We construct the generalized Onsager algebra Ons3.

• Under a certain magnetic field, Qreg
A can commute with H.

However, we find

d

dt

⟨
Qreg

A

⟩
= −2

∑ EiBi

2π2
.

Chiral Anomaly Equation!
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Shift Symmetry

The massless staggered fermion has shift symmetries under

Siχ(x) = ξi(x)χ(x+ î).

(ξ1(x) = (−1)x
2+x3

, ξ2(x) = (−1)x
3
, ξ3(x) = 1)

The commutation relations are given by

SiSj + SjSi = 2δijS
2
j , Siϵ = −ϵSi.

The shift operators can be translated into the taste basis as

Siψ(r) =

[
(γ5 ⊗ tσi) +

1

2
(γ5 ⊗ tσi − βαi ⊗ 1)∇i

]
ψ(x)

Si corresponds to an axial flavor rotation γ5 ⊗ tσi.

cf: Golterman and Smit [1984]; Catterall et al. [2025]; Onogi and Yamaoka [2025]
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Chiral Transformation

The lattice version should be determined as

Γ = iS1S2S3, (Si ' γ5 ⊗ tσi)

Γχ(x) = i(−1)x
2
χ(x+ T ) (T = 1̂ + 2̂ + 3̂).

We denote the lattice-regularized axial charge by

Qreg
A =

∑
x

χ†(x)Γχ(x) = QA + iQ̃,

where QA and Q̃ are Hermitian operators.
cf. Susskind [1977]; Golterman and Smit [1984]
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Majorana Decomposition

The massless staggered fermion has on-site charge conjugation,

χ(x) → χ∗(x) (ψ(r) → (β ⊗ 1)T2S
−1
2 ψ∗(r)).

χ(x) can be decomposed as

χ(x) =
1

2
(a(x) + ib(x))

(
{
a(x), a(x′)

}
=
{
b(x), b(x′)

}
= 2δxx′ ,

{
a(x), b(x′)

}
= 0)

H =
i

4

∑
x

ηi(x)
[
a(x)a(x+ î) + b(x)b(x+ î)

]
.

The symmetry group is

G =〈−I, S1, S2, S3 | SiSj = −SjSi (i 6= j)〉
={±Sn1

1 Sn2
2 Sn3

3 | ni ∈ Z}
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Integer-Valued Charges

Quantized charges corresponding to g = ±Sn1
1 Sn3

3 Sn3
3 is defined as

QI =
∑
x

[
χ†(x)χ(x)− 1

2

]
=
i

2

∑
x

a(x)b(x),

Qg =
i

2

∑
x

ξg(x)a(x)b(g(x)),

where ξg(x) ∈ {±1} satisfies

• ξ±I(x) = ±1

• ξSi(x) = ξi(x)

• ξgh(x) = ξg(h(x))ξh(x)

• ξg−1(x) = ξg(g
−1(x))

Our definition is the Z2 extension of the definition given in [Onogi and Yamaoka, 2025].
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Commutation Relations

We set the auxiliary charge as

Gg,h =
i

2

∑
x

[ξg(x)a(x)a(g(x))− ξh(x)b(x)b(h(x))].

Then, {Qg, Gh,k} satisfies

[Qg, Qh] = iGg−1h,hg−1 ,

[Qg, Gh,k] = i(Qgh−1 +Qk−1g −Qgh −Qkg),

[Gg1,h1 , Gg2,h2 ] = i(Gg2g1,h1h2 −Gg−1
2 g1,h1h

−1
2

−Gg1g2,h2h1 +Gg1g
−1
2 ,h−1

2 h1
).

{Qg, Gh,k} forms a generalized Onsager algebra Ons3
[Pace et al., 2025].

Ons3 contains many Onsager subalgebras, including those discussed in [Catterall

et al., 2025] and [Onogi and Yamaoka, 2025].
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Axial Charge in terms of Ons3

A diagonal shift operator ST = S3S2S1 corresponds to

QST
=
i

2

∑
x

(−1)x2a(x)b(x+ T ),

Qreg
A can be rewritten in terms of Ons3.

Qreg
A =

∑
x

χ†(x)Γχ(x)

=

QA

1

2
GST ,−ST

+ i

Q̃

QST
+QS−1

T

2

• QST
is discussed in [Catterall et al., 2025; Onogi and Yamaoka, 2025].

• In the (1 + 1)-D case, Qreg
A =

Q1+Q−1

2
+ iH

2
[Chatterjee et al., 2025].

15



Contents

Introduction

Free Staggered Fermion

Axial Charge with U(1) Background

Summary

16



U(1) Background Field

In the presence of the link variables, Si is modified as

SU
i χ(x) = ξi(x)Ui(x)χ(x+ î).

SU
i S

U
j + SU

j S
U
i 6= 2δij(S

U
j )

2

and the chiral operator does not commute with H in general.

However, under a certain configuration which assigns

B1 = B2 = B3 = B =
2π

N2
n (n ∈ Z).

SU
1 S

U
2 S

U
3 commutes with H

We also add an electric field,

E1 = E2 = 0, E3 =
2π

N
.
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Axial Charge under U(1) Background Field

In this case, the chiral operator is determined as

ΓU = ie−iB/2SU
1 S

U
2 S

U
3 (B =

2π

N2
n),

where e−iB/2 is a normalization factor so that (ΓU )N = (−1)n.

The lattice-regularized axial charge is defined as

Qreg
A =

∑
x

χ†(x)ΓUχ(x) = QA + iQ̃

jregA =

∼ ψ†(x)γ5e
−i

∫
Aψ(x+ T )

χ†(x)ΓUχ(x) = jA + i j̃

jregA looks like a point-splitted charge density with y = x+ T .
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Mode Expansion

χ(x, t) =

∫
dΩ

[
Positive-Energy mode

u(Ω, x, t) b(Ω, t) +

Negative-Energy mode

v(Ω, x, t) d†(Ω, t)

]
,

({
b(Ω, t), b†(Ω′, t)

}
=
{
d(Ω, t), d†(Ω′, t)

}
= δΩΩ′

)
The vacuum state is determined by

b(Ω, t) |0, t〉 = d(Ω, t) |0, t〉 = 0.

The expectation value is given by⟨
jregA

⟩
= 〈0, t|χ†(x)ΓUχ(x) |0, t〉 =

∫
dΩv†(Ω, x)ΓUv(Ω, x)

We numerically calculate this value!
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Expectation Value of Q̃

q̃(t) =
1

N3
Q̃ =

1

N3

∑
x

χ†(x)
ΓU − (ΓU )†

2i
χ(x)

• The error bars represent the
deviation in the spacial directions.

• The solid lines express 2 B
2π2 .

q̃(t) ' 2 B
2π2 .

• The factor of two means 2-flavor.

The continuum prediction at Bi = B and y = x+ T is given by

Im(
⟨
j0A,c

⟩
) =

Bi

2π2
(y − x)i

‖y − x‖2
=

B

2π2

Consistent with continuum prediction!
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Chiral Anomaly Equation on Lattice

qA(t) =
1

N3
QA =

1

N3

∑
x

χ†(x)
ΓU + (ΓU )†

2
χ(x)

• The error bars represent the
deviation in the spacial directions.

• Jump at t ∈ n
2 + Z where zero

modes appear

In the continuous region,

Chiral anomaly equation of two-flavor Dirac fermion

d

dt
〈QA〉 ' −2

∑
x

EiBi

2π2
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Summary

We investigate the (3 + 1)-D staggered fermion system in
Hamiltonian formalism.

• We construct the generalized Onsager algebra {Qg, Gh,k}.
• The lattice-regularized axial charge can be rewritten as

Qreg
A = QA + i

∑
x

j̃ =
1

2
GST ,−ST

+ i
QST

+QS−1
T

2
.

• Under a certain magnetic field, Qreg
A commutes with H, but its

expectation value satisfies⟨
jregA

⟩
' i
⟨
j̃
⟩
' i2

B

2π2
,

d

dt

⟨
Qreg

A

⟩
' d

dt
〈QA〉 ' −2

∑
x

EiBi

2π2
.

jregA → 2j0A,c in the continuum limit!
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Lattice Continuity Equation

The chiral charge density and current are defined as

j0A(x) =
1

2
(χ†(x)Γχ(x) + h.c.),

jiA(x) =
1

4
(χ†(x)Γ(Tiχ)(x) + (Tiχ

†)(x)Γχ(x) + h.c.).

Assuming ∂
∂tχ = −ihχ, we obtain

∂

∂t
j0A −∇†

i j
i
A =

Additional Source

1

2
(χ†[h,Γ]χ+ h.c.).

If [h,Γ] = 0, the axial charge is strictly conserved.



Uniform Magnetic Field in the z-direction

We assign B1 = B2 = 0, B3 = B, E1 = E2 = 0, E3 = E.

Although the deviations are larger, the chiral anomaly equation
d

dt
〈QA〉 ' −2

∑
x

EiBi

2π2
(j̃ ' 2

B3

2π2
1

3
)

holds.



Lattice Theory and Doublers

We consider a (3 + 1)-dimensional system.

H =

∫
d3xψ†(x)[−iαi∂i + βm]ψ(x) =

∫
d3pψ†(p)[αipi + βm]ψ(p)

(
{
αi, αj

}
= 2δij ,

{
αi, β

}
= 0, β2 = 1)

The (naive) lattice version is

H =
∑
x∈Z3

ψ†(x)

[
αi∇i −∇†

i

2ia
+ βm

]
ψ(x), (∇iψ(x) = ψ(x+ î)− ψ(x))

=

∫ 2π/a

0
d3p ψ†(p)[αi sin(api)

a
+ βm]ψ(p)

States with p = π/a ∼ ∞ appear low-energy region E ∼ ±m
Seven unphysical states (doublers) appear!



Chiral Anomaly in (1 + 1)-D

Classically, axial charge QA commutes with H.

However,

Chiral anomaly

d

dt
〈QA〉 6= 0 in QFT.

∆ 〈QA〉
∆t

=
1

∆t
(∆ 〈QR〉 −∆ 〈QL〉) =

L

π
E

Infinite DoF causes the chiral anomaly!
How can we detect the anomaly on a lattice with finite DoF?



Integer-Valued Charges in (1 + 1)-D Staggered Fermion

We review massless (1 + 1)-D staggered fermion system,

H =
∑
x

χ†(x)
χ(x+ 1)− χ(x− 1)

2i
(χ(x) =

1

2
(a(x) + ib(x)))

=
i

2

∑
x

[a(x)a(x+ 1) + b(x)b(x+ 1)].

This Hamiltonian is invariant under

Tba(x)T
−1
b = a(x), Tbb(x)T

−1
b = b(x+ 1).

There are many integer-valuded conserved charges

Q0 =
∑
x

[
χ†(x)χ(x)− 1

2

]
=
i

2

∑
x

[a(x)b(x)] → QV ,

Q1 =TbQ0T
−1
b =

i

2

∑
x

[a(x)b(x+ 1)] → QA.

[Q0, Q1] 6= 0 describes Chiral Anomaly! [Chatterjee et al., 2025]



Commutation Relations

We set auxiliary charges Gm as

Gm =
i

2

∑
x

[a(x)a(x+m)− b(x)b(x+m)].

The commutation relations are given by

[Qn, Qm] = iGm−n, [Qn, Gm] = 2i(Qn−m −Qn+m), [Gn, Gm] = 0

Onsager algebra [Onsager, 1944; Chatterjee et al., 2025].

This algebra protects the system to be gappless.



Taste Basis

H is invariant under two-site shifts χ(x) → χ(x+ 2̂i).
Dirac fermions live on the blocked lattice.(

4-component Dirac fermions

ψ1(r) ψ2(r)
)
=

1

2

∑
A

4× 2-matrix

(
σA1
1 σA2

2 σA3
3

ϵ(A)σA1
1 σA2

2 σA3
3

)
χ(2r +A)

Staggered fermion describes two-flavor Dirac fermion.



Translation in the Taste Basis

The translation χ(x) → Tiχ(x) = ηi(x)χ(x+ î) is equivalent to

ψ(r) →Tiψ(r) =
1

2

∑
A

(
σA1
1 σA2

2 σA3
3

ϵ(A)σA1
1 σA2

2 σA3
3

)
ηi(A)χ(2r +A+ î)

=

[
Spinor Matrix

αi ⊗ 1 +
1

2
(αi ⊗ 1− βγ5 ⊗

Flavor Matrix

tσi)∇i

]
ψ →

[
αi ⊗ 1

]
ψ (a→ 0),

where

αi =

(
σi 0

0 −σi

)
, β =

(
0 1

1 0

)
, γ5 = −iα1α2α3 =

(
1 0

0 −1

)
.

Ti satisfies anti-commutation relations

TiTj + TjTi = 2δijT
2
j

which corresponds to αiαj + αjαi = 2δij .



Hamiltonian in the Taste Basis

χ(x) → ϵ(x)χ(x) leads to

ψ(r) → 1

2

∑
A

(
σA1
1 σA2

2 σA3
3

ϵ(A)σA1
1 σA2

2 σA3
3

)
ϵ(A)χ(2r +A) = [β ⊗ 1]ψ(r).

Then, we find H in the taste basis as

H =
∑
x

χ†(x)

[
ηi(x)

∇i −∇†
i

2ai
+mϵ(x)

]
χ(x)

=
∑
r

ψ†(r)

[
(αi ⊗ 1)

∇i −∇†
i

4ai
−

Wilson term

(βγ5 ⊗ tσi)
∇i +∇†

i

4ai
+m(β ⊗ 1)

]
ψ(r).

Wilson term ∇i+∇†
i

2a = −a
2
∇
a

∇†

a coverges to 0 in the limit of a→ 0!



Our result

We introduce charge densities of Qreg
A , QA and Q̃ as

jregA = jA + i j̃.

Imposing electric and magnetic fields, we clarify⟨
jregA

⟩
' i
⟨
j̃
⟩
→ i2

B

2π2
,

Chiral Anomaly Equation

d

dt

⟨
Qreg

A

⟩
' d

dt
〈QA〉 → −2

∑
x

EiBi

2π2
.

Our results agree well with the continuum predictions.

The auxiliary charge GST ,S−1
T

∼ QA is anomalous
rather than QST

.



Shifts for b Field

For g ∈ G, we define the shift operator for b as

Ŝ(b)
g a(x)(Ŝ(b)

g )−1 = a(x), Ŝ(b)
g b(x)(Ŝ(b)

g )−1 = ξg(x)b(g(x)),

where g moves x to g(x).

g 7→ Ŝ
(b)
g should keep the product.

Then, ξg(x) ∈ {±1} satisfies

• ξ±I(x) = ±1

• ξSi(x) = ξi(x)

• ξgh(x) = ξg(h(x))ξh(x)

• ξg−1(x) = ξg(g
−1(x))



Strategy

We review the chiral anomaly in the (3 + 1)-D Hamiltonian formalism,

H =

∫
dx3ψ†hψ(x, t), (h = αi(−i∂i +Ai(x, t)))

γ5 = −iα1α2α3,

where magnetic and electric fields are given by

Bi = ϵijk∂jAk, Ei = ∂0Ai.

Step. 1 Constructing the axial charge with point splitting.

Step. 2 Solving the Hamiltonian on each time slice.

Step. 3 Defining a vacuum state.

Step. 4 Evaluating the expectation value of the axial charge.



Axial Charge with Point Splitting

{
ψα(x, t), ψ

†
β(x

′, t)
}
= δαβδ

3(x− x′) implies

ψ†(x, t)γ5ψ(x, t) ∼ δ3(0).

We need point spliting!

j0A,c(x, t) =lim
y→x

ψ†(x, t)γ5e
−i

∫ x
y Ai(z,t)dz

i

ψ(y, t),

jiA,c(x, t) = lim
y→x

ψ†(x, t)αiγ5e
−i

∫ x
y Ai(z,t)dz

i

ψ(y, t),

e−i
∫ x
y Ai(z,t)dz

i

keeps them gauge invariant.



Definition of Vacuum State

We solve the eigenvalue problem of h = αi(−i∂i +Ai) at fixed time t.
For the energy E(Ω, t) > 0, the positive and negative energy states
are given by

hu(Ω, t) = E(Ω, t)u(Ω, t), hv(Ω, t) = −E(Ω, t)v(Ω, t),

where Ω is a label characterizing the wave functions.

ψ(x, t) =

∫
dΩ
[
u(Ω, x, t)b(Ω, t) + v(Ω, x, t)d†(Ω, t)

]
,({

b(Ω, t), b†(Ω′, t)
}
=
{
d(Ω, t), d†(Ω′, t)

}
= δΩΩ′

)
The vacuum state is determined by

b(Ω, t) |0, t〉 = d(Ω, t) |0, t〉 = 0.



Expectation Value of Axial Charge

The expectation value is evaluated as⟨
j0A,c

⟩
= 〈0, t| j0A,c |0, t〉 = lim

y→x

∫
dΩv†(Ω, x)γ5e−i

∫ x
y Ai(z,t)dz

i

v(Ω, y)

=lim
y→x

i
Bi

2π2
(y − x)i

‖y − x‖2
(Pure imaginary number),

and satisfies

∂µ

⟨
jµA,c(x, t)

⟩
= −EiBi

2π2
(Real number).

d
dt 〈QA,c(t)〉 = −

∫
d3xEiBi

2π2



Gauge Fields on Lattice

Gauge fields are introduced as link variables.

Gauge transformations:

χ(x) → g(x)χ(x), U1(x) → g(x)U1(x)g(x+ 1)−1

Covariant difference:

(∇1χ)(x) = U1(x)χ(x+ 1)− χ(x) (∼ a(∂x + iA)χ(x))

→ g(x)U1(x)g(x+ 1)−1g(x+ 1)χ(x+ 1)− g(x)χ(x)

= g(x)(∇1χ)(x)



Spectral Flow

We assign an electric field adiabatically.

U1(x, t) = U1(x), U2(x, t) = U2(x), U3(x, t) = U3(x)e
i 2π
N

t

E1 = E2 = 0, E3 =
2π
N and (ΓU )N = (−1)nei2πt

Zero modes appear at t ∈ n
2 + Z!



Physical Meaning of QST

In the (1 + 1)-D case, Qreg
A = Q1+Q−1

2 + iH2
and Q±1 → QA in the continuum limit [Chatterjee et al., 2025].

How about (3 + 1)-D case?

Onogi and Yamaoka [2025] pointed out

[QST
, a(x)] = −i(−1)x

2
b(x+ T ),

[QST
, b(x)] = −i(−1)x

2
a(x− T ).

These equations lead to

[QST
, ψ(r)] → −i(βα2 ⊗ tσ2)ψ

∗(r) (a→ 0)

QST
looks like a charge conjugation rather than the chiral

transformation...



Energy vs Chirality (N = 8)

[H,ΓU ] = 0 Simultaneously Diagonalizable!

For odd n, there is no zero mode.
For even n, there exist zero modes with ΓU = ±1.
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