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Motivation

Lattice approximation:
v(e) v Finite DoF
v Solvable on Computer
v Rigorous Definition of QFT

X Unphysical Poles
— Lattice regularization explicitly breaks Chiral Symmetry!

We consider (3 + 1)-D staggered fermion Hamiltonian
e Constructing Axial Charge [Susskind, 1977]

e Defining Onsager Algebra Ons3!

e Deriving Axial Anomaly Equation

'Ons; includes Yamaoka's Onsager algebra [Onogi and Yamaoka, 2025].



Staggered Fermion in Hamiltonian Formalism

We consider + —D spacetime.

Lattice Continuous

— The Hamiltonian is defined on the 3-D lattice space.

A
H=3 x'() [m(w’)w + me(x)] x(@)

2a1

(1) = (-1 ) = (-1 s ]

T - a
, VAl R vl
=> Y |(a'® 1)V14aivl - Br® toi)vz;—”,vl +m(B@1)|h(r).

Wilson term
— Two-Flavor Dirac Fermion System




Shift Transformation as Axial Symmtery

When m = 0, there exist three shift symmetries under
[Golterman and Smit, 1984; Catterall et al., 2025]

S s x(2) = &(x)x(x +1).
(@) = (D)7F, &) = ()7, &) =1)
(@) = (=1 m(2)&(x))

In the continuum limit, this shift converges to

Si =@t (15 = —iala?a®).
AN\

. Flavor Matrix )
We define the chiral operator as a diagonal shift [Susskind, 1977]

T =iS915:85: x(z) = i(—1)"x(z +T) (T =1+2+3).



Axial Charge in (1+ 1)-D Staggered Fermion

In the (14 1)-dim case, there is a Z-valued charge 4 such that

[Qa, ] = 59 (a = 0).
The axial anomaly is described by

Qv,Qa] #0

— {Qv,Qa} generates the Onsager algebra [Onsager, 1944;
Chatterjee et al., 2025]

We define the generalized Onsager algebra in (3 + 1)-dim case.

(2 + 1)-dim case is discussed in [Pace et al., 2025]



Our Work

ault)

We investigate (3 + 1)-D staggered fermion Hamiltonian.
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e We construct the generalized Onsager algebra Onss.

reg

e Under a certain magnetic field, Q,® can commute with H.

However, we find

d v FE;B;
a< :g> = _22 o072 "

— Chiral Anomaly Equation!
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Free Staggered Fermion



Shift Symmetry

The massless staggered fermion has shift symmetries under
Six(x) = &i(z)x(x +1).
(G(@) = ()", &) = ()7, &@) =1)
The commutation relations are given by
SiSj + 859 = 26,57, Sie = —€5;.
The shift operators can be translated into the taste basis as

Sip(r) = | (v5 @ o) + %(75 ®'o; — Ba; @ 1)V, [9(x)

S; corresponds to an axial flavor rotation 75 ® ‘0.

cf: Golterman and Smit [1984]; Catterall et al. [2025]; Onogi and Yamaoka [2025]
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Chiral Transformation

The lattice version should be determined as

I =i51558s, (S;~~5®%0:)

Ix(z) =i(-1)" x(z+T) (T=1+2+3).

We denote the lattice-regularized axial charge by

W= Z X'( = Qa +1i0Q,

where Q4 and () are Hermitian operators.
cf. Susskind [1977]; Golterman and Smit [1984]
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Majorana Decomposition

The massless staggered fermion has on-site charge conjugation,
X(@) = x* () ((r) = (8@ 1)TaSy 9" (r)).
x(x) can be decomposed as

X(x) = §<a<x> +ib())

({a(z),a(z’)} = {b(x),b(z")} = 26,2, {a(z),b(z')} =0)
Zm [ alw +3) + b@)b(w +3)]

The symmetry group is
G =(—1,51,52,83 | S;S; = =5;S; (1 # j))
={£S57155255% | n; € Z}
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Integer-Valued Charges

Quantized charges corresponding to g = £57".55%55% is defined as

& =% [\ - 5| = 5 ¥ alenta)

Q=5 D2 &ylw)ale)blo(x).

IT)g
where £,(z) € {il} satisfies ]
o &irfn) =
-@M)@wmmm ’ =
o {1(x) = &g () ‘
H_w' [+

Our definition is the Zg extension of the definition given in [Onogi and Yamaoka, 2025].
13



Commutation Relations

We set the auxiliary charge as

Gy = % > E(@)al@)alg(@)) — Enlz)b(a)b(h(x))].

Then, {Qg, G, 1} satisfies

[Qg’ Qh] = iGgflh,,hg*%
[ng Gh,k] = Z'(Qgiﬁl + Qk*lg - Qgh - ng)7

[Ggl-,hl ’ G927h2] - Z(G92917h1h2 - ng’lgl,hlhgl - Gg1927h2h1 + Gglgz’l,hglhl)'

— {Qg, Gh 1} forms a generalized Onsager algebra Ons;
[Pace et al., 2025].

Ons3 contains many Onsager subalgebras, including those discussed in [Catterall

et al., 2025] and [Onogi and Yamaoka, 2025].
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Axial Charge in terms of Ons;

A diagonal shift operator S = 535557 corresponds to
7

Qsr =5 > (=1)™a(x)b(z + T),

"I% can be rewritten in terms of Onss.

Q=Y x'(x)I'x(x)

1 ) Qs + Qg
Qa Q

e Qs is discussed in [Catterall et al., 2025; Onogi and Yamaoka, 2025].
e In the (1+1)-D case, Q"% = % + z% [Chatterjee et al., 2025].

15
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Axial Charge with U(1) Background
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U(1) Background Field

In the presence of the link variables, .S; is modified as

S x(x) = &(2)Ui(x)x (@ +1).

— SiUSJU + SJUSZ»U # 25ij(SJU)2
and the chiral operator does not commute with H in general.

However, under a certain configuration which assigns

2

n (neZ).
— SV SYSY commutes with H

We also add an electric field,

2T
FEi = FEy =0, Egzﬁ.
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Axial Charge under U(1) Background Field

In this case, the chiral operator is determined as

— 27
IV =ie B25V VsV (B = mn),
where ¢#B/2 is a normalization factor so that (ITV)Y = (—1)".

The lattice-regularized axial charge is defined as

QLF = Zx = Q4 +iQ

e =[ X' (z)IYx(2) ] —ja+ij
~ (@) yse Az + T)

7'+ ¢ looks like a point-splitted charge density with y = = + 7.
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Mode Expansion

_ /dQ [ b(Q, 1) + dT(QJ)],

Positive-Energy mode Negative-Energy mode
({e.0.01@ 0} = {a@.n,a'@. )} = dao)
—> The vacuum state is determined by
b(Q,t)0,t) = d(£2,t)]0,t) = 0.
The expectation value is given by
(E8Y = (0,4 (@)TV x(2) [0, 1) = / 40t (9, )TV (9, 2)

— We numerically calculate this value!
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Expectation Value of Q

Q(t) - 73 N3 ZX

0.025

0.020

e The error bars represent the

0015

deviation in the spacial directions.

0010

a6

. e The solid lines express 2%
— G(t) ~ 255,

-0.005

e The factor of two means 2-flavor.

-0.010{ & - = -

The continuum prediction at B; = B and y = x + T is given by
. B; (y—x) B
Im((jhe) =555 =

2m? |y —o|®  2m°
—>Consistent with continuum prediction!
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Chiral Anomaly Equation on Lattice

aalt)
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U
0a(1) = 3504 = 13 Sx @)y )

e The error bars represent the
deviation in the spacial directions.

e Jump at t € § + Z where zero
modes appear
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time ¢

In the continuous region,

d E;B;
dt (Qa) = _22 272

Chiral anomaly equation of two-flavor Dirac fermion 21
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Summary

We investigate the (3 + 1)-D staggered fermion system in
Hamiltonian formalism.

e We construct the generalized Onsager algebra {Qg, G 1}
e The lattice-regularized axial charge can be rewritten as

QST + QS‘

QE = QA+ZZJ— SCp syt 5

reg

e Under a certain magnetic field, Q';® commutes with H, but its

expectation value satlsfles

B

.re re Esz
(G3%) =i () =25, 4 Q) ~ t<QA>z—

27?2

JuE = 279 . in the continuum limit!
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Lattice Continuity Equation

The chiral charge density and current are defined as

(@) = 20 (@)Tx(@) + he),

jalz) = Z(XT(HS)F(TiX)(x) +(Tx")(@)Cx(z) + h.c.).
Assuming %X = —ihy, we obtain

20 vl == r c).
5i)a = Viia 2(X [h,T]x + h.c.)

[AVAVAVAVAVAVAVAVAVAVAVAVA VA Vel
Additional Source
If [h,T'] =0, the axial charge is strictly conserved.



Uniform Magnetic Field in the z-direction

We assign By =By =0, B3y=B, E1 =F, =0, E3=F.
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Although the deviations are larger, the chiral anomaly equation

d EB; -~ B3 1
< ~ 2 ~ 98
4 (@) %: o2 U=2553)

holds.



Lattice Theory and Doublers

We consider a (3 + 1)-dimensional system.
1= [ davi@)-ia'd; + pmli(e) = [ &pulla'ni+ smluio)
({07} =207, {a', 8} =0, p* =1)

The (naive) lattice version is

H=Y yfi(@)|al “ V! | 9(@), (Vat(a) = bl + ) — 0(@)
T€Z3
27 /a sin(a
= [ ™ sy

States with p = m/a ~ oo appear low-energy region E' ~ +m
—Seven unphysical states (doublers) appear!




Chiral Anomaly in (1+1)-D

Classically, axial charge @ 4 commutes with H.

— However, %(Q@ #0in QFT.

AVAVAVAVAVAVAVAVAVal
Chiral anomaly

Energy Energy
Y5 = —1 75 =+1 " AQr) = 3 EAt
‘ o — P
Imposing TNAQL) = — £ BEAL
Electric Field

AgA> = §<A (Qr) —A(QL) = %E

Infinite DoF causes the chiral anomaly!

—> How can we detect the anomaly on a lattice with finite DoF?



Integer-Valued Charges in (1 + 1)-D Staggered Fermion
We review massless (1 + 1)—D staggered fermion system,

. Z x(x +1) - x(z—1) (x(z) = %(a(m) +ib(x)))

72 a(z + 1) + b(x)b(z + 1)].

This Hamlltonlan is invariant under
Tya(z)T, ' = a(x), Tyb(x)T, ' = b(z + 1).
There are many integer-valuded conserved charges

Q=3 [onte) - 5| = 5 Cletio)] - Qv,

x x

Qi =TQuTy " = 3 Y la(e)ble + 1)) Q.

€T

[Qo, Q1] # 0 describes Chiral Anomaly! [Chatterjee et al., 2025]



Commutation Relations

We set auxiliary charges G, as
1
G =5 > la(@)a(x + m) = b(x)b(z + m)].

x
The commutation relations are given by

[Qna Qm] = Z.Gmfm [Qm Gm] = 2Z’(anm - Qner)a [Gna Gm] =0

— Onsager algebra [Onsager, 1944; Chatterjee et al., 2025].

This algebra protects the system to be gappless.



Taste Basis

H is invariant under two-site shifts y(z) — x(z + 2i).
— Dirac fermions live on the blocked lattice.
1 0f10§420§43
= 2r+ A
() ) =55 (o e

. . A
4-component Dirac fermions

x(2r + A)

4 x 2-matrix

Yi(r), Ya(r)

x(2r)

Staggered fermion describes two-flavor Dirac fermion.



Translation in the Taste Basis

The translation x(z) — Tjx(x) = n;(x)x(z + 1) is equivalent to
1

Ay Ay Az A
b(r) T = 53 (e(gagfg;jfﬁg) n(A)x(2r + A +17)
A

— a2®1+§(a’®1—5’75®t0i)Vz‘ Y = [a' @ 1] (a — 0),
AN [AVAVS

Spinor Matrix Flavor Matrix
where

o' = , B = , V5 = —iarafa” = .
(0 —ai> P (1 0> 5 0 -1

T; satisfies anti-commutation relations
T,Tj + T;T; = 264517

which corresponds to a;orj + ajoy = 26;5.



Hamiltonian in the Taste Basis

x(x) — €(z)x(z) leads to

Ay _Ax _As

Y(r) = ;Z( oD AS)E(A)X(Qr—i—A) = [8® 1p(r).

Then, we find H in the taste basis as

v, — V!
H=> x'(z) =

mi(w) —5— +m6(w)1x(96)

2a1

. Vi—V! V,+ V!
o t i 7 N t 7
=300 (@ 8 DT — (s @ ) T (3@ 1))
Wilson term
ot ,
Wilson term Vz;;Vi = —%%%T coverges to 0 in the limit of a — 0!



Our result

We introduce charge densities of Q;%, Q4 and Q as
I

]Ag_]A+ij-

Imposing electric and magnetic fields, we clarify

e . B
<jffg> :z<]> —>Z2ﬁ,

re d
<Q g> _22 2ﬂ.2 :

Chiral Anomaly Equation

Our results agree well with the continuum predictions.

— The auxiliary charge Gg,g-1 ~Qals anomalous
W
rather than Qg,..



Shifts for b Field

For g € G, we define the shift operator for b as

N

SPa()(SP) 71 = alx), SPb(x)(SP) 7 = & (@)blg(x)),

where g moves z to g(z).

g Sggb) should keep the product. g(m).
Then, &,(z) € {£1} satisfies g™ )|
o {if(w) = =1
o (g, (x) = &i(x) -
o &n(@) = &(h(z))én(z) ~

o {i(w) = &g ()




Strategy

We review the chiral anomaly in the (3 + 1)-D Hamiltonian formalism,

- /d;c?’ww(x,t), (h = o/ (=id; + Ai(z, 1))

c 1.2 3
V5 = —iaata”,

where magnetic and electric fields are given by
Bi = EijkajAk, Ez = 80141
Step. 1 Constructing the axial charge with point splitting.
Step. 2 Solving the Hamiltonian on each time slice.

Step. 3 Defining a vacuum state.

Step. 4 Evaluating the expectation value of the axial charge.



Axial Charge with Point Splitting

{%(x, £), ok, t)} = §ag0%(z — 2') implies
TZJT(% t)75¢($7 t) ~ 53(0)
—> We need point spliting!
Tl t) =lim g (@, pyse " HEIE (1),

Tl t) = lim 9 (2, atge b MEE Yy ),

ety Ailzt)dzt keeps them gauge invariant.



Definition of Vacuum State

We solve the eigenvalue problem of h = af(—id; + A;) at fixed time t.
For the energy E(£2,t) > 0, the positive and negative energy states
are given by

hu(Q,1) = E(Q, Du(, 1), ho(Q1) = —E(Q, (1),

where € is a label characterizing the wave functions.

wlant) = [ d2u(s . 0M@ 0 +v(s .00 (2.0)],
({b(n,t),zﬁ(sz',t)} - {d(Q,t),dT(Q’,t)} - 599,)

— The vacuum state is determined by
b(Q,t)0,t) = d(£2,t)]0,t) = 0.



Expectation Value of Axial Charge

The expectation value is evaluated as

(J.e) = (0,174 10,) = lim / dwt (Q, w)yPe ™y AN y)
k) ) y x

.. Bi (y—ua) o
=lim ¢ —~>——~~  (Pure imaginary number),
W5 oy o Einary number)

and satisfies

FE;B;
O <jﬁ,c($,t)> = — 52 (Real number).

— §(Quac(t) = — [ P25



Gauge Fields on Lattice

Gauge fields are introduced as link variables.

x(z) Ui(r) = Pexp(—ia j;+1 Ai(2)dz") x(z+1)
1 AN

l
1 ? 1
T a r+1

Gauge transformations:
x(@) = g(@)x(z), Ui(x) = g(z)Ui(x)g(z +1)""
Covariant difference:
(Vix)(z) = Ui(@)x(z +1) = x(2) (~a(dz +id)x(z))
= g(x)U1(2)g(z + 1) gz + x(z + 1) — g(z)x(z)
= g(z)(Vix)(z)



Spectral Flow

We assign an electric field adiabatically.
Ur(z,t) = Ui(z), Us(x,t) = Us(x), Us(x,t) = Us()e! ¥
——> E =FE,=0, B3 = QWW and (TV)N = (—1)nei2nt

Zero modes appear at t € § + 7Z!

ni2

-n2

arg(rY)



Physical Meaning of Qg

In the (1+ 1)-D case, Q5% = % +ild
and Q11 — Q4 in the continuum limit [Chatterjee et al., 2025].
— How about (3 + 1)-D case?

Onogi and Yamaoka [2025] pointed out

[QST7 a(m)} = _i(_l)x b(l: + T)?
Qs b(x)] = —i(=1)" a(z = T).

These equations lead to

Qs ()] = —i(Baz @ 'o2)¥"(r) (a — 0)

Qs, looks like a charge conjugation rather than the chiral

transformation...



Energy vs Chirality (V =238)

[H,TY] = 0 — Simultaneously Diagonalizable!
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arg(r¥)

arg(rV)

For odd n, there is no zero mode.

= +£1.

For even n, there exist zero modes with TV
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