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Introduction

Topology plays an essential role in understanding field
theory.

Anomaly, Classification of SPT phase, Instanton, Soliton, etc.

These are related to today’s topic
(topological invariants appear in the complex phase of the partition function)

How these topological invariant can be formulated on the
lattice?

It seems difficult due to the absence of continuity.

A successful example:

Index of the overlap operator (through Ginsperg-Wilson relation)
[Neuberger 1998, Hasenfratz et al. 1998]

(number difference of zero modes are well-defined)
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Introduction

The index of overlap operator describes the topology of gauge field.

1
Ind(Dyy) < Ind(p) = 352 /d4:1:e””p0Fu,,Fpg

It is a good analogue of the AS index in continuum theory.

But,:-- The overlap operator is formulated on the flat torus.
Recently, the extensions of the index have been developed.

Cf. Formulation by spectral flow of Generalized Ginsperg-Wilson relations
massive Wilson fermion [Clancy, Kaplan, Singh, 2024 ]
[Aoki, Fukaya et al., 2024,2025]

—The APS Index (index on open manifold) and the mod2 Index on lattice are formulated.

How about{ topological invariants on more general manifolds,

non-index type (not a #of zero modes) topological invariant,

on the lattice?
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Our target in this talk

Target theory:
2D Massive Majorana fermion with Reflection symmetry R

More exotic Zg topological invariant appears in fermionic path integral.

Reflection symmetry (for x-direction)
« R satisfies R? = -1

— ~ L300 (An element of Pin-(2) group)
’t,b(:]_':, y) — Rﬂ”‘p(m? y) =77 ’tfb( Z, y) ->Pin- structures are required on the manifold
Action

S — % / d2$¢TO(& + m)d) - Impose Majorana condition y = y7C
X

C satisfies Cy#C1 = —yT.

—The reflection symmetry allows path integral on non-orientable manifolds,
such as the real projective plane(RP2) or the Klein Bottle.
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Target theory (in the continuum case)

The complex phase of the partition function is quantized in
the 8th root of unity.

o) 27
Z(X,s;m) o exp (igﬁ(X, s))

This integer g = 0,1, ..., 7 depends only on topology of manifold X and Pin- structure s.
= Zg Topological invariant (known as the Arf-Brown-Kervaire (ABK) invariant)

Physical meaning of the Zq4
= Zg classification of symmetry protected topological phases

= Zg anomaly of the reflection symmetry in 1D system
(non-perturbative (global) anomaly)
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Open manifolds by domain-wall fermion

The domain-wall mass term: mpyw < 0(inside X),mpyw > 0(outside X)

X =Disk X = Mobius Strip
m>0

m <0 gluing together with

reversing orientation

Zulicedge(X) o< €7 = 1 Zuli+edge(X) ox €4

The complex phase of Zpw(X) exhibit Zg quantization and depends only on topology of X.
The ABK invariant for open manifold can be formulated by
domain-wall fermion approach.

Background: Anomaly inflow mechanism

An edge mode appears at the domain-wall. — It describes a bulk+edge system.
The phase of Zpy = Zpyik+eage 1S Well-defined, while Zp, ik, Zeq4. alone are not(=anomalous).
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Our goal

Formulate and numerically verify the Zg ABK invariant by
lattice Euclidean path integral of the 2D Massive Majorana fermion.

Points

« We use Wilson Dirac operator (chiral symmetry is not required),

and the partition function can be evaluated as a Pfaffian of the finite-size matrix.
- Twisted boundary conditions realize non-oriented manifolds.
 Domain-wall fermion operator is used to express the ABK invariant on

open manifolds.
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Lattice setup(1)

Wilson-Dirac operator in 2D

Action of Ma]orana fermion

VLY, e | |
Dy = Z ( 4+ av;iv”) +m Lattice discretization by Wilson fermions

S = Z a* =yt (z,y)C Dy (z,y) + Impose Majorana condition ¢ = %7C
C satisfies Cy#C1 = —yT.
x,yeX
Partition function « Pfaffian(“square root” of determinant)
Z(X,s;m) =Pl (CDy m - o0,a - 0)
( ) (CDw) Z(X, s, —m) o

What we want to examine: Z(X,s;m)

Is the phase quantized and topological even on the lattice?

X exp ig,@(X,S))

Phase measured relative

Z(m) (positive mass) as in Pauli-Villars
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Lattice setup(2)

Boundary conditions to realize different manifolds
L Mobius Strip
torus Klein Bottle Real prOJecglve plane (As a domain-wall fermion
(RP?) on Klein bottle)
(PP, PeAy, AxPy, AxAy}  {Pety, Axty} (£,
(x+ L,y) = £¢Y(zx,y) Periodic and antiperiodic boundary condition (P,A).
'(‘b(g_'; + L,y) — :I:qu,b(m, y) Twisted boundary condition (+).
(Similarly for y-direction) (insert refrection Ryvvhich satisfy RJZ, =-1)
There are topologically different choices of boundary conditions (=Pin- structures).
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Result (Analytic computation)

Analytic evaluation by eigenvalue expansion works on flat
manifolds.

/ = Pf(CDWD) — H A, (Choose one of the doubly

degenerated eigenvalues)

Eigenvalues in moinentum space .
Ap+ = :I:z.—\/sm(apfg) + sin(apy)? + m + — (2 — cos(ap,) — cos(apy))
a a

®Torus (Warm up)
Only p = 0 eigenvalue can contribute to the phase.
(For p # 0, complex phases are canceled by conjugate eigenvalues.)
p = 0 eigenvalue can appear only with periodic boundary condition in both x and v.

Z(torus,P,P,;—m) —m . B(torus, P,P,) = 4
X — = —
Z(tOI’US, PxPy, —I—m) m B(torus, (other B.C.)) =0
as continuum.
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Result (Analytic computation)

@Klein Bottle

The p, = 0 eigenvalues contribute to the phase.
Z is nontrivial when the boundary condition is periodic for x-direction (P, t+,,) .

(Finite product) o, takes values -,+,-,:: as p, increases.

(KB, P,.t,;:—m I —m
( » L xLys ) - H p,ia( ) X Ti
Z(KB, P:C:I:y; +m) )\p,ig(er)
pxzo (m = oo,a - 0)
0 <p, <7/a
Numerical g and its error from theory
B(KB, Am::y) p— 0 Nx X Ny Blattice(P$+y; m, CL) erTor ’ﬁlattice o Btheoryl
_ 10 x 10 —1.99751... 2.49 x 1073
6(KB, Pa:"y) = F2 20 x 20 —1.99999757 . .. 2.43 x 106
) 30 x 30  —1.99999999762. .. 2.37 x 1079
as continuum. — ——
(fixing manifold size L = N,, a and ma = 1)
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Result (Numerical computation)

We numerically evaluate the Wilson fermion Pfaffian in more general cases.
(fixing manifold size L = N, , a and ma = 1)

Phase of partition function

« The Zg quantization is observed. 4 lo—0—0—-0—0-0-0-0-0 090

@ Torus, P, P,

i . : —j— Torus, P, A,

« Errors exponentially decay in the continuum 3t —& Torus 4 fl
mi — Klein Bottle, 7, Hy
limit a = L/N - 0. (¥ ¥ ¥ ¥ ¥ ¥V Yy Kiein BEH.E.p,, ‘
. = Klein Bottle, A,
« It valid even on RP?2 (non-flat, with T o1 *_*g_g_g_g_m - +§'§z’" _va_tflle. A, -,
singularities induced by lattice discretization). < E' X Mobius strip, p, -
— The phase depends only on N . ¥ Mobivs atrip Z’ju
. - = .M Mébius Strip, A, —,
topological structure of the manifolds. = ! ﬁTﬁ—ﬁ—ﬂ—& a—a—a—a | K MOOUSOMP A

« The domain-wall Dirac operator phase
agrees with the Zg invariant on the -3}
Mobius strip (open manifold).

=] 10 15 20
N({ = L/a)
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Summary and outlook

Summary

« The exotic (non-index type) Zg ABK Invariant can be reproduced in lattice
fermion set up.

« The lattice description of various type (non-orientable, closed/open)
manifolds works well (at least from topological point of view).

Next themes

To reproduce other topological invariants (such as Z,),
« Analysis of the edge mode spectrum and the anomaly,
« Extension to interacting theory (SMG of edge modes),------
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