

Complex Langevin studies of the Lorentzian IKKT Matrix Model

Naoyuki Yamamori (KEK/SOKENDAI)

In collaboration with: Anagnostopoulos, Azuma, Hirasawa,
Karydis, Nishimura, Tsuchiya

KEK Theory Workshop 2025
KEK Tsukuba Campus
Dec 16-18, 2025

IKKT matrix model : nonperturbative formulation of superstring theory

$$S_b = -\frac{N}{4} \text{tr} ([A^\mu, A^\nu][A_\mu, A_\nu])$$

$N \times N$ Hermitian matrices

$A_\mu (\mu = 0, \dots, 9)$ Lorentz vector

$$S_f = -\frac{N}{2} \text{tr} (\bar{\Psi} \Gamma^\mu [A^\mu, \Psi])$$

$\Psi_\alpha (\alpha = 1, \dots, 16)$ Majorana-Weyl spinor

SO(9,1) Lorentz symmetry

Space-time does not exist a priori, but emerges from d.o.f. of matrices.

$$Z = \int dA e^{iS_b} \text{Pf} \mathcal{M}(A)$$

pure phase factor polynomial in A

sign problem

Complex Langevin method

Plan of talk

0. Introduction
1. Defining the Lorentzian IKKT matrix model
2. How to apply the complex Langevin method
3. Numerical results
4. Summary and discussions

1. Defining the Lorentzian IKKT matrix model

Wick rotation on the worldsheet and in the target space

$$A_0 = -ie^{i\frac{\pi}{8}} \tilde{A}_0 = e^{-i\frac{3}{8}\pi} \tilde{A}_0$$

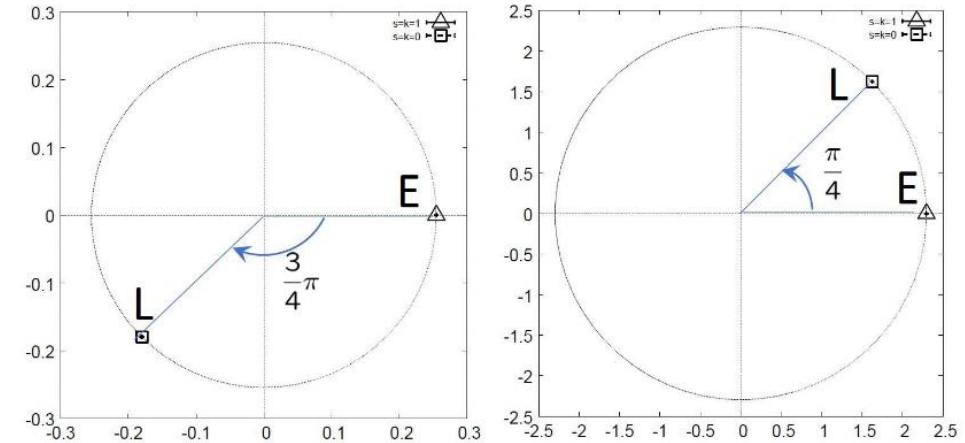
$$A_i = e^{i\frac{\pi}{8}} \tilde{A}_i$$

$$\left\langle \frac{1}{N} \text{Tr}(A_0)^2 \right\rangle_L = e^{-i\frac{3\pi}{4}} \left\langle \frac{1}{N} \text{Tr}(\tilde{A}_0)^2 \right\rangle_E$$

$$\left\langle \frac{1}{N} \text{Tr}(A_i)^2 \right\rangle_L = e^{i\frac{\pi}{4}} \left\langle \frac{1}{N} \text{Tr}(\tilde{A}_i)^2 \right\rangle_E$$

real positive

[Hatakeyama-Anagnostopoulos-Azuma-Hirasawa
-Ito-Nishimura-Papadoudis-Tsuchiya('22)]



Euclidean model and Lorentzian model are equivalent.

∴ Space-time becomes complex.

Introduce a Lorentz invariant mass term : $S_\gamma = -\frac{1}{2}N\gamma \text{Tr} (A_\mu)^2 = \frac{1}{2}N\gamma \left\{ \text{tr} (A_0)^2 - \text{tr} (A_i)^2 \right\}$

Lorentzian model

[Anagnostopoulos-Azuma-Hatakeyama-Hirasawa-Nishimura-Tsuchiya-Stratos('22)]

$$Z = \int dA e^{-\tilde{S}} \quad F_{\mu\nu} = i[A_\mu, A_\nu], \quad \gamma > 0$$

$$\tilde{S} = -\frac{i}{4}N \left\{ -2\text{tr}(F_{0i})^2 + \text{tr}(F_{ij})^2 \right\} - \frac{i}{2}N\gamma \left\{ \text{tr}(A_0)^2 - \text{tr}(A_i)^2 \right\}$$

$$A_0 = e^{-i\frac{3}{8}\pi} \tilde{A}_0, \quad A_i = e^{i\frac{\pi}{8}} \tilde{A}_i$$

$$\tilde{S} = \frac{1}{4}N \left\{ 2\text{tr}(\tilde{F}_{0i})^2 + \text{tr}(\tilde{F}_{ij})^2 \right\} + \frac{1}{2}N\gamma e^{i\frac{3}{4}\pi} \left\{ \text{tr}(\tilde{A}_0)^2 + \text{tr}(\tilde{A}_i)^2 \right\}$$

real part becomes negative \rightarrow equivalence does not hold

Equation of motion

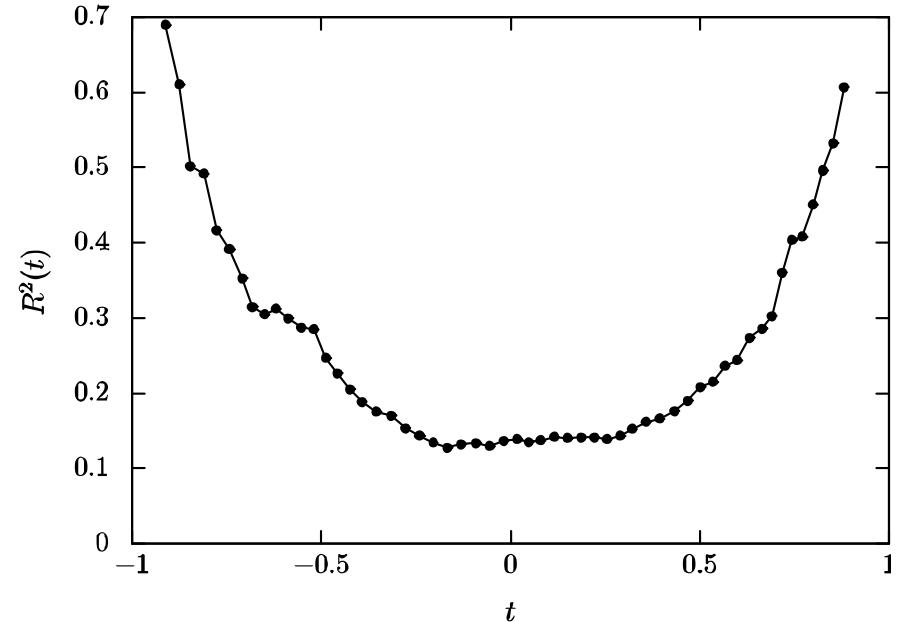
$$[A^\nu, [A_\nu, A_\mu]] - \gamma A_\mu = 0$$

Typical classical solutions show expanding behavior for $\gamma > 0$.

For $\gamma < 0$, only the trivial solutions ($A = 0$) exist.

However, dimension of space-time is not determined at the classical level.

Hatakeyama-Matsumoto-Nishimura
-Tsuchiya-Yosprakob
PTEP 2020 (2020) 4, 043B10



The partition function diverges due to the Lorentz symmetry. $Z = \int dA e^{iS_b} \text{Pf} \mathcal{M}(A)$

Conventional approach: introduce a cutoff in the Lorentz invariant mass term

$$S_\gamma^{(\varepsilon)} = \frac{1}{2} N \gamma \left\{ e^{i\varepsilon} \text{tr} (A_0)^2 - e^{-i\varepsilon} \text{tr} (A_i)^2 \right\}$$

↑
↑
breaks Lorentz symmetry

The artifact of Lorentz symmetry breaking cutoff remains even in the limit $\varepsilon \rightarrow 0$.

Asano, Nishimura, Piensuk, NY,
Phys. Rev. Lett. 134, 041603

minimize $\text{tr}(A_0)^2$ under the Lorentz transformation “gauge-fixed” model

↓

$$\begin{pmatrix} A'_0 \\ A'_j \end{pmatrix} = \begin{pmatrix} \cosh\sigma & \sinh\sigma \\ \sinh\sigma & \cosh\sigma \end{pmatrix} \begin{pmatrix} A_0 \\ A_j \end{pmatrix}$$

$\text{tr}(A_0 A_j) = 0$ for all $j = 1, \dots, 9$

$$Z_{\text{g.f.}} = \int dA e^{i(S_b + S_\gamma)} \text{Pf} \mathcal{M}(A) \Delta_{\text{FP}}(A) \prod_{i=1}^9 \delta(\text{tr}(A_0 A_i))$$

$$\Delta_{\text{FP}}(A) = \det \Omega, \quad \Omega_{ij} = \text{tr}(A_0)^2 \delta_{ij} + \text{tr}(A_i A_j)$$

2. How to apply the complex Langevin method

Diagonalize A_0 by the $SU(N)$ symmetry $A_\mu \rightarrow A'_\mu = U A_\mu U^\dagger$, $U \in SU(N)$

$$A_0 = \text{diag}(\alpha_1, \alpha_2, \dots, \alpha_N), \quad (\alpha_1 < \alpha_2 < \dots < \alpha_N)$$

$$A_0 = \begin{array}{c} \text{Diagram showing a large rectangle with a blue box inside. The top edge is labeled } \alpha_1, \alpha_2, \dots, n. \text{ The bottom edge is labeled } n, \alpha_i, \alpha_{i+n}, \dots, \alpha_N. \text{ A red arrow labeled } a \text{ points to the bottom edge.} \\ \text{A blue box is centered in the rectangle, with its top edge labeled } \alpha_i. \text{ The bottom edge of the box is labeled } \alpha_{i+n}. \end{array}$$

$$\bar{\alpha}_i = \frac{1}{n} \sum_{\nu=1}^n \langle \alpha_{i+\nu} \rangle \quad t_a = \sum_{i=1}^a |\bar{\alpha}_i - \bar{\alpha}_{i-1}|$$

The diagram shows a sequence of nested rectangles, each with a blue border. The innermost rectangle is yellow and labeled $\bar{A}_i(t)$. The region between the inner rectangle and the outermost rectangle is shaded light blue. The outermost rectangle is labeled A_i . The region is divided into two parts by a diagonal line: the upper-left part is labeled "small" and the lower-right part is labeled "n". A bracket on the right side of the diagram is labeled "space at time t ".

$$R^2(t) = \left\langle \frac{1}{n} \text{tr} \left(\bar{A}_i(t) \right)^2 \right\rangle \quad : \text{extent of space at time } t$$

the effective action of Lorentzian model : $Z = \int dA e^{-S_{\text{eff}}}$

$$S_{\text{eff}} = -iN \left(\frac{1}{2} \text{tr}[A_0, A_i]^2 - \frac{1}{4} \text{tr}[A_i, A_j]^2 \right) - \log \Delta(\alpha) - \sum_{a=1}^{N-1} \tau_a$$

τ_a : auxiliary variables that **impose $\alpha_1 < \alpha_2 < \dots < \alpha_N$ automatically** $\alpha_i = \sum_{k=1}^{i-1} e^{\tau_k}$ ($i = 2, 3, \dots, N$)

Nishimura, Tsuchiya, JHEP 1906 (2019) 077

complex Langevin equation

$$\frac{d\tau_a}{dt} = -\frac{\partial S_{\text{eff}}}{\partial \tau_a} + \eta_a(t) ,$$

$$\frac{d(A_i)_{ab}}{dt} = -\frac{\partial S_{\text{eff}}}{\partial (A_i)_{ba}} + (\eta_i)_{ab}(t)$$

τ_a : complex variables

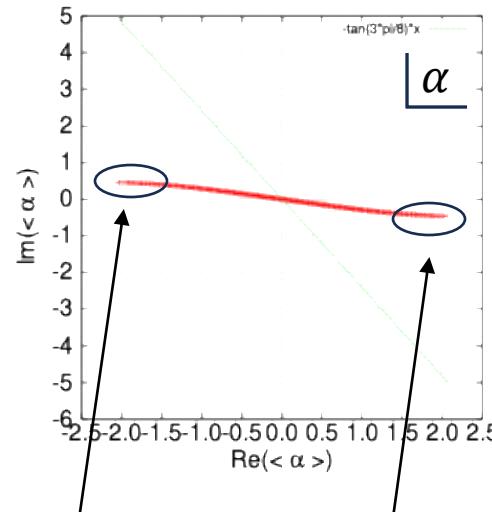
A_i : general complex matrices

η_a, η_i : Gaussian noise

3. Numerical results

$$S = S_b + S_\gamma = -\frac{N}{4} \text{tr} ([A^\mu, A^\nu] [A_\mu, A_\nu]) - \frac{N}{2} \gamma \text{tr}(A_\mu)^2$$

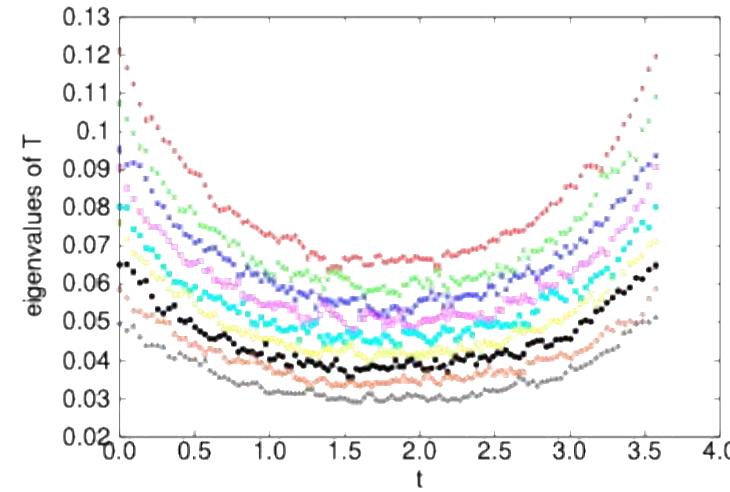
eigenvalues of A_0



The time increment becomes real in this region.

$$T_{ij}(t) = \left\langle \frac{1}{n} \text{tr}(\bar{A}_i(t) \bar{A}_j(t)) \right\rangle$$

extent of space in the 9 directions



No SSB of SO(9) spatial symmetry
(the small variance is due to finite N effects.)

When Dirac operator has zero mode, complex Langevin method does not work.

To avoid this, we add the mass term to the fermionic action.

$$S_f = -\frac{N}{2} \text{tr} \left(\bar{\Psi}_\alpha (\Gamma^\mu)_{\alpha\beta} [A_\mu, \Psi_\beta] + i m_f \bar{\Psi}_\alpha (\Gamma_7 \Gamma_8^\dagger \Gamma_9)_{\alpha\beta} \Psi_\beta \right)$$

$m_f \rightarrow \infty$
: bosonic model

$m_f \rightarrow 0$
: SUSY

Complex Langevin method works only for $m_f \geq 3.5$.

But the results for $m_f = 3.5$ are still qualitatively the same as the bosonic model.

To mimic the SUSY deformation, [G. Bonelli, JHEP 08 \(2002\) 922](#)

We introduce some anisotropy in the Lorentz invariant mass term.

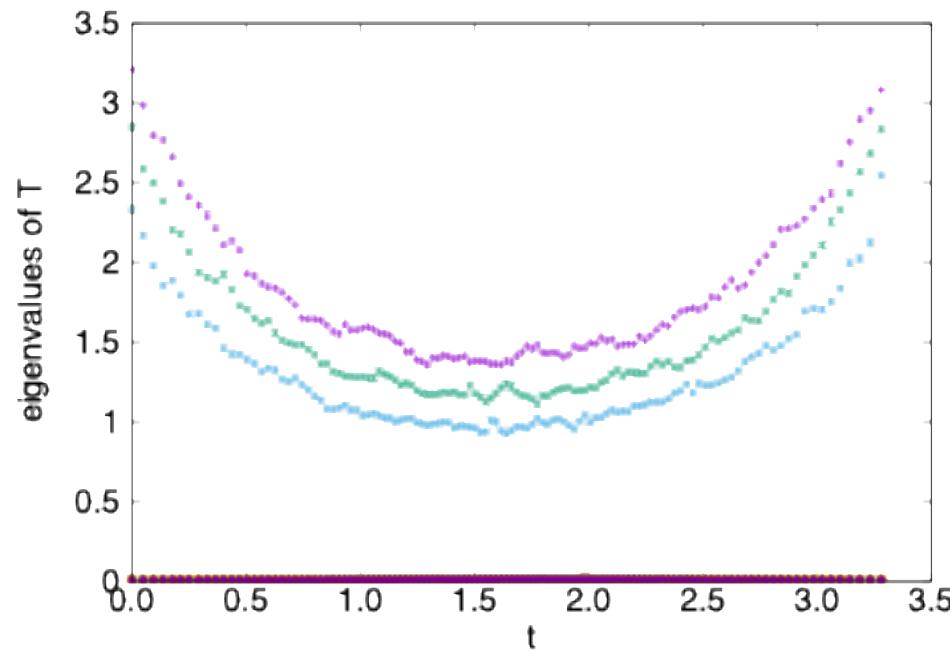
$$S_\gamma = \frac{1}{2} N \gamma \left\{ \text{tr} (A_0)^2 - \sum_{i=1}^{\tilde{d}} \text{tr} (A_i)^2 - \xi \sum_{j=\tilde{d}+1}^9 \text{tr} (A_j)^2 \right\}. \quad (\xi > 1)$$

Result with the effect of SUSY (N=128)

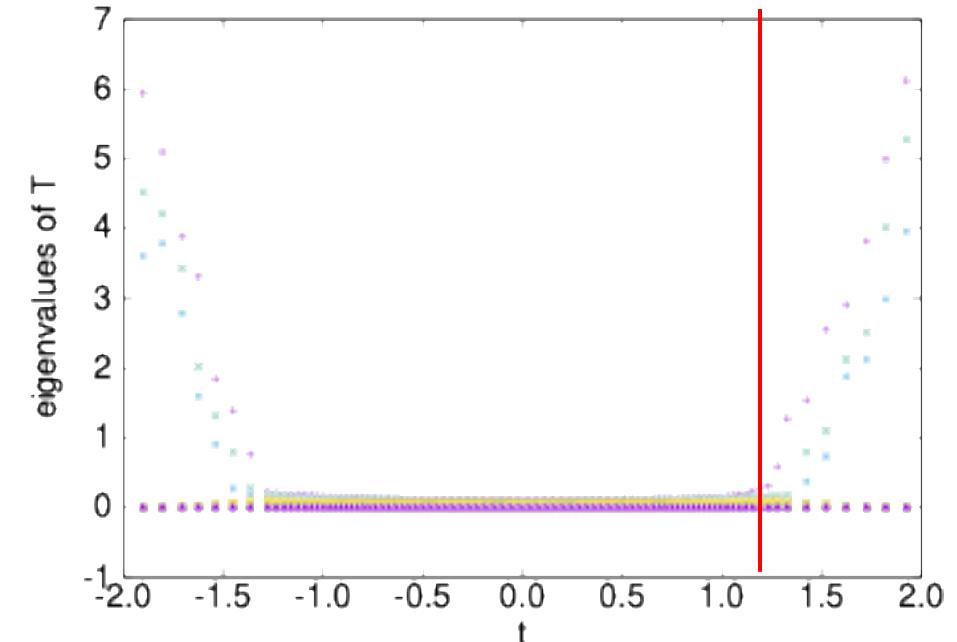
15

$$N = 128, \gamma = 4, m_f = 5.0, \tilde{d} = 5, \xi = 10$$

3d initial configuration



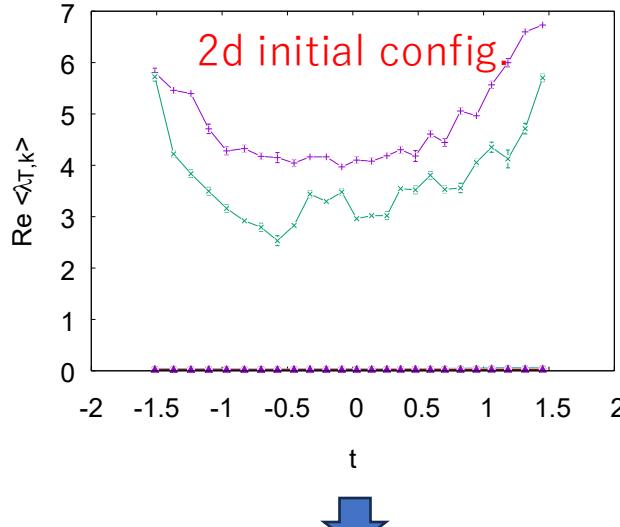
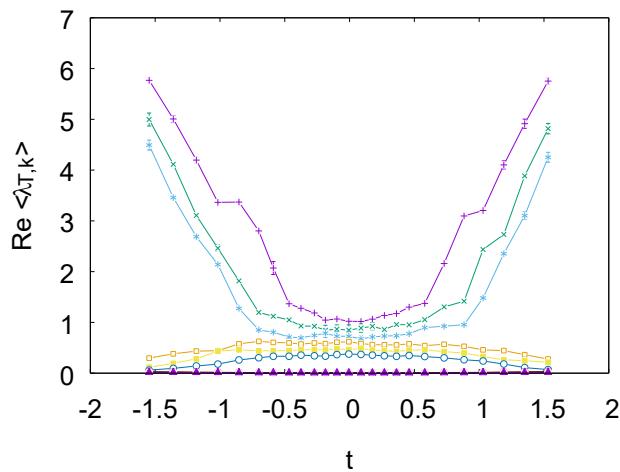
Emergence of (3+1)D expanding space-time at late time



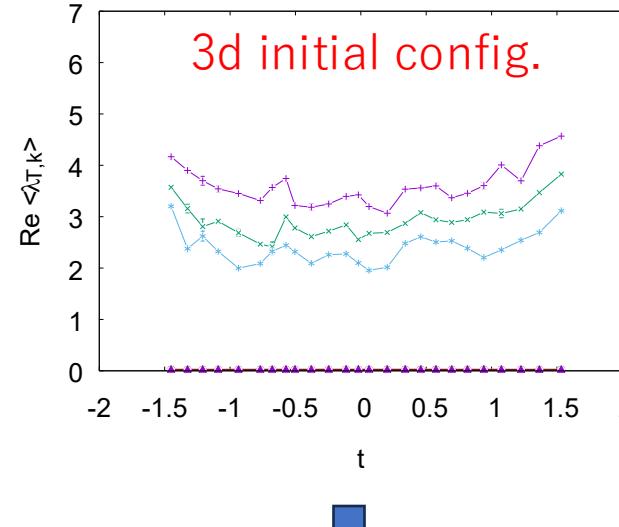
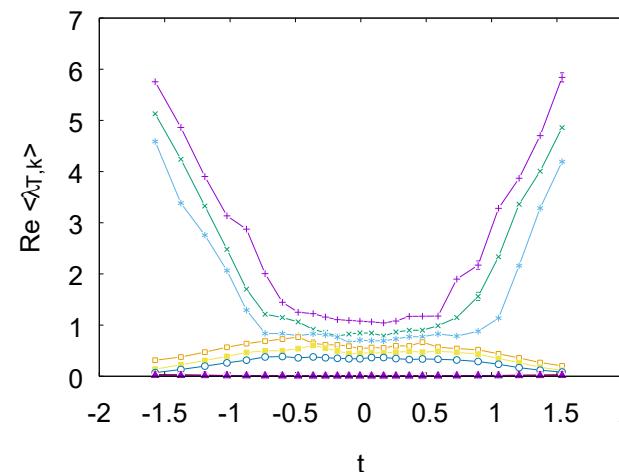
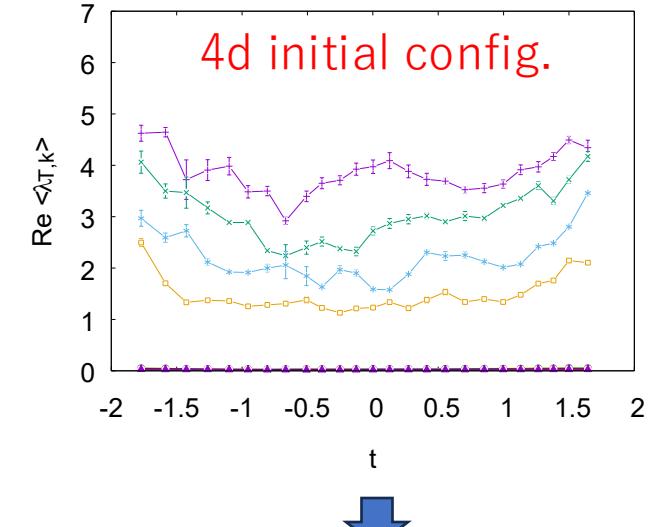
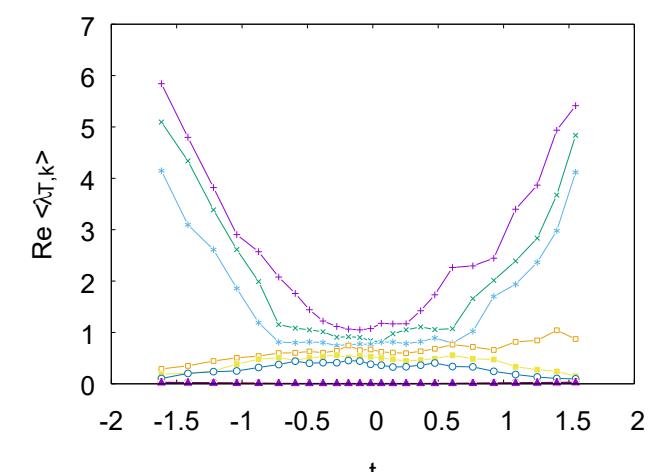
Result with the effect of SUSY (N=32)

16

$$N = 32, \gamma = 6, m_f = 2, \tilde{d} = 6, \xi = 10$$



(3+1)D expanding space-time emerges even for 2D and 4D initial configurations.

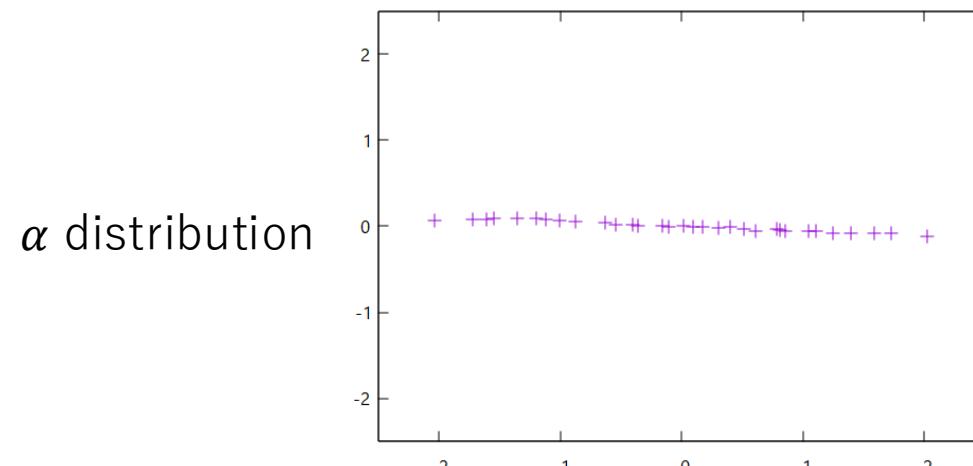


SUSY deformation of Lorentzian model

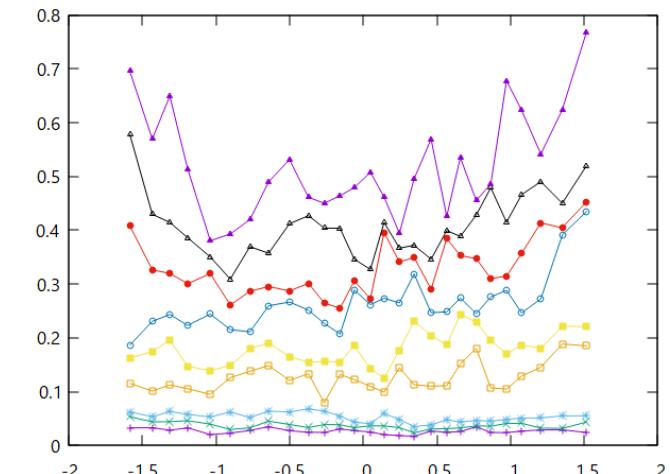
$\left\{ \begin{array}{l} \text{add the Myers term : } S_{\text{Myers}} = -iN\mu \text{tr}(A_7[A_8, A_9]) \in \mathbb{R} \\ \text{set } \gamma = -\frac{\mu^2}{32}, m_f = \frac{\mu}{4}, \xi = 3, \tilde{d} = 6 \end{array} \right.$

We target $N = 32, \mu = 16i, \gamma = 8, m_f = 4i, \xi = 3, \tilde{d} = 6$.

preliminary result at $N = 32, \mu = 16i, \gamma = 8, m_f = 4e^{0.8\pi i/2}, \xi = 4, \tilde{d} = 6$



eigenvalues of $T_{ij}(t)$



4. Summary and discussions

- IKKT matrix model : nonperturbative formulation of superstring theory
- “gauge-fixed” model : definition that preserves Lorentz symmetry
- bosonic model : No SSB of spatial $SO(9)$ symmetry
- model with the effect of SUSY : (3+1)D expanding space-time at late time
- (3+1)D expanding space-time emerges even for 2D and 4D initial configurations.

Future prospects

- analysis for SUSY deformed model (ongoing at $N=32$)
- mechanism for the emergence of 3d space
The Pfaffian prefers collapsed configurations, but it becomes zero for configurations with not more than 2 extended directions. Krauth-Nicolai-Staudacher ('98)
Nishimura-Vernizzi ('00)

Backup slides

Numerical calculation in the path integral formalism

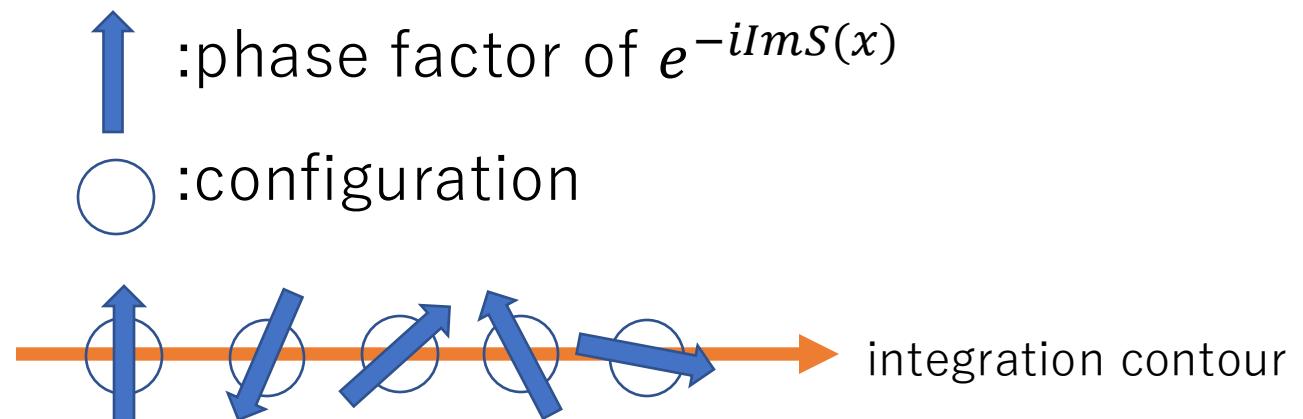
Monte Carlo calculation : treating e^{-S} as probability density

S is complex e^{-S}

→ reweighting : treat only $e^{-\text{Re}S}$ as probability density

$$\langle O \rangle = \frac{\int dx e^{-\text{Re}S(x)} e^{-i\text{Im}S(x)} O(x)}{\int dx e^{-\text{Re}S(x)} e^{-i\text{Im}S(x)}}$$

$$= \frac{\langle e^{-i\text{Im}S} O \rangle_{\text{rew}}}{\langle e^{-i\text{Im}S} \rangle_{\text{rew}}} \sim \frac{0}{0}$$



Idea : “Gauge-fix” Lorentz symmetry from the beginning

Gauge-fixing condition : minimize $\text{tr}(A_0)^2$ under the Lorentz transformation

$$\begin{pmatrix} A'_0 \\ A'_j \end{pmatrix} = \begin{pmatrix} \cosh\sigma & \sinh\sigma \\ \sinh\sigma & \cosh\sigma \end{pmatrix} \begin{pmatrix} A_0 \\ A_j \end{pmatrix}$$

$$\text{tr}(A_0 A_j) = 0 \quad \text{for all } j = 1, \dots, 9$$

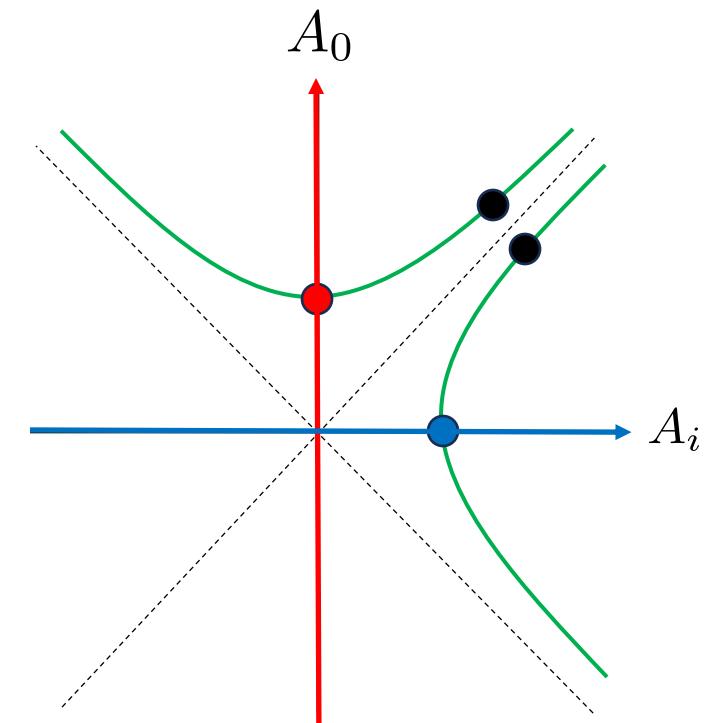
“Gauge-fixed” model

$$Z_{\text{g.f.}} = \int dA e^{i(S_b + S_\gamma)} \text{Pf} \mathcal{M}(A) \Delta_{\text{FP}}(A) \prod_{i=1}^9 \delta(\text{tr}(A_0 A_i))$$

The extra weight needed for representative configurations
 $(\Delta_{\text{FP}}(A) = \det \Omega, \quad \Omega_{ij} = \text{tr}(A_0)^2 \delta_{ij} + \text{tr}(A_i A_j))$

Asano, Nishimura, Piensuk, NY,
 arXiv : 2404.14045 [hep-th], Phys. Rev. Lett. 134, 041603

Integrate over
 only representative
 configurations



$$Z = \int dA d\Psi e^{i(S_b + S_\gamma + S_f)} = \int dA e^{i(S_b + S_\gamma)} \text{Pf} \mathcal{M}(A)$$

When the eigenvalues of $\mathcal{M}(A)$ come close to zero, Nishimura-Shimasaki(2015)
the complex Langevin simulation does not work (singular drift problem).

To avoid this problem, we add the mass term to fermionic action.

$$S_{m_f} = -i \frac{N}{2} m_f \text{Tr} \left[\bar{\Psi}_\alpha \left(\Gamma_7 \Gamma_8^\dagger \Gamma_9 \right)_{\alpha\beta} \Psi_\beta \right] \quad m_f \rightarrow \infty : \text{bosonic model}$$

Complex Langevin method works only for $m_f \geq 3.5$.

But the results for $m_f = 3.5$ are still qualitatively the same as the bosonic model.

In fact, there is one parameter deformation of this model preserving SUSY.

(Actually m_f appears in this deformation, too.)

G. Bonelli, JHEP 08 (2002) 922

Inspired by this deformation, we modify the Lorentz invariant mass term as

$$S_\gamma = \frac{1}{2} N \gamma \left\{ \text{tr} (A_0)^2 - \sum_{i=1}^{\tilde{d}} \text{tr} (A_i)^2 - \xi \sum_{j=\tilde{d}+1}^9 \text{tr} (A_j)^2 \right\}. \quad (\xi > 1)$$

This deformation breaks Lorentz symmetry as $\text{SO}(9,1) \rightarrow \text{SO}(d,1)$,
but we can discuss the SSB of $\text{SO}(d,1)$.