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Polarized IKKT Matrix Model

The action of the Polarized IKKT Matrix Model: S = SIKKT + SΩ

SIKKT = Tr [−
1
4

[Aμ, Aν]2 −
i
2

ψα (CΓμ)αβ[Aμ, ψβ]]

SΩ = Tr { Ω2

82 (3A2
a + A2

I ) + i Ω[A1, A2] A3 −
Ω
8

Ψα(CΓ123)αβΨβ}
a = 1,2,3 I = 4,5,…,10

10 bosonic and 16 fermionic  traceless Hermitian matricesN × N

Hartnoll-Liu 24
Komatsu-Martina-Penedones-Vuignier-Zhao 24

Z = ∫ 𝒟A𝒟ψe−(SIKKT + SΩ) = ∫ 𝒟A e−Sb Pf (ℳ(A))Partition function:

I will focus on  caseN = 3

SO(10) → SO(3) × SO(7)



Polarized IKKT Matrix Model
The classical solution to the fermion vanishes Ψ = 0

[Aμ, [Aμ, Aa]] +
3Ω2

32
Aa + iΩϵabcAbAc = 0

[Aμ, [Aμ, AI]] +
Ω2

32
AI = 0

The stable solution is given by the  representation 𝔰𝔲(2) [Ja, Jb] = i ϵabc Jc

 , Aa =
3
8

Ω Ja AI = 0 fuzzy sphere solution

The irreducible representation has the lowest energy
The system is well described by the maximal fuzzy sphere at large Ω



Polarized IKKT Matrix Model

Z(Ω) = ∑
R

ZR(Ω)

Via the SUSY localization, the partition function can be written as:

all the  representation𝔰𝔲(2)
The leading divergence when Ω → 0

Z(Ω → 0) ∝ ( 1
Ω )

2(N−1)

One can obtain the 1-loop effective action which consists with the prediction 
from SUSY localization.

Z1-loop = Ω8(N−1) ∫ dx exp {−
Ω2

26 (3 (x(i)
a )2 + (x(i)

I )
2)}



• Introduction


• Polarized IKKT Matrix Model


• Sign Problem and Reweighting


• Multimodality and Parallel Tempering


• Results


• Conclusion



Sign Problem and Reweighting

Expectation value: ⟨O⟩ =
∫ 𝒟A e−Sb Pf (ℳ(A)) O

∫ 𝒟A e−Sb Pf (ℳ(A))
=

∫ 𝒟A e
− (Sb − log(Pf(ℳ(A)))) O

∫ 𝒟A e
− (Sb − log(Pf(ℳ(A))))

For , the Pfaffian is generally complex. (Sign problem) N > 2

We use the reweighting method to evaluate the expectation value.

⟨O⟩ =
∫ 𝒟A e− Re(Seff) e− i Im(Seff) O

∫ 𝒟A e− Re(Seff) e− i Im(Seff)

=
⟨e−i Im(Seff ) O⟩real

⟨e−i Im(Seff )⟩real
> 0.9

Seff

N = 3
Ω = 5



Sign Problem and Reweighting

1-loop effective 
theory

Maximal fuzzy sphere 
saddle

Ω

⟨e−i Im(Seff )⟩real
N = 3

0.96

The sign problem is negligible for any .Ω

1.00
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Multimodality and Parallel Tempering
Toy model: 

y = (x2 − 1)2

y =
1
T

(x2 − 1)2

Earl,Deem 05

T = 1
T = 2
T = 3
T = 4



Multimodality and Parallel Tempering

• Multiple saddle points exist. 
• Parallel tempering prevents trapping in one saddle point during HMC. 
• This allows reliable capture of all saddle points' contributions.

Z = ∫ 𝒟A e−Sb Pf (ℳ(A)) → ∫ 𝒟A e
− 1

T (Sb − log(Pf(ℳ(A))))
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Results

The minimization is carried out via 
annealing and with respect to the real 
part of the effective action  as 
the simulation is performed according 
to.  

The (2,1)-fuzzy sphere saddle is never a 
global minimum in any .

Re(Seff)

Ω



Results

Ai =
3
8

Ω Ji,1

Ai =
3
8

Ω Ji,1/2

1-loop effective theory 
 Ω → 0

Pauli saddle

Maximal fuzzy sphere saddle

Ω

⟨ρ3⟩ = ⟨Tr (A2
a)⟩ a = 1,2,3

spin-1

spin-1/2

Ji,1/2 = (σi 0
0 0) .



Results

Pauli saddle

1-loop effective theory

Maximal fuzzy sphere saddle

 distribution ρ3 (Ω = 5)

spin-1

spin-1/2

ρ3



Results

Ω

⟨ρ7⟩ = ⟨Tr (A2
I )⟩

1-loop effective theory for  Ω → 0

Pauli saddle and the 
Maximal fuzzy sphere 
saddle predict ρ7 = 0

I = 4,5,…,10



Results

 from the diverging phase drop to 
the maximal fuzzy sphere phase

⟨ρ7⟩
7 ⟨ρ3⟩

⟨ρ7⟩
7 ⟨ρ3⟩

Ω

⟨ρ3⟩ = ⟨Tr (A2
a)⟩ a = 1,2,3

⟨ρ7⟩ = ⟨Tr (A2
I )⟩ I = 4,5,…,10
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Conclusion

• For  case, we employ the reweighting method to overcome the mild 
sign problem and parallel tempering to overcome multimodality.


• In the phase transition region, we found that the observable receives 
contributions not only from the maximal fuzzy saddle and the one-loop 
effective theory but also from the Pauli saddle.


• Using the same approach, we can simulate the  case or the IKKT 
matrix model with Lorentzian signature in the future. However, due to the 
sign problem, one might expect that the generalized thimble method is 
needed for these two cases.

N = 3

N > 3



Thank you!



Polarized IKKT Matrix Model

Saddle points equation:

0 =
dSeff

dA
=

dSb

dA
−

1
2

Tr (M−1 dM
dA ) Seff = Sb − log (Pf (ℳ(A)))

Z = ∫ 𝒟A e−Sb Pf (ℳ(A))

Fuzzy sphere saddle

Aa =
3
8

Ω Ja,1/2

AI = 0

spin-1/2 Maximal fuzzy sphere saddle

Aa =
3
8

Ω Ja,1

AI = 0

spin-1


