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Yang-Mills theory and  angleθ

S[A] = ∫ d4x [ 1
4g2

Fa
μνFaμν − 𝗂

θ
64π2

ϵμνρσFa
μνFa

ρσ]
 Topological  termθ

The action of 4d pure Yang-Mills theory (in Euclidean 
spacetime) is given as

 angle is a -periodic parameter  and it 
gives interesting non-perturbative effects.
θ 2π θ ∼ θ + 2π
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Yang-Mills theory and  angleθ

You may think that considering only the small  region is 
sufficient, since�

• We can take  using  periodicity of . �

• Physical QCD  angle is extremely small.�

However, it is meaningful and important to consider the 
large  region beyond .

θ

−π < θ < π 2π θ

θ

θ θ = π
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Vacuum energy

V(θ) = − lim
Vol→∞

1
Vol

log Z(θ)

 : Partition function,  �

 : Space-time volume

Z(θ) = ∫ 𝒟A e−S[A](θ)

Vol

We consider 4d  Yang-Mills theory as a concrete 
example.�

The vacuum energy (density)  is defined as

SU(N)

V(θ)
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Vacuum energy

,   ,   V(θ) = V(θ + 2π) V(θ = 0) ≤ V(θ) V(θ) = V(−θ)

Dilute instanton gas approximation 
(weak coupling/high ) gives 

.�

 takes more complicated structure 
in strong-coupling regime.

T
V(θ) ∼ − cos θ

V(θ) 0−2π −π π 2π 3π−3π

V(θ)

Properties (under some assumptions)
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We consider the large  limit to see the structure of .�

We take  large with fixed  and .�

→  (not ) is a natural parameter in large  theories.

N V(θ)

N g2N θ/N
θ/N θ N

S[A] = N∫ d4x [ 1
4g2N

Fa
μνFaμν − 𝗂

θ
N

1
64π2

ϵμνρσFa
μνFa

ρσ] = N S̄[A]

Large  limitN [Witten,1980,1998]

(  )S̄[A] ∼ 𝒪(N0)
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Large  limitN [Witten,1980,1998]

The vacuum energy has the form�

   V(θ) = N2V̄ ( θ
N )

Consistent form : Multi-branch structure �

  V(θ) = min
n∈ℤ

Vn(θ), Vn(θ) = N2V̄(θ̄n), θ̄n =
θ + 2πn

N

 : function in V̄ 𝒪(N0)

On the other hand,  must be satisfied.V(θ) = V(θ + 2π)
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Multi-branch structure of V(θ)

  V(θ) = min
n∈ℤ

Vn(θ), Vn(θ) = N2V̄(θ̄n), θ̄n =
θ + 2πn

N

θ

n = 0 n = − 1n = 1

0−2π −π π 2π 3π−3π

V(θ)

: metastable vacua 
: true vacuum Schematic picture
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Multi-branch structure of V(θ)

‣ CP symmetry is spontaneously broken at .�

‣ Each vacua labeled by integer  is not -periodic.�
‣ Many metastable vacua appear.

θ = π

n 2π

θ

n = 0 n = − 1n = 1

0−2π −π π 2π 3π−3π

V(θ)

: metastable vacua 
: true vacuum Schematic picture
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Multi-branch structure of V(θ)

The multi-branch structure of  has been confirmed even 

at finite  cases.�
‣ Numerical simulations (For SU(2) YM e.g., [Kitano-Yamada-
Matsudo-Yamazaki, 2021], [Hirasawa-Honda-Matsumoto-Nishimura-
Yosprakob, 2024])�

‣ ’t Hooft anomaly (Mixed anomaly between  center 

symmetry and  periodicity of .) [Gaiotto-Kapustin-
Komargodski-Seiberg, 2017][Cordova-Freed-Lam-Seiberg, 2019] 

V(θ)
N

ℤN

2π θ
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Single branch of V(θ)
The behavior in large  region has not been known yet.θ

 in large  regionVn=0(θ) = ? θ ← Our target

θ

n = 0 n = − 1n = 1

0−2π −π π 2π 3π−3π

V(θ)

: metastable vacua 
: true vacuum 

Schematic picture
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Why large  region?θ

‣ A vacuum branch might have  periodicity (not 
prohibited by ’t Hooft anomalies).�

• e.g., softly-broken   super Yang-Mills theory 

(YM with adjoint fermion) has -periodic vacua.�

→ Does this periodicity hold more generally?�

‣ Application for axion cosmology �

e.g., [Yonekura, 2014],[Nomura-Watari-Yamazaki, 2017],�

2πN

𝒩 = 1 SU(N)
2πN
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

S = ∫ d2x [ 1
g2

| (∂i − 𝗂Ai)ϕ |2 +
1
g2

D(ϕ†ϕ − 1) + 𝗂
θ

2π
E]

•  :  complex scalar fields�

•  : (Auxiliary)  gauge field         gauge symmetry �

•  : (Auxiliary) scalar field         a constraint �

•  : Field strength (Electric field)

ϕa (a = 1,⋯, N) N

Ai U(1) ϕ → eiαϕ

D ϕ†ϕ = 1
E = − F12 = − (∂1A2 − ∂2A1)

✓ A sigma model with target space . �

 We realize this set up using auxiliary fields.

ℂℙN−1 ≃ S2N−1/U(1)
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

2d  model is solvable in the large  limit and has similar 
properties to 4d  Yang-Mills theory.

ℂℙN−1 N
SU(N)

S = N ∫ d2x [ 1
g2N

| (∂i − 𝗂Ai)ϕ |2 +
1
g2

D(ϕ†ϕ − 1) + 𝗂
θ
N

1
2π

E] = N S̄

 (  )S̄ ∼ 𝒪(N0)
Properties�
Asymptotic freedom, Confinement of charges, Mass gap …�
→ good toy model of 4d Yang-Mills theories.
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

‣Multi-branch vacuum

  V(θ) = min
n∈ℤ

Vn(θ), Vn(θ) = NV̄(θ̄n), θ̄n =
θ + 2πn

N

• Large  argument�

• Numerical simulation : e.g., [Azcoiti-Carlo-Galante-Laliena, 
2003]�

• ’t Hooft anomaly : [Nguyen-Tanizaki-Unsal, 2022]�

There is a mixed anomaly between  

symmetry and  periodicity of . 

N

PSU(N) = SU(N)/ℤN

2π θ
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

‣Multi-branch vacuum

  V(θ) = min
n∈ℤ

Vn(θ), Vn(θ) = NV̄(θ̄n), θ̄n =
θ + 2πn

N

θ

n = 0 n = − 1n = 1

0−2π −π π 2π 3π−3π

V(θ)

: metastable vacua 
: true vacuum Schematic picture

✓ We computed  

including the large  
region  in the 

2d large   model.

Vn=0(θ)

θ
(θ ∼ 𝒪(N))

N ℂℙN−1
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Computation of the partition function

Z(θ) = ∑
m∈ℤ

e 𝗂θmZm = ∑
n∈ℤ

∫
∞

−∞
dx e 𝗂(θ+2πn)xZx

•  → label of vacuum (We focus on )�

•  ← assume to be extended as a 
continuous variable.

n ∈ ℤ n = 0

m = − Vol(T2) ⋅ E/2π = x

Poisson resummation

Vacuum energy  and decay rate  for the -th vacuum: Vn(θ) Γn(θ) n

Vn(θ) − 𝗂
Γn(θ)

2
= − lim

Vol(T2)→∞

1
Vol(T2)

log∫
∞

−∞
dx e 𝗂(θ+2πn)xZx
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Computation of the partition function

We use the saddle point method in the large  limit.N

・  (  is integrated out) is a function of 

constant  and  (Non-constant fluctuations are negligible).�

・ Subleading terms in  expansion are negligible.

S̄eff =
1

4π ∫ d2x ℒ̄eff ϕ

D E
1/N

∫
∞

−∞
dx e 𝗂θxZx ∼ ∫ dEdD exp (−NS̄eff[E, D, θ/N]) ≃ exp (−NS̄eff[E, D, θ/N]saddle)

Vn=0(θ) =
N
4π

Reℒ̄eff(θ/N) |saddle , Γn=0(θ) = − 2
N
4π

Imℒ̄eff(θ/N) |saddle

Assumptions
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Small  ( )θ̄ = θ/N θ̄ ≪ 1

Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

Vn=0(θ) − Vn=0(0) ≃ N
3Λ2

2π
θ̄2, Γn=0(θ) ≃

3Λ2

π
θ̄ exp (−

π
6

1
θ̄ )

The vacuum energy  and the decay rate  is Vn=0(θ) Γn=0(θ)

• Electric field  generates the energy .�

• Vacuum decay via Schwinger pair production of  and .

E ∼ θ̄ V(θ) ∼ E2 ∼ θ̄2

ϕ ϕ†

Physical interpretation 

These results seem sensible. How about large  region ( )?θ θ̄ ∼ 1

19
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General θ̄ = θ/N

Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

ℒ̄eff = − 2E logΓ ( D
2E

+
1
2 ) + E log2π − Dlog

2E
Λ2

+ 2𝗂θ̄E

We need to seek the saddle point of the effective Lagrangian.

 has infinitely many saddle points for fixed .�

We can completely classify all saddle points by carefully 
considering the analytic structure of  (details omitted).�

However, it is non-trivial to determine which saddle points 
contributes to the path integral (appropriate contour ).

ℒ̄eff θ̄

ℒ̄eff

naJa
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Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

Natural saddle point to consider : �
Saddle point obtained by continuously increasing the fixed value of 

 from the saddle point that gives sensible results in small .θ/N θ/N

0.5 1.0 1.5 2.0 2.5 3.0 θ /N

-10

-5

5

10

15 : Real part 
: Imaginary part 

 at saddle pointℒ̄eff

 in some range of 

 at a saddle point.

Reℒ̄eff < 0

θ/N

General θ̄ = θ/N
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Problem : Evaluation of the partition function

∫
∞

−∞
dx e 𝗂θxZx ∼ exp [−Seff[D, E](θ) |saddle ] > 1

We used the Poisson resummation : 

Z(θ) = ∑
m∈ℤ

e 𝗂θmZm = ∑
n∈ℤ

∫
∞

−∞
dx e 𝗂(θ+2πn)xZx ∼ e−Vtrue(θ)⋅Vol

The largest contribution to the sum = true vacuum�
Saddle point with  gives larger contribution than the 
true vacuum.

Re Seff < 0

How can we evaluate the partition function?
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Problem : Evaluation of the partition function

One of the possible resolutions : Stokes phenomena�

When we continuously vary parameters (in our case ), the set of 
saddle points contributing to the integral may discontinuously change.

θ̄

Contributing saddle points  = 

 in (Ea, Da) θ̄ < θ̄*

Stokes phenomena at  ?θ̄ = θ̄*

(It is not easy to understand how the Stokes phenomena occurs.�
Completely different resolution may be needed. )

 in (Eb, Db) θ̄ > θ̄*
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Summary

• Strongly-coupled field theories have the non-trivial vacuum 
structures as functions of .�

• 2d  model is a good toy model of 4d  Yang-Mills 

theory and it might gives some implications for strongly-coupled 
dynamics.�

• We studied the  dependence in 2d large   model and we 
encountered saddle points that give larger contributions to the 
partition function than the true vacuum. The Stokes phenomenon 
is a plausible resolution, but the situation is not fully understood.

θ

ℂℙN−1 SU(N)

θ N ℂℙN−1
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

2d  model is solvable in the large  limit and has similar 
properties to 4d  Yang-Mills theory.

ℂℙN−1 N
SU(N)

S = N ∫ d2x [ 1
g2N

| (∂i − 𝗂Ai)ϕ |2 +
1
g2

D(ϕ†ϕ − 1) + 𝗂
θ
N

1
2π

E] = N S̄

 (  )S̄ ∼ 𝒪(N0)

• Asymptotic freedom

β(g) = μ
dg
dμ

= −
N
4π

g3 < 0
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

• Confinement and Mass gap

We consider . �

We first perform the path integral of  and  and obtain the 

effective action .

θ = 0

ϕ ϕ†

Seff[A, D]

Seff[A, D] = N [log det( − (∂i − 𝗂Ai)2 + D) −
1

g2N ∫ d2x D]
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

• Confinement and Mass gap

Seff[A, D] = N [log det( − (∂i − 𝗂Ai)2 + D) −
1

g2N ∫ d2x D]
In the path integral over  and we use the saddle point method. �

In the large  limit, the saddle point of  gives the 

dominant contribution to the partition function.

A D,

N Seff[A, D]

Saddle points :    �

(  : dynamical mass scale for  model)

A = 0, D = Λ2

Λ ℂℙN−1
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

• Confinement and Mass gap

Seff[A, D] = N [log det( − (∂i − 𝗂Ai)2 + D) −
1

g2N ∫ d2x D]
Quadratic terms for  is generated by the diagramsA

+
ϕ ϕ

A A

A A
=

N
48πΛ2 ∫ d2x FijFij + ⋯

Kinetic term for A
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2d  modelℂℙN−1
[Witten, 1979]
[D’Adda-Lusher-Di Vecchia 1979]

• Confinement and Mass gap
The low energy effective action becomes

Seff[ϕ, A, D] = ∫ d2x [ 1
g2 ((Diϕ)†(Diϕ) + Λ2ϕ†ϕ) +

N
48πΛ2

FijFij⋯]
✓  obtained mass  → Mass gap�

✓  obtained kinetic term and it gives Coulomb potential  
between charged particles. �

✓ In 2d,  is linear potential ( ). → Confinement �

ϕ Λ

A V(r)

V(r) V(r) ∝ r
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More about saddle point method

• We extend  and  to complex variables and we seek complex 
saddle points of .�

• For each saddle point , there is a contour called Lefschetz 

thimble  (= steepest descent path for ).�

• We deform the integration contour  using Cauchy theorem as�

�

✴ It is not easy to determine the appropriate contour  completely.

E D
S̄eff

(Ea, Da)
Ja −ReS̄eff

C

C → naJa, na ∈ ℤ

naJa

∫ dEdD exp (−NS̄eff[E, D, θ/N]) ≃ exp (−NS̄eff[E, D, θ/N]saddle)

[Witten, 2010]
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Effective action

S̄eff = log Det (−(∂i − 𝗂Ai)2 − D) −
1

g2N ∫ d2x D + 𝗂
1

2π
θ
N ∫ d2x E

=
1

4π ∫ d2x [−∫
∞

ϵ

dt
t

Ee−Dt

sinh Et
−

4π
g2N

D + 2𝗂
θ
N

E]
=

1
4π ∫ d2x [−2E logΓ ( D

2E
+

1
2 ) + E log2π − Dlog

2E
Λ2

+ 2𝗂
θ
N

E]
  : the Gamma function,    : mass scale for  model. Γ(z) Λ ℂℙN−1

The explicit form of the effective action : (see also [Rossi 2016])
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Saddle point at  :  �

For small   ,  is small. 

θ = 0 (D, E) = (Λ2,0)

θ̄ ≡ θ/N (θ̄ ≪ 1) |E |

Small  ( )θ/N θ/N ≪ 1

ℒ̄eff ≃ D (1 − log
D
Λ2 ) +

E2

6D
+ 2𝗂θ̄E

Saddle point equation for  and  give E D

D ≃ Λ2 (1 + 6θ̄2), E ≃ − 6𝗂θ̄Λ2

ℒ̄eff(θ̄) |saddle = D ≃ Λ2(1 + 6θ̄2)

Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)
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Small  ( )θ/N θ/N ≪ 1

Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

ℒ̄eff = − ∫
∞

ϵ

dt
t

Ee−Dt

sinh Et
−

4π
g2N

D + 2𝗂θ̄E

(At the saddle point, . )E = − 6𝗂θ̄Λ2

Poles at t =
nπ

6Λ2θ̄
(n = 1,2,⋯)

Avoiding these poles in the  integral,  acquires the 
imaginary part

t ℒ̄eff

Imℒ̄eff(θ̄) |saddle ≃ − 6Λ2 θ
N

log (1 + exp (−
π
6

N
θ ))
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General θ/N

Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

ℒ̄eff = − 2E logΓ ( D
2E

+
1
2 ) + E log2π − Dlog

2E
Λ2

+ 2𝗂θ̄E

We need to seek the saddle point of the effective Lagrangian.

We can completely classify all saddle points by carefully 
considering the analytic structure of �

Labels of saddle points : ① ,     ② ,     ③ �

These labels comes from the structure of .

ℒ̄eff

k ∈ ℤ ℓ ∈ ℤ o = ±

log Γ(z)
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2𝗂θ̄ = 2 log Γ ( z + 1
2 ) − zψ ( z + 1

2 ) + z − log 2π = f(z)

 : The digamma functionψ(z) =
d
dz

log Γ(z)

General saddle point equations

✓  is a complex-valued function. But since  is a real parameter, 
the solution must satisfy . 

f(z) θ̄ ( = θ/N)
Im f(z) = 0

D
Λ2

= z exp (−ψ ( z + 1
2 ))

We treat  and  as independent variables. �
Then, the saddle point equations give

D z = D/E
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Classification of saddle points

Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

① ,�

As we increase the value of fixed , the saddle point  
continuously moves on complex  planes.�

When taking ,  approaches to�

�

k ∈ ℤ

θ̄ (E(θ̄), D(θ̄))
(E, D)

θ̄ → ∞ (E(θ̄), D(θ̄))

z =
D
E

→ − 2k − 1, (k = 0,1,2,⋯)

Poles of log Γ ( D
2E

+
1
2 )

2𝗂θ̄ = 2 log Γ ( z + 1
2 ) − zψ ( z + 1

2 ) + z − log 2π = f(z)
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Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

② ,�

 is a multi-valued function due to the logarithmic brach 
structure.�

→ Saddle points  for  are also saddle points for .�

In other words, there are many saddle points  for fixed  (and 

for the fixed first label ) corresponding to an integer .

ℓ ∈ ℤ
log Γ (z)

(E, D) θ̄ θ̄ + 2πℓ

(E, D) θ̄
k ℓ

Classification of saddle points

2𝗂θ̄ = 2 log Γ ( z + 1
2 ) − zψ ( z + 1

2 ) + z − log 2π = f(z)
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Evac(θ) = Reℒeff = N
3Λ2

2π ( θ
N )

2

(Evac(θ = 0) = 0)

③ �

We need to specify the direction of the analytic continuation of .�

For ,    and  .�

※The information of saddle points labeled by  can be obtained 

by . 

o = ±
log Γ (z)

z = Ae 𝗂α 0 < α < π → o = + −π < α < π → o = −

(k, ℓ, o)
(k, ℓ = 0, o = + )

Classification of saddle points

2𝗂θ̄ = 2 log Γ ( z + 1
2 ) − zψ ( z + 1

2 ) + z − log 2π = f(z)



/2440

: Re ℒ̄eff

: Im ℒ̄eff

: label of saddles�
( )
k
ℓ = 0, o = +

-th saddles 

give  at 

some  (e.g. ). 

k = 0,1,2,3

Re ℒ̄eff < 0

θ/N θ ≃ 2

0.5 1.0 1.5 2.0 2.5 3.0 θ /N

-10

-5

5

10

15
0.5 1.0 1.5 2.0 2.5 3.0 θ /N

-1.5

-1.0

-0.5

0.5 1.0 1.5 2.0 2.5 3.0 θ /N

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2
0.5 1.0 1.5 2.0 2.5 3.0 θ /N

-0.8

-0.6

-0.4

-0.2

k = 0 k = 1

k = 2 k = 3

General θ/N


