

Large θ angle in two-dimensional large N $\mathbb{C}\mathbb{P}^{N-1}$ model

Tsubasa Sugeno (Tohoku University, DI)

Based on [2503.07012] with [T. Yokokura](#) and [K. Yonekura](#)

Yang-Mills theory and θ angle

The action of 4d pure Yang-Mills theory (in Euclidean spacetime) is given as

$$S[A] = \int d^4x \left[\frac{1}{4g^2} F_{\mu\nu}^a F^{a\mu\nu} - i \frac{\theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}^a F_{\rho\sigma}^a \right]$$

Topological θ term

θ angle is a 2π -periodic parameter $\theta \sim \theta + 2\pi$ and it gives interesting non-perturbative effects.

Yang-Mills theory and θ angle

You may think that considering only the small θ region is sufficient, since

- We can take $-\pi < \theta < \pi$ using 2π periodicity of θ .
- Physical QCD θ angle is extremely small.

However, it is meaningful and important to consider the large θ region beyond $\theta = \pi$.

Vacuum energy

We consider 4d $SU(N)$ Yang-Mills theory as a concrete example.

The vacuum energy (density) $V(\theta)$ is defined as

$$V(\theta) = - \lim_{\text{Vol} \rightarrow \infty} \frac{1}{\text{Vol}} \log Z(\theta)$$

$$Z(\theta) = \int \mathcal{D}A e^{-S[A](\theta)} : \text{Partition function,}$$

Vol : Space-time volume

Vacuum energy

Properties (under some assumptions)

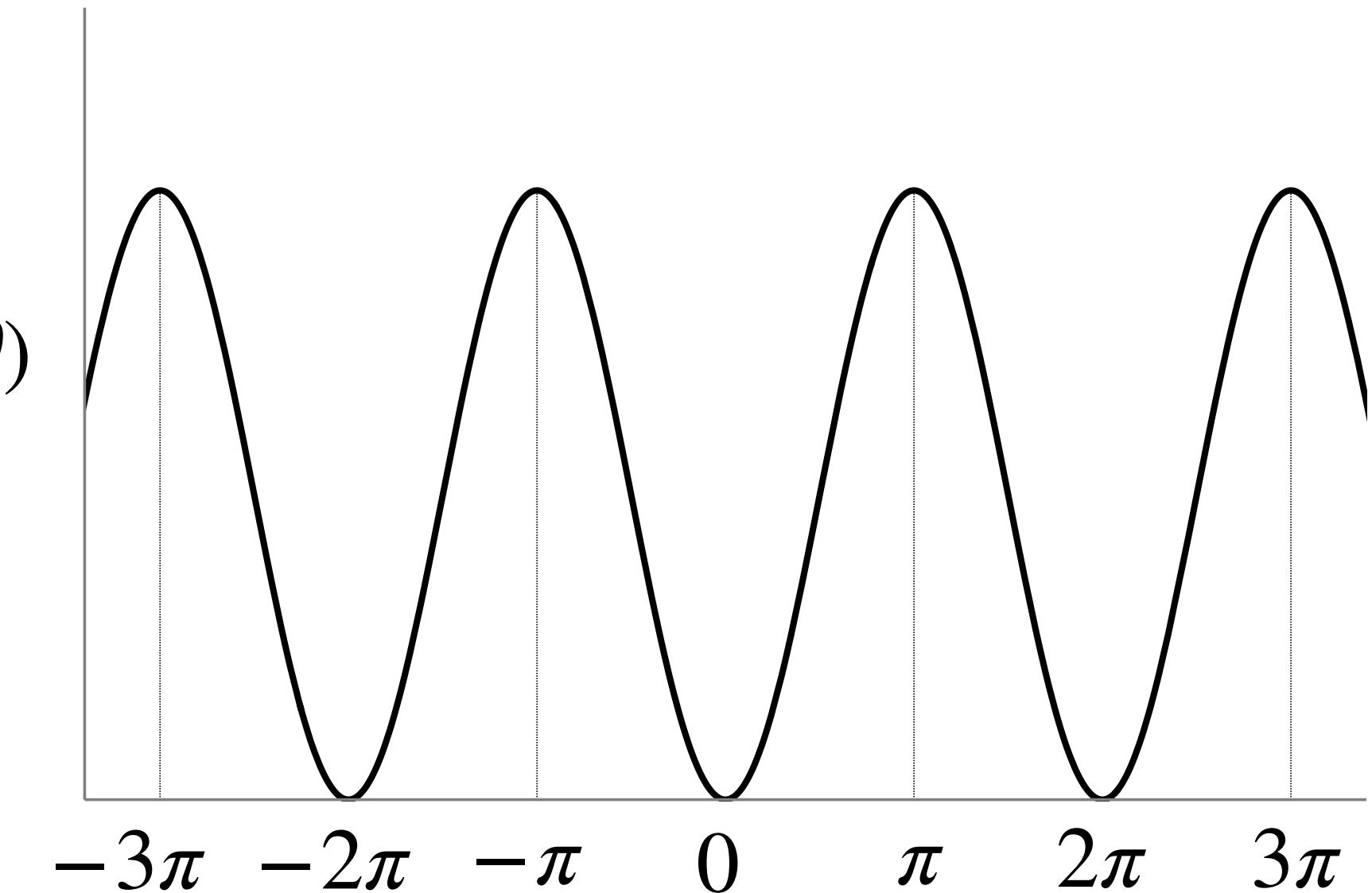
$$V(\theta) = V(\theta + 2\pi), \quad V(\theta = 0) \leq V(\theta), \quad V(\theta) = V(-\theta)$$

Dilute instanton gas approximation

(weak coupling/high T) gives

$$V(\theta) \sim -\cos \theta.$$

$V(\theta)$ takes more complicated structure
in strong-coupling regime.



Large N limit [Witten, 1980, 1998]

We consider **the large N limit** to see the structure of $V(\theta)$.

We take N large with fixed $g^2 N$ and θ/N .

→ θ/N (not θ) is a natural parameter in large N theories.

$$S[A] = N \int d^4x \left[\frac{1}{4g^2 N} F_{\mu\nu}^a F^{a\mu\nu} - i \frac{\theta}{N} \frac{1}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}^a F_{\rho\sigma}^a \right] = N \bar{S}[A]$$

$$(\bar{S}[A] \sim \mathcal{O}(N^0))$$

Large N limit [Witten, 1980, 1998]

The vacuum energy has the form

$$V(\theta) = N^2 \bar{V} \left(\frac{\theta}{N} \right) \quad \bar{V} : \text{function in } \mathcal{O}(N^0)$$

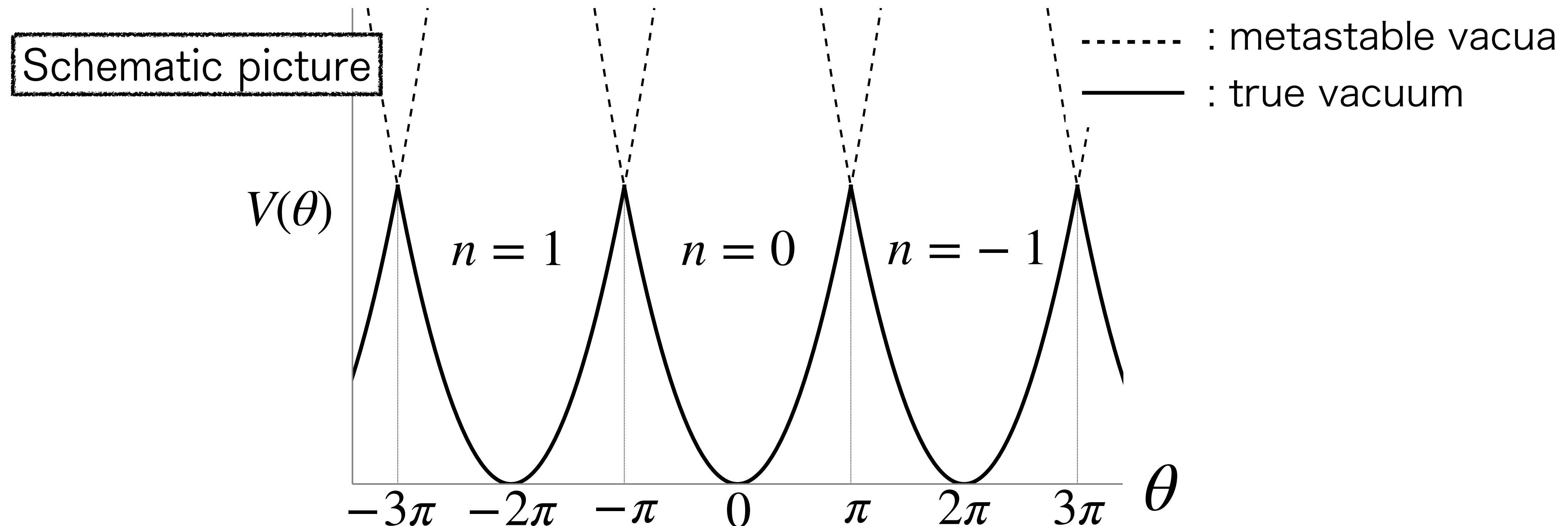
On the other hand, $V(\theta) = V(\theta + 2\pi)$ must be satisfied.

Consistent form : **Multi-branch structure**

$$V(\theta) = \min_{n \in \mathbb{Z}} V_n(\theta), \quad V_n(\theta) = N^2 \bar{V}(\bar{\theta}_n), \quad \bar{\theta}_n = \frac{\theta + 2\pi n}{N}$$

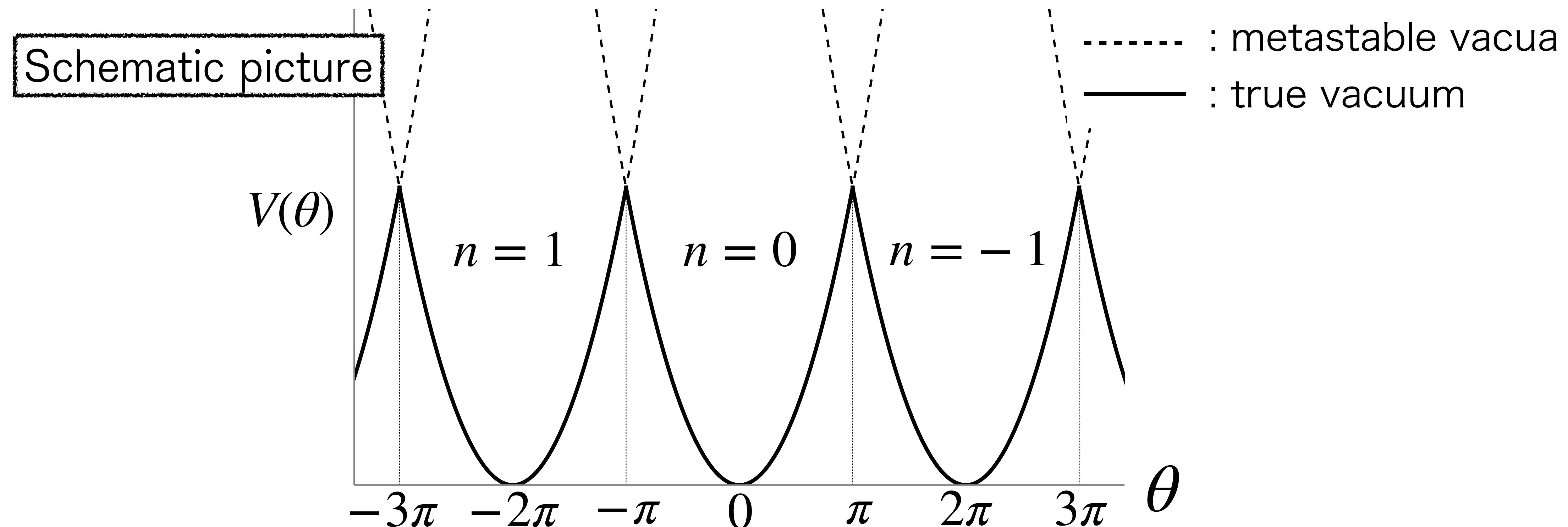
Multi-branch structure of $V(\theta)$

$$V(\theta) = \min_{n \in \mathbb{Z}} V_n(\theta), \quad V_n(\theta) = N^2 \bar{V}(\bar{\theta}_n), \quad \bar{\theta}_n = \frac{\theta + 2\pi n}{N}$$



Multi-branch structure of $V(\theta)$

- ▶ CP symmetry is **spontaneously broken** at $\theta = \pi$.
- ▶ Each vacua labeled by integer n is not 2π -periodic.
- ▶ Many **metastable vacua** appear.



Multi-branch structure of $V(\theta)$

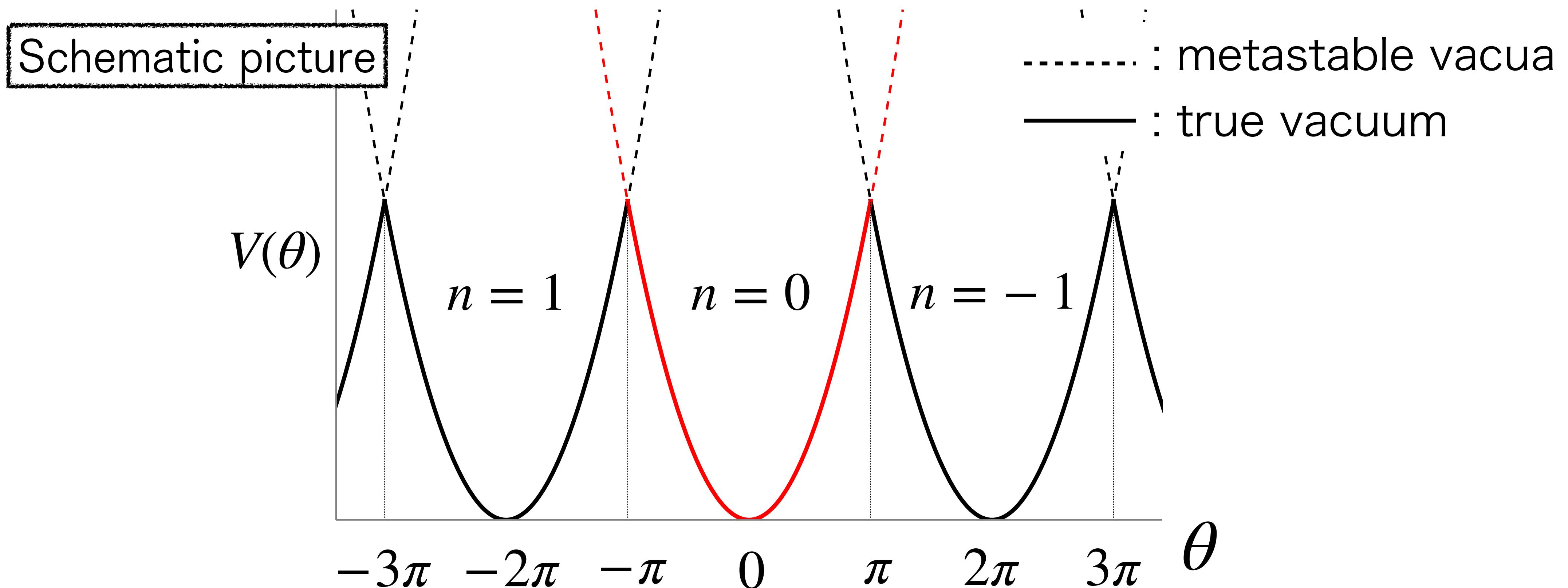
The multi-branch structure of $V(\theta)$ has been confirmed even at finite N cases.

- ▶ Numerical simulations (For SU(2) YM e.g., [Kitano-Yamada-Matsudo-Yamazaki, 2021], [Hirasawa-Honda-Matsumoto-Nishimura-Yosprakob, 2024])
- ▶ 't Hooft anomaly (Mixed anomaly between \mathbb{Z}_N center symmetry and 2π periodicity of θ .) [Gaiotto-Kapustin-Komargodski-Seiberg, 2017][Cordova-Freed-Lam-Seiberg, 2019]

Single branch of $V(\theta)$

The behavior in large θ region has not been known yet.

$V_{n=0}(\theta) = ?$ in large θ region \leftarrow Our target



Why large θ region?

- ▶ A vacuum branch might have $2\pi N$ periodicity (not prohibited by 't Hooft anomalies).
 - e.g., softly-broken $\mathcal{N} = 1$ $SU(N)$ super Yang-Mills theory (YM with adjoint fermion) has $2\pi N$ -periodic vacua.
 - Does this periodicity hold more generally?
- ▶ Application for axion cosmology
 - e.g., [Yonekura, 2014], [Nomura-Watari-Yamazaki, 2017],

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

- ✓ A sigma model with target space $\mathbb{C}\mathbb{P}^{N-1} \simeq S^{2N-1}/U(1)$.

We realize this set up using auxiliary fields.

$$S = \int d^2x \left[\frac{1}{g^2} |(\partial_i - iA_i)\phi|^2 + \frac{1}{g^2} D(\phi^\dagger \phi - 1) + i \frac{\theta}{2\pi} E \right]$$

- ϕ^a ($a = 1, \dots, N$) : N complex scalar fields
- A_i : (Auxiliary) $U(1)$ gauge field \longrightarrow gauge symmetry $\phi \rightarrow e^{i\alpha} \phi$
- D : (Auxiliary) scalar field \longrightarrow a constraint $\phi^\dagger \phi = 1$
- $E = -F_{12} = -(\partial_1 A_2 - \partial_2 A_1)$: Field strength (Electric field)

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

2d $\mathbb{C}\mathbb{P}^{N-1}$ model is solvable in the large N limit and has similar properties to 4d $SU(N)$ Yang-Mills theory.

$$S = N \int d^2x \left[\frac{1}{g^2 N} |(\partial_i - iA_i)\phi|^2 + \frac{1}{g^2} D(\phi^\dagger \phi - 1) + i \frac{\theta}{N} \frac{1}{2\pi} E \right] = N \bar{S}$$

($\bar{S} \sim \mathcal{O}(N^0)$)

Properties

Asymptotic freedom, Confinement of charges, Mass gap ⋯
 → good toy model of 4d Yang-Mills theories.

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

► Multi-branch vacuum

$$V(\theta) = \min_{n \in \mathbb{Z}} V_n(\theta), \quad V_n(\theta) = N \bar{V}(\bar{\theta}_n), \quad \bar{\theta}_n = \frac{\theta + 2\pi n}{N}$$

- Large N argument
- Numerical simulation : e.g., [Azcoiti-Carlo-Galante-Laliena, 2003]
- 't Hooft anomaly : [Nguyen-Tanizaki-Unsal, 2022]

There is a mixed anomaly between $\text{PSU}(N) = \text{SU}(N)/\mathbb{Z}_N$ symmetry and 2π periodicity of θ .

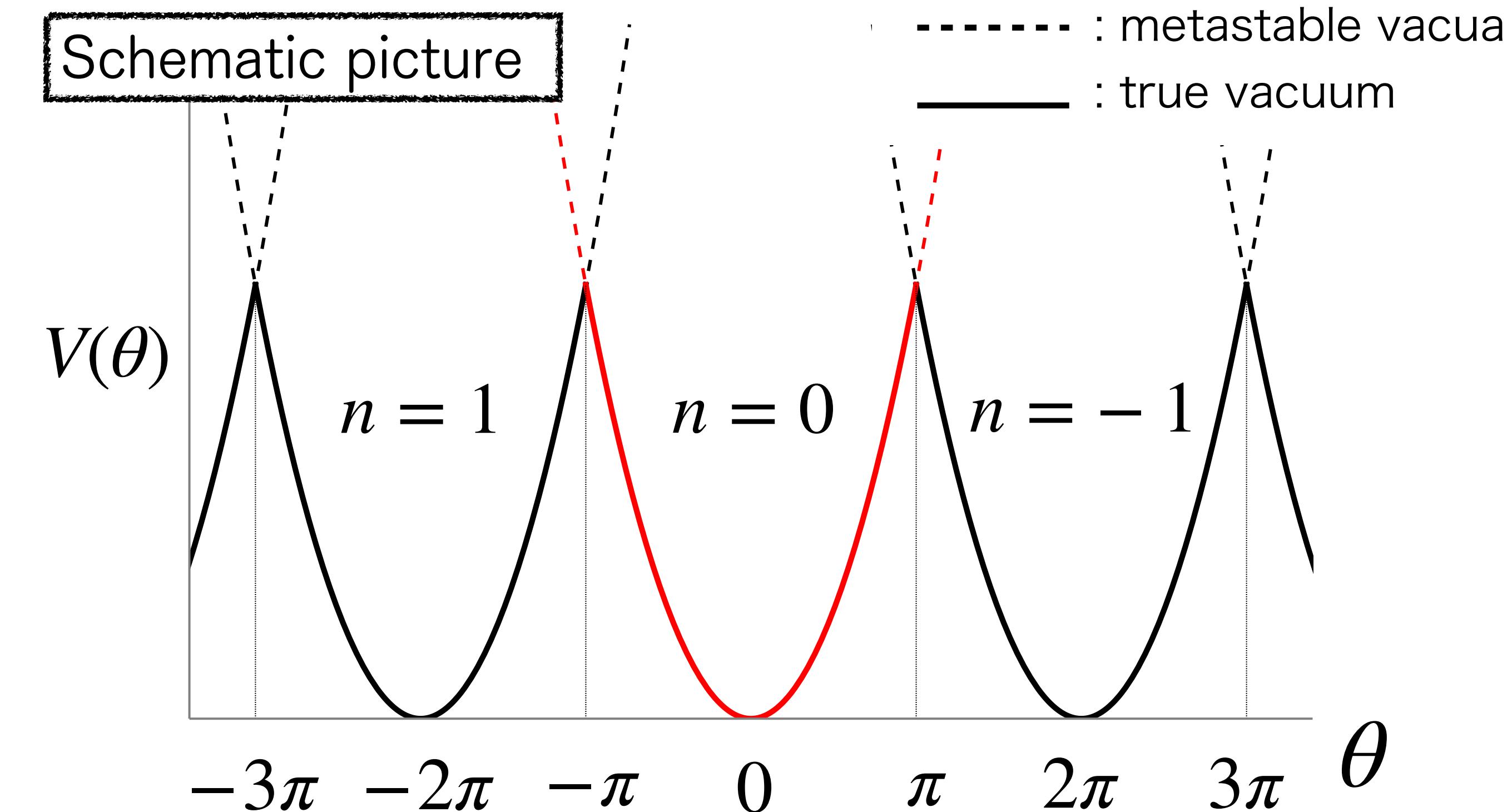
2d \mathbb{CP}^{N-1} model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

► Multi-branch vacuum

$$V(\theta) = \min_{n \in \mathbb{Z}} V_n(\theta), \quad V_n(\theta) = N \bar{V}(\bar{\theta}_n), \quad \bar{\theta}_n = \frac{\theta + 2\pi n}{N}$$

- ✓ We computed $V_{n=0}(\theta)$ including the large θ region ($\theta \sim \mathcal{O}(N)$) in the 2d large N \mathbb{CP}^{N-1} model.



Computation of the partition function

$$Z(\theta) = \sum_{m \in \mathbb{Z}} e^{i\theta m} Z_m = \sum_{n \in \mathbb{Z}} \int_{-\infty}^{\infty} dx e^{i(\theta + 2\pi n)x} Z_x$$

Poisson resummation

- $n \in \mathbb{Z} \rightarrow$ label of vacuum (We focus on $n = 0$)
- $m = -\text{Vol}(T^2) \cdot E/2\pi = x \leftarrow \text{assume}$ to be extended as a continuous variable.

Vacuum energy $V_n(\theta)$ and decay rate $\Gamma_n(\theta)$ for the n -th vacuum:

$$V_n(\theta) - i\frac{\Gamma_n(\theta)}{2} = - \lim_{\text{Vol}(T^2) \rightarrow \infty} \frac{1}{\text{Vol}(T^2)} \log \int_{-\infty}^{\infty} dx e^{i(\theta + 2\pi n)x} Z_x$$

Computation of the partition function

We use the saddle point method in the large N limit.

$$\int_{-\infty}^{\infty} dx e^{i\theta x} Z_x \sim \int dE dD \exp(-N \bar{S}_{\text{eff}}[E, D, \theta/N]) \simeq \exp(-N \bar{S}_{\text{eff}}[E, D, \theta/N]_{\text{saddle}})$$

Assumptions

- $\bar{S}_{\text{eff}} = \frac{1}{4\pi} \int d^2x \bar{\mathcal{L}}_{\text{eff}}$ (ϕ is integrated out) is a function of constant D and E (Non-constant fluctuations are negligible).
- Subleading terms in $1/N$ expansion are negligible.

$$\longrightarrow V_{n=0}(\theta) = \frac{N}{4\pi} \text{Re} \bar{\mathcal{L}}_{\text{eff}}(\theta/N) \Big|_{\text{saddle}}, \quad \Gamma_{n=0}(\theta) = -2 \frac{N}{4\pi} \text{Im} \bar{\mathcal{L}}_{\text{eff}}(\theta/N) \Big|_{\text{saddle}}$$

Small $\bar{\theta} = \theta/N$ ($\bar{\theta} \ll 1$)

The vacuum energy $V_{n=0}(\theta)$ and the decay rate $\Gamma_{n=0}(\theta)$ is

$$V_{n=0}(\theta) - V_{n=0}(0) \simeq N \frac{3\Lambda^2}{2\pi} \bar{\theta}^2, \quad \Gamma_{n=0}(\theta) \simeq \frac{3\Lambda^2}{\pi} \bar{\theta} \exp\left(-\frac{\pi}{6} \frac{1}{\bar{\theta}}\right)$$

Physical interpretation

- Electric field $E \sim \bar{\theta}$ generates the energy $V(\theta) \sim E^2 \sim \bar{\theta}^2$.
- Vacuum decay via **Schwinger pair production** of ϕ and ϕ^\dagger .

These results seem sensible. How about large θ region ($\bar{\theta} \sim 1$)?

General $\bar{\theta} = \theta/N$

We need to seek the saddle point of the effective Lagrangian.

$$\bar{\mathcal{L}}_{\text{eff}} = -2E \log \Gamma \left(\frac{D}{2E} + \frac{1}{2} \right) + E \log 2\pi - D \log \frac{2E}{\Lambda^2} + 2i\bar{\theta}E$$

$\bar{\mathcal{L}}_{\text{eff}}$ has **infinitely many saddle points** for fixed $\bar{\theta}$.

We can completely classify all saddle points by carefully considering the analytic structure of $\bar{\mathcal{L}}_{\text{eff}}$ (details omitted).

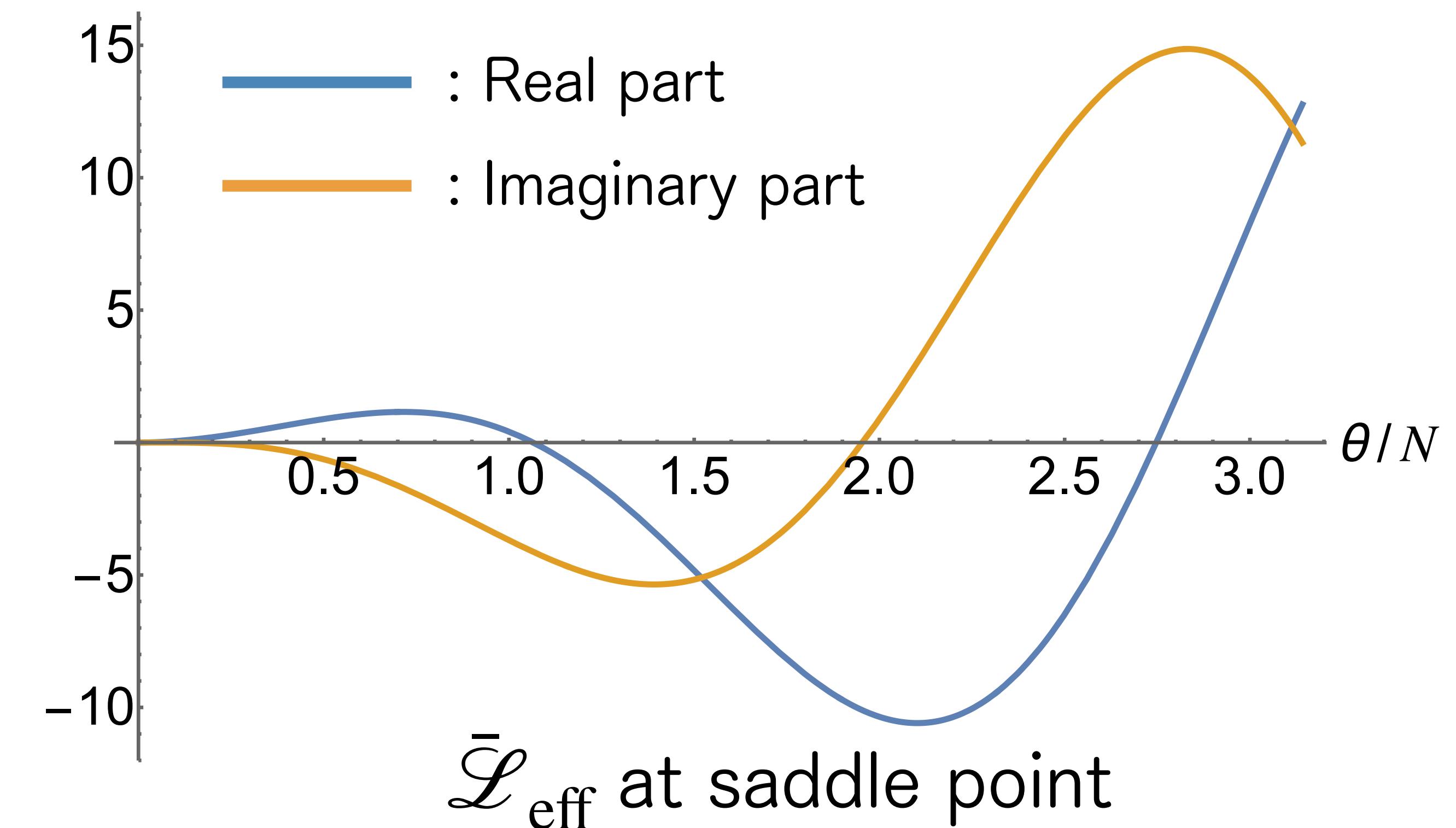
However, it is non-trivial to determine **which** saddle points contributes to the path integral (appropriate contour $n_a J_a$).

General $\bar{\theta} = \theta/N$

Natural saddle point to consider :

Saddle point obtained by continuously increasing the fixed value of θ/N from the saddle point that gives sensible results in small θ/N .

$\text{Re}\bar{\mathcal{L}}_{\text{eff}} < 0$ in some range of θ/N at a saddle point.



Problem : Evaluation of the partition function

We used the Poisson resummation :

$$Z(\theta) = \sum_{m \in \mathbb{Z}} e^{i\theta m} Z_m = \sum_{n \in \mathbb{Z}} \int_{-\infty}^{\infty} dx e^{i(\theta + 2\pi n)x} Z_x \sim e^{-V_{\text{true}}(\theta) \cdot \text{Vol}}$$

The largest contribution to the sum = **true vacuum**

Saddle point with $\text{Re } S_{\text{eff}} < 0$ gives larger contribution than the true vacuum.

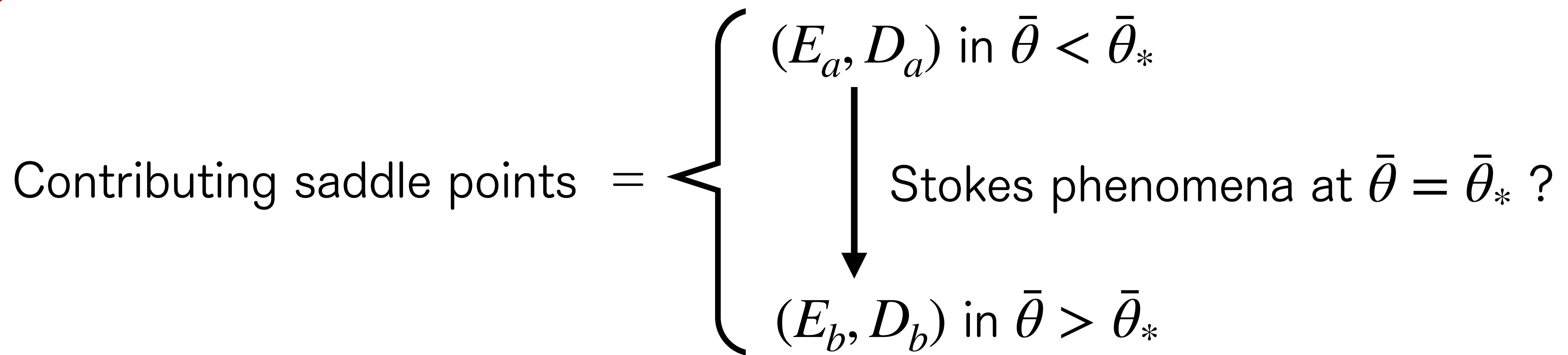
$$\left| \int_{-\infty}^{\infty} dx e^{i\theta x} Z_x \right| \sim \left| \exp \left[-S_{\text{eff}}[D, E](\theta) \Big|_{\text{saddle}} \right] \right| > 1$$

How can we evaluate the partition function?

Problem : Evaluation of the partition function

One of the possible resolutions : **Stokes phenomena**

When we continuously vary parameters (in our case $\bar{\theta}$), the set of saddle points contributing to the integral may discontinuously change.



(It is not easy to understand how the Stokes phenomena occurs.

Completely different resolution may be needed.)

Summary

- Strongly-coupled field theories have **the non-trivial vacuum structures as functions of θ .**
- **2d \mathbb{CP}^{N-1} model** is a good toy model of 4d $SU(N)$ Yang-Mills theory and it might give some implications for strongly-coupled dynamics.
- We studied the θ dependence in 2d large N \mathbb{CP}^{N-1} model and we encountered **saddle points that give larger contributions to the partition function than the true vacuum**. The **Stokes phenomenon** is a plausible resolution, but the situation is not fully understood.

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

2d $\mathbb{C}\mathbb{P}^{N-1}$ model is solvable in the large N limit and has similar properties to 4d $SU(N)$ Yang-Mills theory.

$$S = N \int d^2x \left[\frac{1}{g^2 N} |(\partial_i - iA_i)\phi|^2 + \frac{1}{g^2} D(\phi^\dagger \phi - 1) + i \frac{\theta}{N} \frac{1}{2\pi} E \right] = N \bar{S}$$

$$(\bar{S} \sim \mathcal{O}(N^0))$$

- Asymptotic freedom

$$\beta(g) = \mu \frac{dg}{d\mu} = -\frac{N}{4\pi} g^3 < 0$$

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

- Confinement and Mass gap

We consider $\theta = 0$.

We first perform the path integral of ϕ and ϕ^\dagger and obtain the effective action $S_{\text{eff}}[A, D]$.

$$S_{\text{eff}}[A, D] = N \left[\log \det(-(\partial_i - iA_i)^2 + D) - \frac{1}{g^2 N} \int d^2x D \right]$$

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

- Confinement and Mass gap

$$S_{\text{eff}}[A, D] = N \left[\log \det(-(\partial_i - iA_i)^2 + D) - \frac{1}{g^2 N} \int d^2x D \right]$$

In the path integral over A and D , we use the **saddle point method**.

In the large N limit, the saddle point of $S_{\text{eff}}[A, D]$ gives the dominant contribution to the partition function.

Saddle points : $A = 0, D = \Lambda^2$

(Λ : dynamical mass scale for $\mathbb{C}\mathbb{P}^{N-1}$ model)

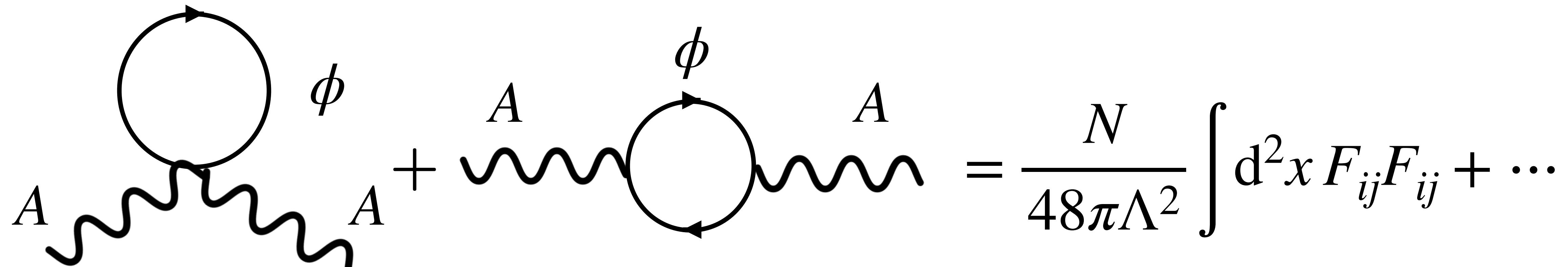
2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

- Confinement and Mass gap

$$S_{\text{eff}}[A, D] = N \left[\log \det(-(\partial_i - iA_i)^2 + D) - \frac{1}{g^2 N} \int d^2x D \right]$$

Quadratic terms for A is generated by the diagrams



$$A \phi + A = \frac{N}{48\pi\Lambda^2} \int d^2x F_{ij} F_{ij} + \dots$$

Kinetic term for A

2d $\mathbb{C}\mathbb{P}^{N-1}$ model

[D'Adda-Lusher-Di Vecchia 1979]
 [Witten, 1979]

- Confinement and Mass gap

The low energy effective action becomes

$$S_{\text{eff}}[\phi, A, D] = \int d^2x \left[\frac{1}{g^2} \left((D_i \phi)^\dagger (D_i \phi) + \Lambda^2 \phi^\dagger \phi \right) + \frac{N}{48\pi\Lambda^2} F_{ij} F_{ij} \dots \right]$$

- ✓ ϕ obtained mass $\Lambda \rightarrow$ **Mass gap**
- ✓ A obtained kinetic term and it gives Coulomb potential $V(r)$ between charged particles.
- ✓ In 2d, $V(r)$ is linear potential ($V(r) \propto r$). \rightarrow **Confinement**

More about saddle point method [Witten, 2010]

$$\int dE dD \exp(-N\bar{S}_{\text{eff}}[E, D, \theta/N]) \simeq \exp(-N\bar{S}_{\text{eff}}[E, D, \theta/N]_{\text{saddle}})$$

- We extend E and D to **complex variables** and we seek **complex saddle points** of \bar{S}_{eff} .
- For each saddle point (E_a, D_a) , there is a contour called **Lefschetz thimble** J_a ($=$ steepest descent path for $-\text{Re}\bar{S}_{\text{eff}}$).
- We deform the integration contour C using Cauchy theorem as

$$C \rightarrow n_a J_a, \quad n_a \in \mathbb{Z}$$

- * It is not easy to determine the appropriate contour $n_a J_a$ completely.

Effective action

The explicit form of the effective action : (see also [Rossi 2016])

$$\begin{aligned}
 \bar{S}_{\text{eff}} &= \log \text{Det} \left(-(\partial_i - iA_i)^2 - D \right) - \frac{1}{g^2 N} \int d^2x D + i \frac{1}{2\pi} \frac{\theta}{N} \int d^2x E \\
 &= \frac{1}{4\pi} \int d^2x \left[- \int_{\epsilon}^{\infty} \frac{dt}{t} \frac{E e^{-Dt}}{\sinh Et} - \frac{4\pi}{g^2 N} D + 2i \frac{\theta}{N} E \right] \\
 &= \frac{1}{4\pi} \int d^2x \left[-2E \log \Gamma \left(\frac{D}{2E} + \frac{1}{2} \right) + E \log 2\pi - D \log \frac{2E}{\Lambda^2} + 2i \frac{\theta}{N} E \right]
 \end{aligned}$$

$\Gamma(z)$: the Gamma function, Λ : mass scale for \mathbb{CP}^{N-1} model.

Small θ/N ($\theta/N \ll 1$)

Saddle point at $\theta = 0$: $(D, E) = (\Lambda^2, 0)$

→ For small $\bar{\theta} \equiv \theta/N$ ($\bar{\theta} \ll 1$), $|E|$ is small.

$$\bar{\mathcal{L}}_{\text{eff}} \simeq D \left(1 - \log \frac{D}{\Lambda^2} \right) + \frac{E^2}{6D} + 2i\bar{\theta}E$$

Saddle point equation for E and D give

$$D \simeq \Lambda^2 (1 + 6\bar{\theta}^2), \quad E \simeq -6i\bar{\theta}\Lambda^2$$

$$\bar{\mathcal{L}}_{\text{eff}}(\bar{\theta}) \Big|_{\text{saddle}} = D \simeq \Lambda^2(1 + 6\bar{\theta}^2)$$

Small θ/N ($\theta/N \ll 1$)

$$\bar{\mathcal{L}}_{\text{eff}} = - \int_{\epsilon}^{\infty} \frac{dt}{t} \frac{E e^{-Dt}}{\sinh Et} - \frac{4\pi}{g^2 N} D + 2i\bar{\theta}E$$

Poles at $t = \frac{n\pi}{6\Lambda^2\bar{\theta}}$ ($n = 1, 2, \dots$)

(At the saddle point, $E = -6i\bar{\theta}\Lambda^2$.)

Avoiding these poles in the t integral, $\bar{\mathcal{L}}_{\text{eff}}$ acquires the imaginary part

$$\text{Im} \bar{\mathcal{L}}_{\text{eff}}(\bar{\theta})|_{\text{saddle}} \simeq -6\Lambda^2 \frac{\theta}{N} \log \left(1 + \exp \left(-\frac{\pi N}{6\theta} \right) \right)$$

General θ/N

We need to seek the saddle point of the effective Lagrangian.

$$\bar{\mathcal{L}}_{\text{eff}} = -2E \log \Gamma \left(\frac{D}{2E} + \frac{1}{2} \right) + E \log 2\pi - D \log \frac{2E}{\Lambda^2} + 2i\bar{\theta}E$$

We can completely classify all saddle points by carefully considering the analytic structure of $\bar{\mathcal{L}}_{\text{eff}}$

Labels of saddle points : ① $k \in \mathbb{Z}$, ② $\ell \in \mathbb{Z}$, ③ $o = \pm$

These labels comes from the structure of $\log \Gamma(z)$.

General saddle point equations

We treat D and $z = D/E$ as independent variables.

Then, the saddle point equations give

$$2i\bar{\theta} = 2 \log \Gamma\left(\frac{z+1}{2}\right) - z\psi\left(\frac{z+1}{2}\right) + z - \log 2\pi = f(z)$$

$$\frac{D}{\Lambda^2} = z \exp\left(-\psi\left(\frac{z+1}{2}\right)\right)$$

$$\psi(z) = \frac{d}{dz} \log \Gamma(z) : \text{The digamma function}$$

✓ $f(z)$ is a complex-valued function. But since $\bar{\theta}$ ($= \theta/N$) is a real parameter, the solution must satisfy $\text{Im } f(z) = 0$.

Classification of saddle points

$$2i\bar{\theta} = 2 \log \Gamma\left(\frac{z+1}{2}\right) - z\psi\left(\frac{z+1}{2}\right) + z - \log 2\pi = f(z)$$

① $k \in \mathbb{Z}$,

As we increase the value of fixed $\bar{\theta}$, the saddle point $(E(\bar{\theta}), D(\bar{\theta}))$ continuously moves on complex (E, D) planes.

When taking $\bar{\theta} \rightarrow \infty$, $(E(\bar{\theta}), D(\bar{\theta}))$ approaches to

$$z = \frac{D}{E} \rightarrow -2k-1, \quad (k = 0, 1, 2, \dots)$$

↑
Poles of $\log \Gamma\left(\frac{D}{2E} + \frac{1}{2}\right)$

Classification of saddle points

$$2i\bar{\theta} = 2 \log \Gamma\left(\frac{z+1}{2}\right) - z\psi\left(\frac{z+1}{2}\right) + z - \log 2\pi = f(z)$$

② $\ell \in \mathbb{Z}$,

$\log \Gamma(z)$ is a multi-valued function due to the logarithmic branch structure.

→ Saddle points (E, D) for $\bar{\theta}$ are also saddle points for $\bar{\theta} + 2\pi\ell$.

In other words, there are many saddle points (E, D) for fixed $\bar{\theta}$ (and for the fixed first label k) corresponding to an integer ℓ .

Classification of saddle points

$$2i\bar{\theta} = 2\log\Gamma\left(\frac{z+1}{2}\right) - z\psi\left(\frac{z+1}{2}\right) + z - \log 2\pi = f(z)$$

③ $o = \pm$

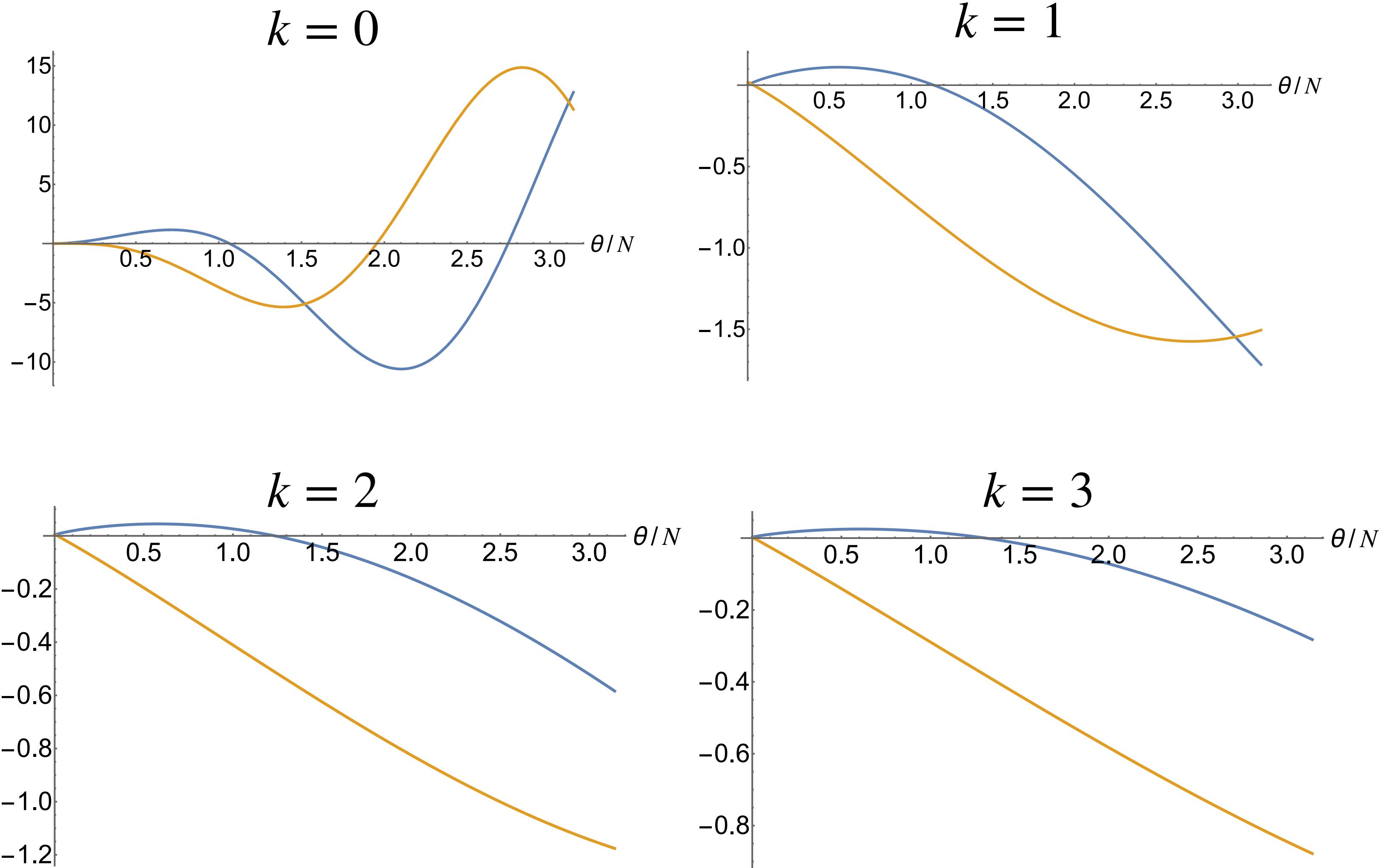
We need to specify the direction of the analytic continuation of $\log\Gamma(z)$.

For $z = Ae^{i\alpha}$, $0 < \alpha < \pi \rightarrow o = +$ and $-\pi < \alpha < \pi \rightarrow o = -$.

※ The information of saddle points labeled by (k, ℓ, o) can be obtained by $(k, \ell = 0, o = +)$.

General θ/N

— : $\text{Re } \bar{\mathcal{L}}_{\text{eff}}$
— : $\text{Im } \bar{\mathcal{L}}_{\text{eff}}$
 k : label of saddles
 $(\ell = 0, o = +)$



$k = 0, 1, 2, 3$ -th saddles
give $\text{Re } \bar{\mathcal{L}}_{\text{eff}} < 0$ at
some θ/N (e.g. $\theta \simeq 2$).