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Yang-Mills theory and & angle

The action of 4d pure Yang-Mills theory (in Euclidean
spacetime) is given as

ULpo ra a
64 12 o

]
— 4 a prapy
S[A]—de [4g2 @ F — |

Topological 6 term

@ angle is a 2m-periodic parameter @ ~ 0 + 2r and it
gives Interesting non-perturbative effects.
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Yang-Mills theory and & angle

You may think that considering only the small 6 region is
sufficient, since

. We can take —7 < 0 < 7 using 2z periodicity of 6.

. Physical QCD 6@ angle is extremely small.

However, It 1Is meaningful and important to consider the

large @ region beyond 6 = .
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Vacuum energy

We consider 4d SU(N) Yang-Mills theory as a concrete

example.

The vacuum energy (density) V(0) is defined as

1
V@) = — lim ——log Z(6
©) Vol—-oco VOI g Z(0)

Z(0) = j@A e A0 - Partition function,

Vol : Space-time volume
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Vacuum energy

Properties (under some assumptions)

V(@) = V(@ +2r), V(@=0)< V@), V(O =V(-06)

Dilute instanton gas approximation
(weak coupling/high T) gives / \
V(O) ~ — cos 6. Vo)

|

V(0) takes more complicated structure

—37 2 —n () T 2 3x

In strong-coupling regime.
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Large N limit (witten,1980,1998

We consider the large N limit to see the structure of V().

We take N large with fixed g“N and 6/N.

— @/N (not ) is a natural parameter in large N theories.

0 _
F¢ FHP — | — ctPOFY F¢ | = NSIA
4g2N N 6472 e Po A

S[A] = NJ'd4x l

(S[A] ~ O(N))
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Large N limit (witten,1980,1998’

The vacuum energy has the form

o [ O _ L
V() = NV N V : function in O(NY)

On the other hand, V(0) = V(60 + 27) must be satisfied.

Consistent form : Multi-branch structure

, n ey _ 0+ 2nn
V@) =mmV (0), V. (0)=NVEO) 0 =
ne/ N
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Multi-branch structure of V(60)

0+ 2nn
. N

V() = min V,(0), V,(0) =N*V(@,), 0,=

s - metastable vacua
\ —  true vacuum
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Multi-branch structure of V(60)

» CP symmetry is spontaneously broken at 6 = .

» Each vacua labeled by integer n is not 2z-periodic.

» Many metastable vacua appear.

s - metastable vacua
\ —  true vacuum
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Multi-branch structure of V(60)

The multi-branch structure of V(8) has been confirmed even

at finite NV cases.

» Numerical simulations (For SU(2) YM e.g., [Kitano-Yamada-
Matsudo-Yamazaki, 202 | |, | Hirasawa-Honda-Matsumoto-Nishimura-

Yosprakob, 2024])

y 't Hooft anomaly (Mixed anomaly between Z, center

symmetry and 2z periodicity of 8.) [Gaiotto-Kapustin-
Komargodski-Seiberg, 20 |7][Cordova-Freed-Lam-Seiberg, 2019
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Single branch of V(0)

The behavior in large @ region has not been known yet.

V. _o(@) = 7 inlarge 0 region < Our target

........ - metastable vacua
— : True vacuum
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Why large @ region?

» A vacuum branch might have 27N periodicity (not
orohibited by 't Hooft anomalies).

. e.g., softly-broken ' = 1 SU(V) super Yang-Mills theory
(YM with adjoint fermion) has 2z/N-periodic vacua.

— Does this periodicity hold more generally?

» Application for axion cosmology

e.g., L Yonekura, 20| 4],[Nomura-Watari-Yamazaki, 2017,
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

v/ A sigma model with target space CI N1~ 281101,

We realize this set up using auxiliary fields.

1 | , 1 v,
S = szx [—2 | (0. —1A)P|” + —2D(¢T¢ — 1)+ 1—F
g g AT

. @“ (a=1,---,N) : N complex scalar fields
. A. : (Auxiliary) U(1) gauge field —— gauge symmetry ¢ — e'%g

. D : (Auxiliary) scalar field — a constraint ¢'¢p = 1

. E=—-F,,=—-(0,A, — 0,A,) : Field strength (Electric field)
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

2d CPY~! model is solvable in the large NV limit and has similar
oroperties to 4d SU(/NV) Yang-Mills theory.

1 1 0 1 _
S=NJ'd2x —— (0, —iA)p|* +—=D(@ p—1)+i——E| =NS§
22N g2 N 2r

(S ~ ONY))

Properties
Asymptotic tfreedom, Continement ot charges, Mass gap -

— good toy model of 4d Yang-Mills theories.



N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

» Multi-branch vacuum

| _ _ 04+ 2mn
V@) =mimmV (0), V. (0)=NV(@O,), 0 =———-
ne/ N
. Large NV argument

» Numerical simulation : e.g., [Azcoiti-Carlo-Galante-Laliena,
2003 ]

» 't Hooft anomaly : [Nguyen-Tanizaki-Unsal, 2022 |

There is a mixed anomaly between PSU(N) = SU(N)/Zy

symmetry and 2 periodicity of 6.
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

» Multi-branch vacuum

V() = min V,(0), V.(0) =NV(@,), 0 =-——"
nes/ N

. mmmmm=- * metastable vacua
- true vacuum

v We computed V, _,(6)

including the large € V(o)
region (6 ~ O(N)) in the

2d large N CPY~! model.
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Computation of the partition function

Z(H) — Z eié’mZm — ZJ dx ei(6’+27m)xe
mes/ nesZ = —®

_/

Poisson resummation
. n € Z — label of vacuum (We focus on n = Q)

. m = — Vol(T?) - E/2n = x < assume to be extended as a

continuous variable.

Vacuum energy V (6) and decay rate I', (6) for the n-th vacuum:

v 0 — i1

— lmm
2 Vol(T?)— o0 VOI(T?)

lOg J' dx e i(«9+27m)xe
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Computation of the partition function

We use the saddle point method in the large N limit.

J dx e'™Z_~ JdEdD exp (—NSe4lE, D, 0/N]) =~ exp (—NS4lE, D, 6/Nlgqqic)

Assumptions

1 _
C S = 4—Jd2x Z . (@ is integrated out) is a function of
T

constant D and E (Non-constant fluctuations are negligible).

- Subleading terms in 1/N expansion are negligible.

N N _
— V _(0) = 4—ﬂRe§Z flO/N) | aqier 1 azo(@) = — 24—ﬂIm§Zeﬁ(6’/N ) | coddie



Small @ = /N (0 < 1)

The vacuum energy V. _,(6) and the decay rate 1", _,(0) is

3A% 3A° 71
V. o@ =V _o0)=xN—72C, 1, _(0)~——=0exp|———=
27 T 6 ¢

Physical interpretation

. Electric field E ~ @ generates the energy V(6) ~ E* ~ 6°.

. Vacuum decay via Schwinger pair production of ¢ and ¢.

These results seem sensible. How about large @ region (@ ~ 1)?
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General 0 = /N

We need to seek the saddle point of the effective Lagrangian.

P 2E loel” + : + Eloo2x — DI 2k + 2i0E
= — 0 — + — ogim — DIOg— |

<. has infinitely many saddle points for fixed 6.

We can completely classity all saddle points by carefully

considering the analytic structure of 5/”6& (details omitted).

However, 1t Is non-trivial to determine which saddle points
contributes to the path integral (appropriate contour n_J ).
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General 0 = /N

Natural saddle point to consider :

Saddle point obtained by continuously increasing the fixed value of

@/N from the saddle point that gives sensible results in small §/N.

15}

: Real part
10] : Imaginary part
ReZ 4 < 0in some range of 4

@/N at a saddle point. -

05— 1.0 O/N

~5i

-10}

< . at saddle point
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Problem : Evaluation of the partition function

We used the Poisson resummation :

Z(H) — Z eié’mZm — ZJ dx ei(6’+27m)xe . e—Vtme(g).Vol

me/ neZ © —

The largest contribution to the sum = true vacuum
Saddle point with Re S < 0 gives larger contribution than the

true vacuum.

saddle] > 1

J dx 67| ~ |exp [S.alD. ENO)

How can we evaluate the partition function?
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Problem : Evaluation of the partition function

One of the possible resolutions : Stokes phenomena

When we continuously vary parameters (in our case 0), the set of
saddle points contributing to the integral may discontinuously change.

(E,D,)in 0 < 0,
Contributing saddle points = Stokes phenomena at § = 0, ?

(E,,D,) in 0 > 0,
(It is not easy to understand how the Stokes phenomena occurs.

Completely different resolution may be needed. )



Summary

+ Strongly-coupled field theories have the non-trivial vacuum

structures as functions of 6.

. 2d CP"~! model is a good toy model of 4d SU(N) Yang-Mills

theory and it might gives some implications for strongly-coupled

dynamics.

- We studied the @ dependence in 2d large N CI N1 model and we

encountered saddle points that give larger contributions to the
partition function than the true vacuum. The Stokes phenomenon
Is a plausible resolution, but the situation is not fully understood.
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

2d CPY~! model is solvable in the large NV limit and has similar
oroperties to 4d SU(/NV) Yang-Mills theory.

o[ 1 DR 01 ]
S=NJ'dx [—\(8i—|Ai)qb\ +—=D(¢'p— 1) +i——E| =NS§

22N I N 2r
(S~ O(N))
» Asymptotic freedom
dg N
p(g) =p—=-—g" <0

du 4
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

» Confinement and Mass gap

We consider @ = 0.

We first perform the path integral of ¢ and ¢ and obtain the
effective action S 4[A, D].

1
S «[A, D] = N [log det( — (9; — iA,))* + D) — N szx D]
g
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

» Confinement and Mass gap

|
SelA, D] = N |logdet( — (0; — iAl-)2 + D) — N szx D]
8

In the path integral over A and D, we use the saddle point method.
In the large N limit, the saddle point of S.«|A, D] gives the

dominant contribution to the partition function.

Saddle points: A =0, D= A’
N-1

model)

(A : dynamical mass scale for CI
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

» Confinement and Mass gap

|
SelA, D] = N ’log det( — (0; — iAl-)2 + D) — N szx D]
8

Quadratic terms for A is generated by the diagrams

@
» A A N[,
A AT VWQ’\N‘ " 482A2 [d AR

Kinetic term for A
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N—1 'D’Adda-Lusher-Di Vecchia 1979]
2d CP model [witten 1979

» Confinement and Mass gap

The low energy effective action becomes

|
SerilP, A, D] = szx l? (D) (D) + N ) +

v/ ¢ obtained mass A — Mass gap

v/ A obtained kinetic term and it gives Coulomb potential V(r)

between charged particles.

v In 2d, V(r) is linear potential (V(7) « r). — Confinement
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More about saddle point method (witten, 2010

JdEdD exp (—NSelE, D, 0/N1) = exp (—=NS4lE, D, 0/Nlgqae)

- We extend E and D to complex variables and we seek complex

saddle points of S

. For each saddle point (£, D ), there is a contour called Lefschetz

thimble J, (= steepest descent path for —Regeff).
- We deform the integration contour C using Cauchy theorem as
C->nJ, n e/

x |t 1s not easy to determine the appropriate contour n_J_ completely.
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Effective action

The explicit form of the effective action : (see also [Rossi 2016])

i 1 1 6
Sefr = log Det (—(0; — iA)* = D) — —szw + i——J'dsz

22N 2n N

1 [, ®dt Ee " 45 N,
- |d%x [-]| —= — — D+2i—E

Ar .t sinhEtr g>N N

L[, D 1 2E 0
=—|dx |-2Elogl’' | — + — ) + E'log2zx — Dlog— + 2I—L

47 2E 2 A? N

I'(2) : the Gamma function, A : mass scale for CI N=1 model.
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Small /N (O/N < 1)

Saddle pointat @ =0: (D, E) = (A%,0)

—> Forsmall @=0/N (@< 1), |E]| is small.

4 D(1-=1 D + E7 + 2i0FE
~ — log — — |
eff g A2 6D

Saddle point equation for £ and D give
D~ A*(1466°), Ex~—6i0A’

Zai .. =D =~ AX(1 + 66%)
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Small /N (O/N < 1)

_ ® dt Ee ™! 47 L
Lw=—| —— — ——D + 2i0FE
.t sinhEt g?N
nit
Poles at t = - (n=1,2,---)

6,20

(At the saddle point, E = — 6i0AZ.)

Avolding these poles In the f integral, geff acquires the

imaginary part

= A o v w N
ImZ(0) ‘saddle ~ — 6A N log| 1+exp _gg
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General /N

We need to seek the saddle point of the effective Lagrangian.

P 2E loel” + : + Eloo2x — DI 2k + 2i0E
= — 0 — + — ogim — DIOg— |

We can completely classify all saddle points by carefully

considering the analytic structure of Qeff

Labels of saddle points: D ke Z, @r e/, B o==

These labels comes from the structure of logI'(z).
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General saddle point equations

We treat D and z = D/E as independent variables.

Then, the saddle point equations give

_ + 1 + 1
2i6’=21()glﬂ<Z > ) —Zl//(Z > ) + z—log2m = f(2)

D 7+ 1
A2 TP TV T,

d
Ww(Z) = d—log ['(z) : The digamma function
4

s f(2) is a complex-valued function. But since 0 ( = @/N) is a real parameter,

the solution must satisfy Im f(z) = 0.
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Classification of saddle points

_ + 1 + 1
2i9:210g1"(Z > ) —Zl//(Z > ) +z—log2z = f(z)

O ke”,
As we increase the value of fixed 6, the saddle point (E(0), D(0))

continuously moves on complex (E, D) planes.

When taking @ — oo, (E(8), D(0)) approaches to

D
7=——->-2k—-1, (k=0,1,2,---)

E
X D 1
Poles of logl' | — + —
2E 2
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Classification of saddle points

_ + 1 + 1
2i9:210g1"(Z )—Zl//(zz )+Z—10827T=f(2)

2
2 e’.

logI'(z) is a multi-valued function due to the logarithmic brach

structure.

— Saddle points (E, D) for 0 are also saddle points for 8 + 2a?.

In other words, there are many saddle points (E, D) for fixed 6 (and
for the fixed first label k) corresponding to an integer 7.
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Classification of saddle points

_ + 1 + 1
2i9:210g1"(Z )—Zl//(zz )+Z—10827T=f(2)

2

B 0o==
We need to specify the direction of the analytic continuation of log 1" (2).

Forz=Ae* O<a<nm—o=4+and —m<a<rz—0=—.

3% The information of saddle points labeled by (k, £, 0) can be obtained
by (k, 2 =0, 0=+).
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General /N

-
|
-

— R e geff 15

10
:Im &L : / '0'5
—_— 8/N ~1.0
05 1.0 1.5 2.0 2.5 3.0
k: label of saddles P N

(f:(),0:_|_> -10 -1.

8/N

k= 0,1,2,3-th saddles -o.;( 05 10 15— 20 25 30 O _O:f e g OIN
~0.4

give Re geﬁ < O at -0.6 ~0.4!
~0.8 o

some O/N (e.g. 0 ~2). | N




