

---

# Bootstrapping Quantum Mechanics

---

KEK Theory workshop  
2025/12/16

Takeshi Morita (Shizuoka Univ.)

Refs.

2109.08033 (PLB 2022) , 2109.02701 (PRD 2022)

with Yu Aikawa (Shizuoka univ.), Kota Yoshimura (Notre Dame univ., USA)

2208.09370 (PTEP 2023 ) TM

2504.08586 (PTEP 2025) with Yu Aikawa (Shizuoka univ.)

Introduction:

What is the best numerical method  
for solving the eigenvalue problem  
in one-dimensional single-particle QM?

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4 \rightarrow E_n?$$

Numerically solving PDE by discretizing the space?

Variational method?

etc.

## Introduction:

What is the best numerical method for solving the eigenvalue problem in one-dimensional single-particle QM?

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4 \rightarrow E_n?$$

One candidate is Bootstrap method. Han-Hartnoll-Kruthoff PRL 2020

- ✓ Error bar is ``exact''.
- ✓ Exact solutions can be obtained in solvable models.

Introduction:

## Plan of This Talk

What is the best numerical method  
for solving the eigenvalue problem  
in one-dimensional single-particle QM?

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4 \rightarrow E_n?$$

One candidate is Bootstrap method.

- ✓ Error bar is ``exact''.  
✓ Exact solutions can be obtained in solvable models.

← § 2

← § 3

2020

## Sec.2 Review of the bootstrap method in QM

## 2. Review of the bootstrap method in QM

Han-Hartnoll-Kruthoff (PRL 2020)

**Basic Idea:** Two constraints on expectation values.

### Uncertainty Relation

$$\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4} \longrightarrow \text{The expectation values of operators cannot take arbitrary values in QM.}$$

### Extension

$$\langle x^m \rangle, \langle p^n \rangle, \langle p^k x^l \rangle, \dots$$

→ These quantities are also bounded.

### Energy Eigenstate Relations

$$\forall | \quad \rangle \rightarrow |E\rangle \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases}$$

example) 
$$\begin{cases} H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4 \\ O = x^2 \end{cases}$$

$$\begin{aligned} \rightarrow \langle HO \rangle &= \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 \\ &= E \langle x^2 \rangle \end{aligned}$$

## 2. Review of the bootstrap method in QM

Han-Hartnoll-Kruthoff (PRL 2020)

Basic Idea: Two constraints of the uncertainty relation

Possible values of  $E, \langle x \rangle, \langle x^2 \rangle, \langle p \rangle, \dots$  are HIGHLY restricted.

$$\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4}$$

→ The expectation values of operators cannot take arbitrary values in QM.

Extension

$$\langle x^m \rangle, \langle p^n \rangle, \langle p^k x^l \rangle, \dots$$

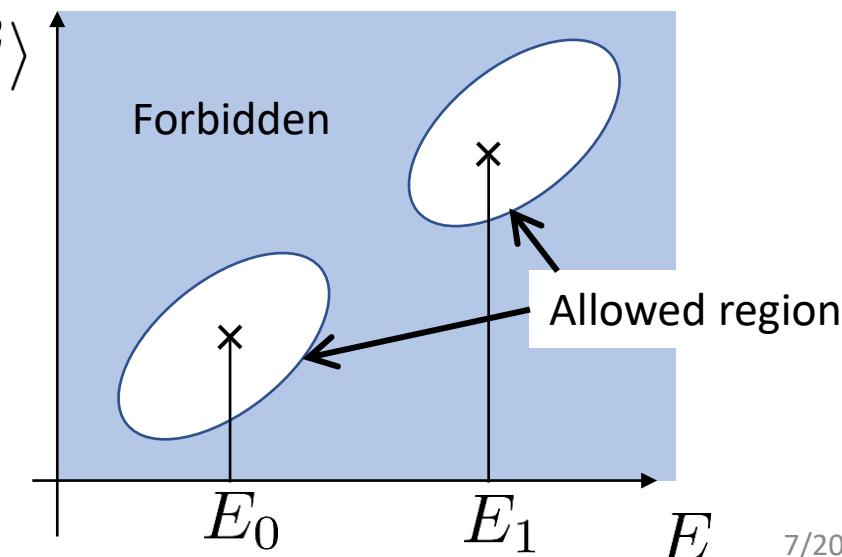
→ These quantities are also bounded.

Energy Eigenstate Relations

$$\forall | \psi \rangle \rightarrow |E\rangle \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases}$$

example)  $\begin{cases} H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4 \\ O = x^2 \end{cases}$

$$\begin{aligned} \rightarrow \langle HO \rangle &= \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 \\ &= E \langle x^2 \rangle \end{aligned}$$



## 2. Review of the bootstrap method in QM

Han-Hartnoll-Kruthoff (PRL 2020)

**Basic Idea:** Two constraints of the uncertainty relation

Possible values of  $E, \langle x \rangle, \langle x^2 \rangle, \langle p \rangle, \dots$  are HIGHLY restricted.

$$\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4}$$

→ The expectation values of operators cannot take arbitrary values in QM.

### Extension

$$\langle x^m \rangle, \langle p^n \rangle, \langle p^k x^l \rangle, \dots$$

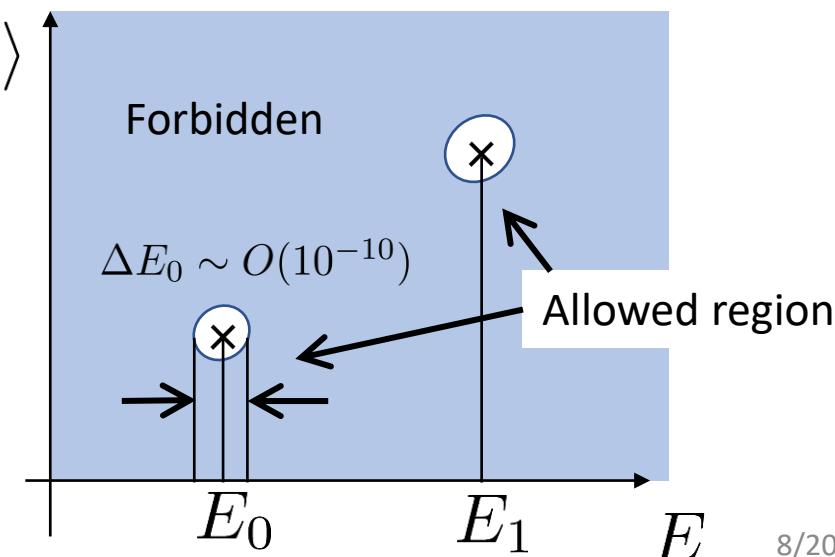
→ These quantities are also bounded.

### Energy Eigenstate Relations

$$\forall | \psi \rangle \rightarrow |E\rangle \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases}$$

example)  $\begin{cases} H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4 \\ O = x^2 \end{cases}$

$$\begin{aligned} \rightarrow \langle HO \rangle &= \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 \\ &= E \langle x^2 \rangle \end{aligned}$$



## 2. Review of the bootstrap method in QM

Han-Hartnoll-Kruthoff (PRL 2020)

Basic Idea: Two constraints

Possible values of  $E, \langle r \rangle, \langle r^2 \rangle, \langle n \rangle, \dots$

Uncertainty Relation

$$\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4}$$

Q1. How to obtain the bounds?

(Extension of the uncertainty relation)  
take arbitrary values in QM.

Extension

$$\langle x^m \rangle, \langle p^n \rangle, \langle p^k x^l \rangle, \dots$$

→ These quantities are also bounded.

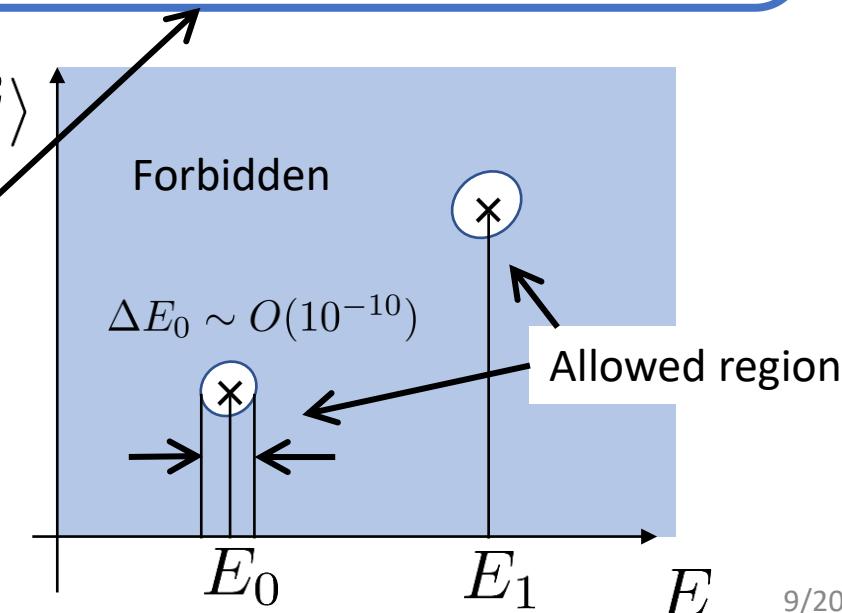
Energy Eigenstate Relations

$$\forall | \psi \rangle \rightarrow |E\rangle \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases}$$

Q2. How to solve these constraints.

$$\} O = x^2$$

$$\begin{aligned} \rightarrow \langle HO \rangle &= \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 \\ &= E \langle x^2 \rangle \end{aligned}$$



## 2.1 Extension of the Uncertainty Relation

Han-Hartnoll-Kruthoff (PRL 2020)  
TM (PTEP 2023)

QM satisfies the following positivity:

[Example: 1-dim single-particle QM]

$O$  : Operators

ex)  $O = x^m p^n$

$\langle O^\dagger O \rangle = |O\rangle|^2 \geq 0$  is satisfied for  $\forall O, \forall | \rangle$ , and we obtain the following relation:

$$\tilde{O} = \sum_{i=1}^K c_i O_i \quad \left\{ \begin{array}{l} \{O_i\} : \text{a set of } K \text{ operators } (i = 1, \dots, K) \\ \{c_i\} : \text{constants} \\ K : \text{an integer} \end{array} \right.$$

ex)  $\{O_i\} = \underbrace{\{x, p, xp, \dots\}}_K$

$\Rightarrow 0 \leq \langle \tilde{O}^\dagger \tilde{O} \rangle = \vec{c}^\dagger M \vec{c}$  is satisfied for any  $\{c_i\}$ .

$$M := \begin{pmatrix} \vec{c}^T = (c_1, c_2, \dots, c_K) \\ \vdots & \vdots \\ \cdots & \langle O_i^\dagger O_j \rangle \cdots \\ \vdots & \vdots \end{pmatrix}$$

$K \times K$  hermite matrix

→ All the eigenvalues of  $M$  are non-negative.

→ Called “positive-semidefinite matrix” and denoted by  $M \succeq 0$ .

$\langle O_i^\dagger O_j \rangle$  is highly constrained!

$M \succeq 0$  can be regarded as an extension of the uncertainty relation.

$$\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4}$$

## 2.1 Extension of the Uncertainty Relation

Han-Hartnoll-Kruthoff (PRL 2020)  
TM (PTEP 2023)

$$M := \begin{pmatrix} \ddots & \vdots \\ \cdots & \langle O_i^\dagger O_j \rangle \cdots \\ & \vdots \end{pmatrix} \quad M \succeq 0 \rightarrow \text{Extension of the uncertainty relation.}$$

Why?  $\tilde{O} = c_0 1 + c_1 x + c_2 p$  Curtright-Zachos (2001)  
 $(\{O_i\} = \{1, x, p\})$

$$M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle \end{pmatrix} \quad \xrightarrow{M \succeq 0} \quad \langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4} \quad \text{for } \forall | \rangle$$

→ Choosing  $\tilde{O} = \underline{c_0 1 + c_1 x + c_2 p} + c_3 x^2 + c_4 p^2 + \dots$ ,  $M \succeq 0$  provides constraints involving higher order expectation values  $\langle x^m p^n \rangle$ .

→  $M \succeq 0$  is an extension of the uncertainty relation.

Can we solve the condition  $M \succeq 0$  and the following constraints?

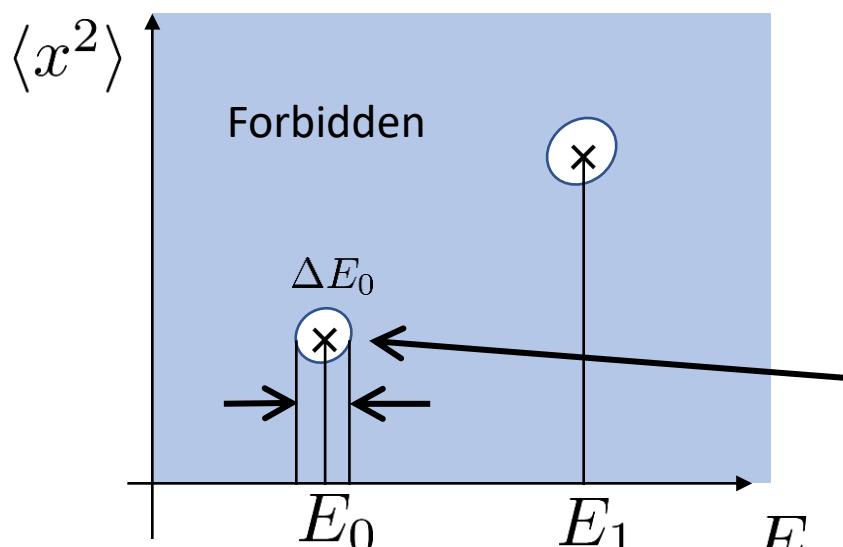
$$\langle HO \rangle = E\langle O \rangle \quad \langle HO \rangle = \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 = E\langle x^2 \rangle$$

## 2.1 Extension of the Uncertainty Relation

Han-Hartnoll-Kruthoff (PRL 2020)  
TM (PTEP 2023)

Yes, such problems can be easily solved numerically as SemiDefinite Programming (SDP, 半正定値計画問題).

$$M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle & \cdots \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle & \cdots \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \cdot M \succeq 0 \quad \text{and} \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases} \\ \Rightarrow \langle HO \rangle = \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 \\ = E \langle x^2 \rangle \\ \text{etc.} \end{math>$$



$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4$$

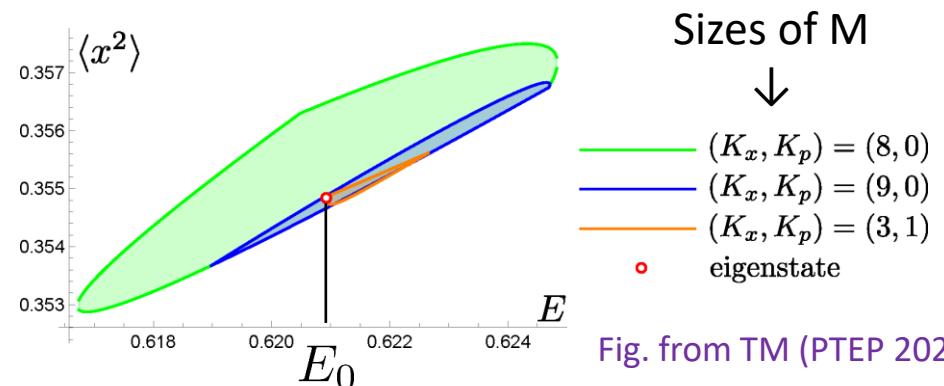


Fig. from TM (PTEP 2023)

## 2.1 Extension of the Uncertainty Relation

Han-Hartnoll-Kruthoff (PRL 2020)  
TM (PTEP 2023)

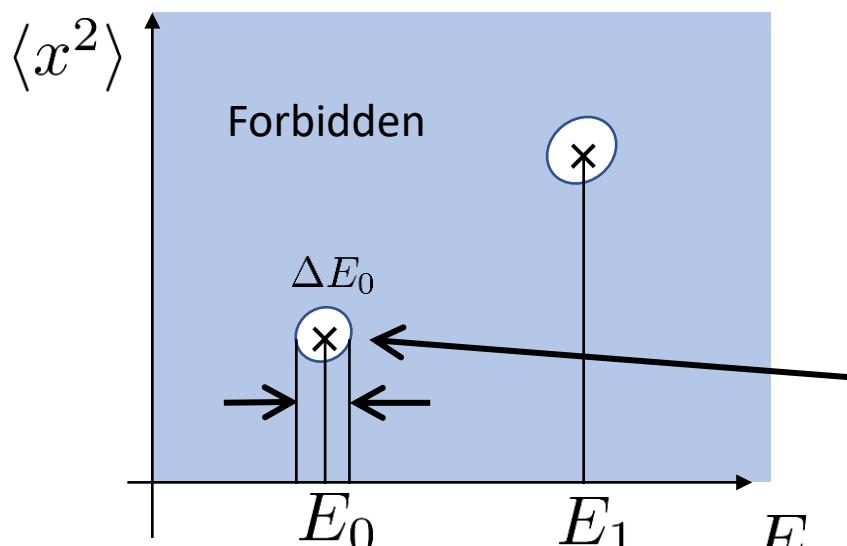
Yes, such problems can

Programming (SDP, 半正)

$$M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle & \dots \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle & \dots \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- The size of  $M \rightarrow$  A Cut off of bootstrap.  
A larger  $M$  provides better results.  
(But longer computation time.)
- Error bar is "Exact".  
 $E_n$  never takes the value in the forbidden region.

$$\begin{aligned} \rightarrow \langle HO \rangle &= \langle p^2 x^2 \rangle / 2 + \langle x^4 \rangle / 2 + \langle x^6 \rangle / 4 \\ &= E \langle x^2 \rangle \\ &\text{etc.} \end{aligned}$$



$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2 + \frac{1}{4}x^4$$

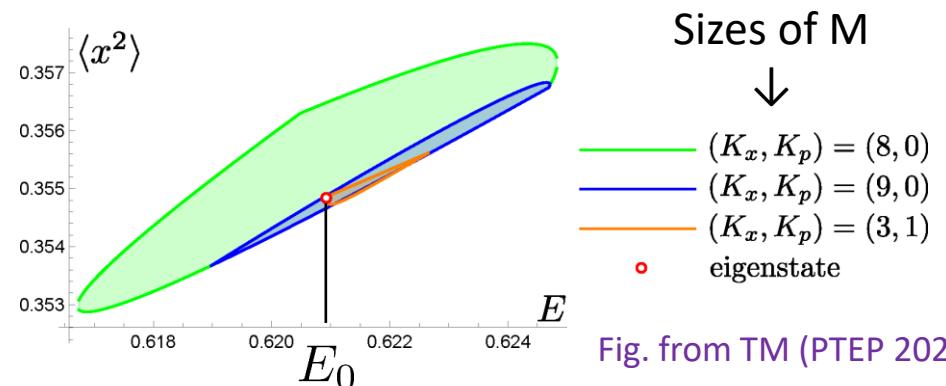


Fig. from TM (PTEP 2023)

## Sec.3 Solvable models and the bootstrap method

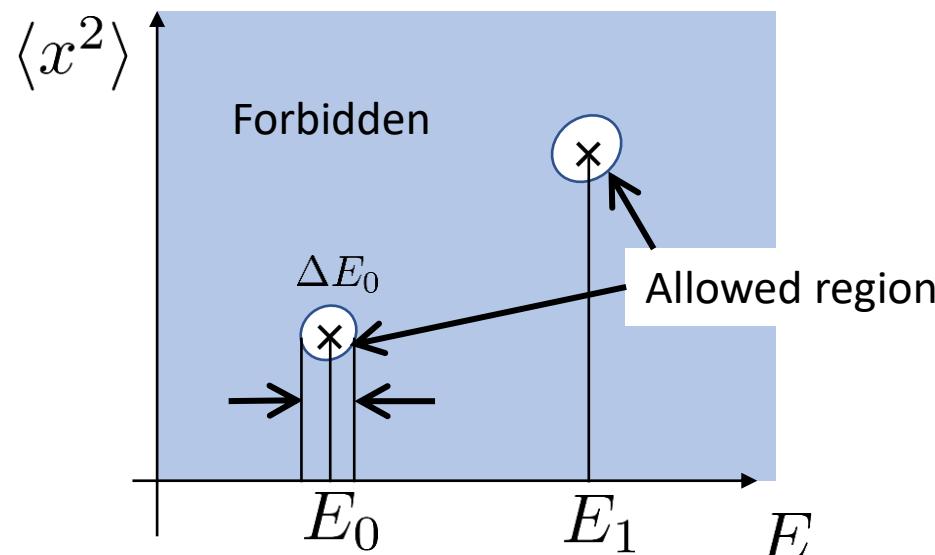
### 3. Bootstrap $\rightarrow$ Exact results

★ What happens if we apply the bootstrap method to solvable systems?

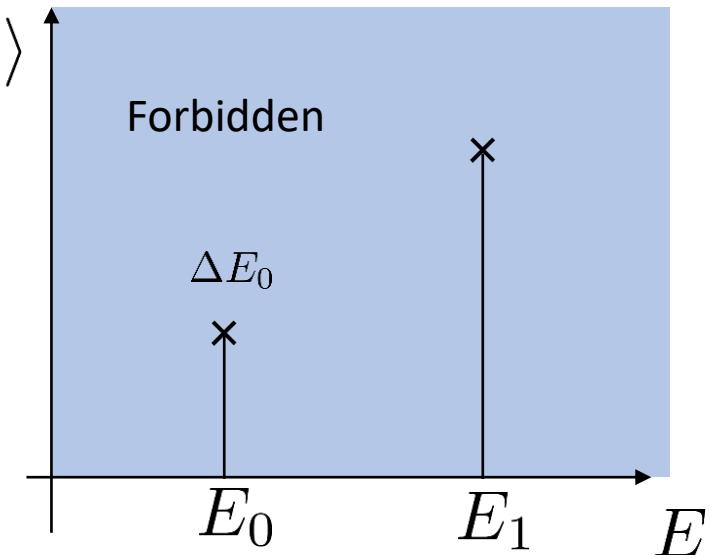
$$M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle & \dots \\ \langle x \rangle & \langle x^2 \rangle & \langle px \rangle & \dots \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \quad M \succeq 0 \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases} \quad H = \frac{1}{2}p^2 + \frac{1}{2}x^2$$

Harmonic oscillator: Aikawa-TM-Yoshimura 2021  
Pöschl-Teller potential: Sword-Vegh 2024

The allowed regions collapse to points!



Non-solvable system



Solvable systems  
(at a finite size  $M$ )

### 3. Bootstrap $\rightarrow$ Exact results

★ What happens if we apply the bootstrap method to solvable systems?

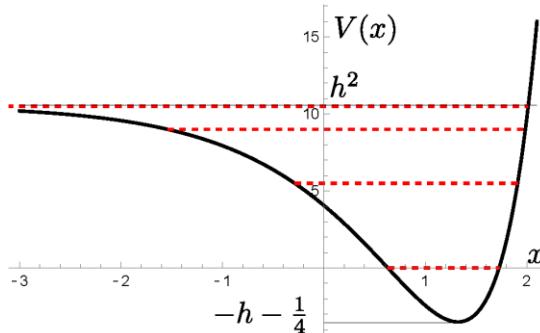
$$M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle & \dots \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle & \dots \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \quad M \succeq 0 \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases} \quad H = \frac{1}{2}p^2 + \frac{1}{2}x^2$$

Harmonic oscillator: Aikawa-TM-Yoshimura 2021  
Pöschl-Teller potential: Sword-Vegh 2024

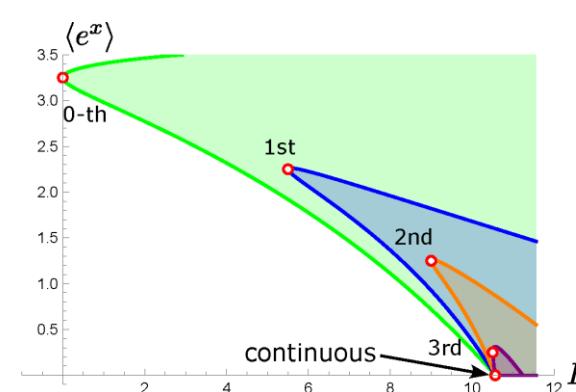
The allowed regions collapse to points!

Ex) Morse potential

$$\mathcal{H} = p^2 + e^{2x} - (2h + 1)e^x + h^2.$$



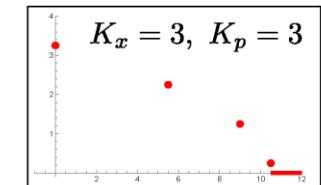
Numerical bootstrap result



$$\tilde{O} := \sum_{m=0}^{K_x} \sum_{n=0}^{K_p} c_{mn} e^{mx} p^n$$

- $K_x = 1, K_p = 1$
- $K_x = 2, K_p = 1$
- $K_x = 2, K_p = 2$
- $K_x = 3, K_p = 2$

Exact

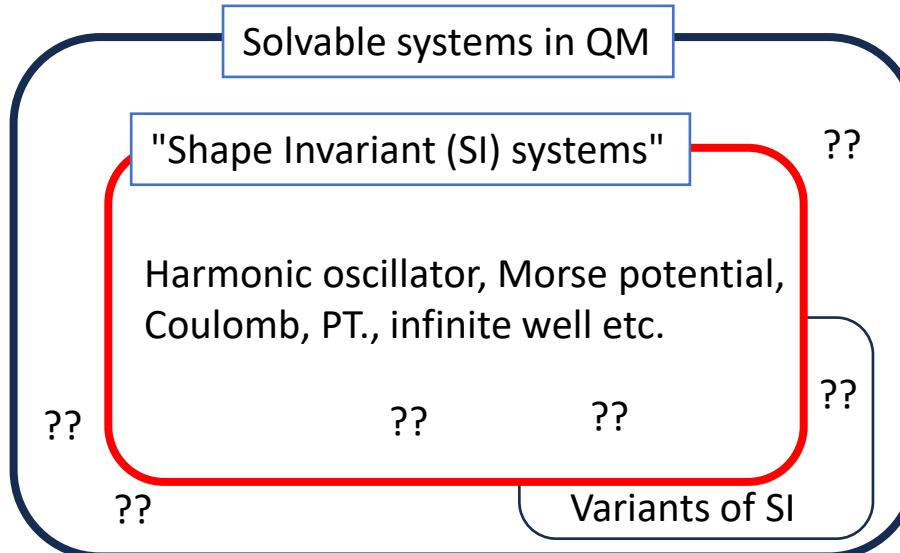


### 3. Bootstrap → Exact results

#### Solvable models in QM

"Solvable"

= "Energy eigenvalues are obtained exactly."



Textbook by Sasaki-san

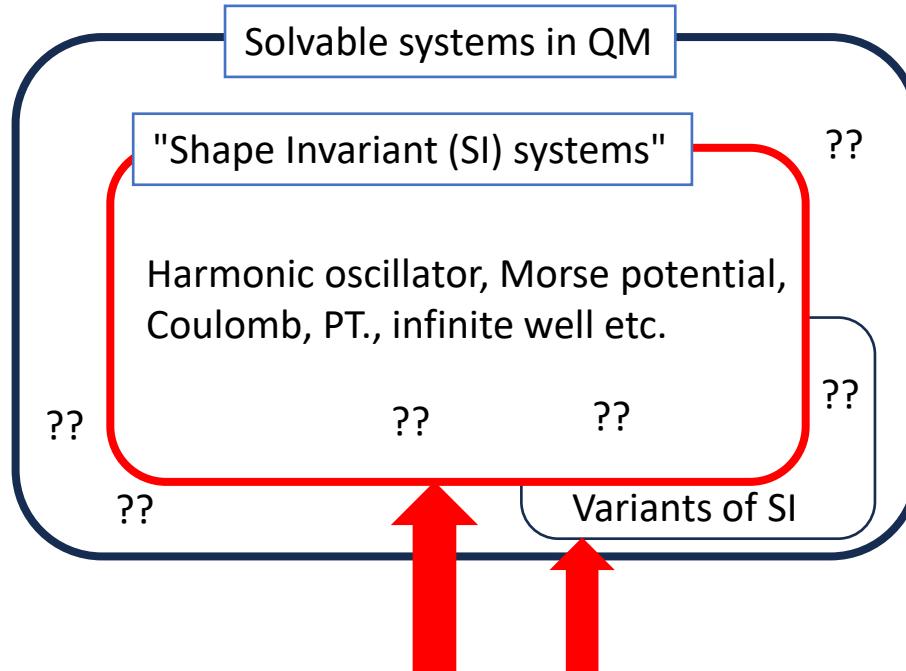
See also the PhD thesis of Nasuda-san  
2403.20217

### 3. Bootstrap → Exact results

#### Solvable models in QM

"Solvable"

= "Energy eigenvalues are obtained exactly."



Exact solutions are obtained by using the bootstrap method, if the system satisfies the SI (or its variant).

→ Bootstrap method can be used as "a detector" of the solvable systems!

(I skip the proof today.)

Aikawa-Morita (PTEP 2025)



Textbook by Sasaki-san

See also the PhD thesis of Nasuda-san  
2403.20217

# Summary

# Summary:

## Bootstrap method

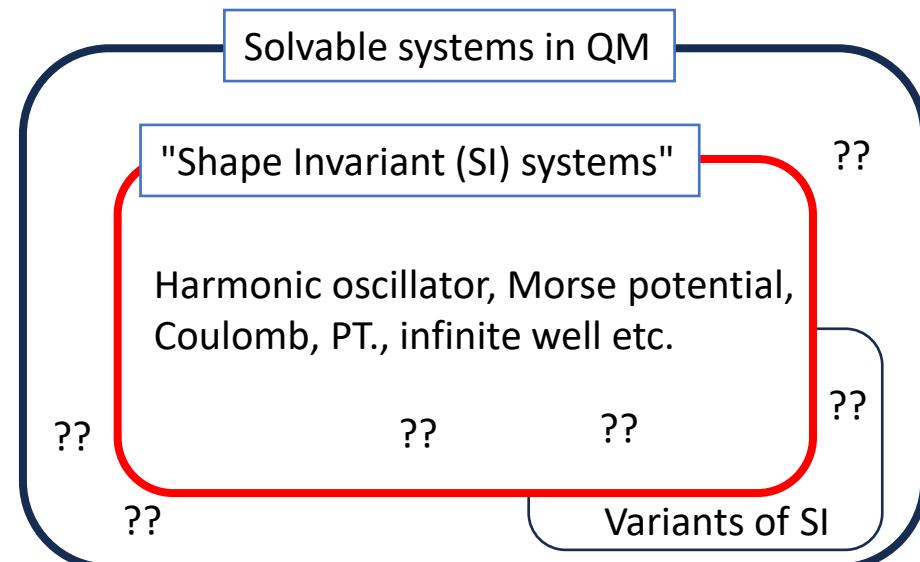
$$\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4} \rightarrow$$

$$M = \begin{pmatrix} 1 & \langle x \rangle & \langle p \rangle & \cdots \\ \langle x \rangle & \langle x^2 \rangle & \langle xp \rangle & \cdots \\ \langle p \rangle & \langle px \rangle & \langle p^2 \rangle & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} . \quad \begin{cases} \langle HO \rangle = E \langle O \rangle \\ \langle OH \rangle = E \langle O \rangle \end{cases}$$
$$M \succeq 0,$$

- Derivation of the spectrum through the extension of  $\langle \Delta x^2 \rangle \langle \Delta p^2 \rangle \geq \frac{\hbar^2}{4}$ .
- Error var is exact.
- Detector of the solvable systems.

## Future Directions

- Other solvable systems?
- Many body systems.
- QFTs (Lattice gauge theories)
- gauge theories in the gauge/gravity correspondence



↑ Solvable?