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What bootstrap reveals?
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Bootstrapping EFT's

Cauchy-Schwarz inequality
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Phenomenological implications

Two causality bounds
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(M Any EFT
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(2) Large-N. gauge theories

3 5D Models and Holography
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Holographic QCD

Black holes: gauge—gravity anomaly
Holographic superconductors
Chiral magnetic and vortical effects

Topological insulators / axion electrodynamics

Jear F?
Acaus ~ MP il
kg

Spin>2 resonances must appear

36



2
Vi |I€I€g| < MJZQ — Acaus \/64"}/ Fﬂ'
22T Cay > Acaus ~ Mp
< ZMp Kkg]
First resonance Spin>2 resonances must appear
coupled to v+ or hth™
L ] NC
(2) Large-N. gauge theories = Acaus ~ Aqa ~
F

3 5D Models and Holography
(Flat 5D spacetime)

Mg M ps

x Holographic QCD

x Black holes: gauge—gravity anomaly Acaus ~ 1/3

i (ﬁ: 5Rg5 )
X Holographic superconductors

% Chiral magnetic and vortical effects
R5Kg5 < Auvy
(MsL)? ~ Ar

x Topological insulators / axion electrodynamics

(Warped extra dim (AdS);)
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(@ Astrophysical constraints on x; Wﬁ,ﬂq
h™ Mh+,},+f},+
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Analytic Experimental / (RF?)
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(@ Astrophysical constraints on x; Wﬁ,ﬂq
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2
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M >3 ~

First resonance

coupled to yTh™ or y~h™

Y
?|k1| ~ 6km” » A~8x10 eV > A
= No realistic EFT
h

Must have been seen already!
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Conclusion Y nhh (anomalies)  py~ (non minimal)

x Bootstrapping EFT's as a powerful approach to get information
only with unitarity 4+ causality 4 crossing

x Causality bounds (— new cutoffs) in anomalous EFTs

with pseudoscalar (n) + photon (v) + graviton (h)

x Direct derivation of these bounds in 5D?

Are you in the scale allowed in your theory?

Thank you!
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