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Basic Idea of Our Work

No—boundary/Tunneling Proposal

which describes the guantum creation of the universe




Outline of Our Work

No-boundary/Tunneling x Horava—Lifshitz Gravity
Proposal
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1. Renormalization group (RG) flow of Gravity

2. Neumann or Robin boundary conditions




Talk plan

In this talk, I will discuss the application of Horava—Lifshitz gravity — a
candidate quantum gravity theory — to the no—boundary and tunneling
proposal, which describe the quantum creation of the universe.

1. Review of Quantum Cosmology

2. Review of Horava—Lifshitz gravity

3. Application of HL gravity to no-boundary
and tunneling proposal

4. Problems on HL no-boundary proposal: RG
flow of Gravity, Robin boundary condition



Quantum Cosmology



Quantum Cosmology

Quantum cosmology analyses how the universe
was created and evolved in quantum gravity
theory. It introduces the wave function of the

universe.

Wave function of the Universe
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Hartle-Hawking no-boundary
proposal

No-boundary wave function

which describes the universe created  °>tephen Hawking James B. Hartle

from nothing Euclidean Path Integral of Gravity
which integrates the compact and regular
Phys.Rev.D 28 (1983) 2960-2915 Euclidean metric
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Lorentzian
Quantum Cosmology

) . ). Feldbrugge ). Lehners N. Turok
No-boundary wave function which
describes the universe created from nothing Phys. Rev. D 95 (2017) 103508
(9,9) Lorentzian Path Integral of Gravity
Vg = DgHVD(:‘b e_SE 9w ,Pl/ R
no-boundary which integrates real and Lorentzian metric

Lorentzian Quantum Cosmology
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Horava-Lifshitz Gravity



Horava-Lifshitz Gravity

Higher derivative gravity theory (proposed by P. Horava in 2009), a
candidate quantum gravity theory satisfying renormalizability and unitarity
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Projectable Horava-Lifshitz Gravity

3 + 1 dimensional metric as ADM formalism Projectable HL gravity

ds® = N*dt® + g;;(dz’ + N*dt)(da? + N?dt)
Lapse function  Spatial metric ~ Shift vector

3 + 1 dimensional action of projectable HL gravity

2
S = MZHL / dtd’zN /g (KVK;j — AK? + ;R — 2A + O.1)

Higher dimensional operators at UV (z=3)
Anisotropic scaling
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Global Hamiltonian Constraint

Projectable HL gravity

Counting all local 3—dimensional universe 2 &, the
global Hamiltonian constraint must be imposed.

2
Z/ d*z Hg1 =0 Hyl = MQHL @(K“KU — AK* — C?JR +2A = O:1)

Local closed FLRW universe
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N, =0, g% =a.(t)[Q;x)] Local Hamiltonian constraint is non—zero
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Lorentzian Quantum Cosmology

L orentzian path integral
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Projectable HL action
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Lorentzian Quantum Cosmology
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Equation of motion Projectable HL action
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No-boundary/Tunneling proposal

Dirichlet boundary condition
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On-shell action
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Problems on On—shell Action l

No-boundary/Tunneling x Horava—Lifshitz Gravity
proposal
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1: Renormalization group flow

x Horava—Lifshitz Gravity
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No—boundary/Tunneling

proposal
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2: Robin boundary condition

do
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Robin boundary condition Hubble parameter
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On-shell action
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2: Imaginary Robin boundary

Robin boundary condition

A. Di Tucci and J. L. Lehners, Phys. Rev. Lett. 122 (2019) 201302

Eai = —1, &qf = const.
A. Di Tucci, J. L. Lehners and L. Sberna, Phys. Rev. D 100 (2019) 123543

On-shell action
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Lorentzian path integral
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2: Imaginary Robin boundary
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Summary

. We analyzed a formulation of the Hartle-Hawking no-
boundary proposal based on Horava-Lifshitz gravity

. The Hartle-Hawking wave function cannot be
formulated due to the divergence of the on-shell
action caused by the higher-order derivative term of
curvature.

. Solution 1: Renormalization group flow of gravity.
. Solution 2: Robin boundary conditions
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