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unifiedly reduced from symmetric instantons

Quark confinement is derived from symmetric instantons in the D = 4 Yang-
Mills theory in a manner consistent with holography principle.
The D = 3 magnetic monopoles and D = 2 vortices on hyperbolic spaces are
constructed from symmetric instantons in the D = 4 Euclidean space.
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§ Introduction

We consider quark confinement in the D = 4 quantum Yang-Mills theory (with no
dynamical quarks) according to the Wilsonn criterion:

area law of the Wilson loop average ⇔ linear potential for static quark potential.

To understand quark confinement based on the dual superconductor picture, we need
topological objects: magnetic monopoles and/or (center) vortices. [For a review, see
Kondo, Kato, Shibata and Shinohara, Phys.Rept.579, 1–226 (2015), arXiv: 1409.1599
[hep-th]]

However, only topological solitons in the Yang-Mills theory are instantons in D = 4
Euclidean space R4.

It is a big question how to derive such topological objects in D = 4 Yang-Mills theory.

We show that D = 3 magnetic monopoles and D = 2 (center) vortices are
constructed from instantons in the D = 4 Euclidean Yang-Mills theory to conclude
quark confinement in a consistent way with holography principle.
This result is based on the guiding principles:
• conformal equivalence: conformal symmetry,
• symmetric instanton gauge field: spatial symmetry SO(2), SO(3),
• dimensional reductions: self-dual equation.
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§ Translation invariance and dimensional reduction
⊙ We consider SU(2) Yang-Mills theory on D = 4 Euclidean space R4(x1, x2, x3, x4):

L =
1

2
tr(Fµν(x)Fµν(x)), x = (x1, x2, x3, x4) = (x, t) ∈ R4,

Fµν(x) := ∂µAν(x)− ∂νAµ(x)− ig[Aµ(x),Aν(x)], Aµ(x) := A A
µ (x)

σA
2
.

with the flat Euclidean metric (ds)2(R4) = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2.
The self-dual Yang-Mills equation is given by

∗ Fµν(x, t) :=
1

2
ϵρσµνFρσ(x, t) = Fµν(x, t).

⊙ First, we consider a solution for the gauge field that has the translation symmetry
in the time t = x4, which is equivalent to the t-independence: (x, t) → (x).

(A1(x, t),A2(x, t),A3(x, t),A4(x, t)) → (A1(x),A2(x),A3(x),Φ(x)).

The time-independent solution of the self-dual equation reduces to the solution of
Bogomolny equation on R3:

(∗F )ℓ4(x) = DℓΦ(x), ℓ = 1, 2, 3, x := (x1, x2, x3) ∈ R3.
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In fact, the self-dual equation for µ, ν = ℓ, 4 reads for Φ(x) := A4(x)

±1

2
ϵjkℓ4Fjk(x) = Fℓ4(x) =∂ℓA4(x)− ∂4Aℓ(x)− ig[Aℓ(x),A4(x)] (∂4Aℓ(x

1, x2, x3) = 0)

=∂ℓA4(x)− ig[Aℓ(x),A4(x)] = DℓΦ(x).

The solution of the Bogomolny equation is called the Prasad-Sommerfield (PS)
magnetic monopole.

(ds)2(R4) = [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2 =⇒ R4 = R3 × R1.

However, this solution leads to a divergent 4-dim. action:

S =

∫ ∞

−∞
dx4

[∫
dx1dx2dx3L (x1, x2, x3)

]
= ∞ =⇒ exp(−S/ℏ) = 0,

even if
∫
dx1dx2dx3L (x1, x2, x3) <∞ because of the t-independence.

Therefore, the PS magnetic monopole does not contribute to the path integral. Thus,
the PS magnetc monopole is not responsible for quark confinement.

How to avoid this difficulty?
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§ Conformal equivalence (I)
(I) Next, we consider solutions with spatial rotation symmetry S1 ≃ SO(2).
In R4 with the metric (ds)2(R4) = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2,
we introduce the coordinates (ρ, φ) in the 2-dim. space (x1, x2) to rewrite the metric:

(ds)2(R4) = (dρ)2 + ρ2(dφ)2 + (dx3)2 + (dx4)2.

We factor out ρ2 as a conformal factor to further rewrite the metric:

(ds)2(R4) = ρ2
[(dx3)2 + (dx4)2 + (dρ)2

ρ2
+ (dφ)2

]
.

Therefore, we obtain a conformal equivalence: See Fig.1.

R4 = R3 × R1 → R4 \ R2 ≃ H3 × S1

∈ ∈ ∈ ∈

(x1, x2, x3, x4) (x3, x4) (ρ, x3, x4) φ

• H3(ρ, x3, x4) is a hyperbolic 3-space: x3, x4 ∈ (−∞,+∞), ρ ∈ (0,∞), and has
the metric gµν = ρ−2δµν and the negative constant curvature −1. This is the upper
half space model with ρ > 0. Here ρ = 0 is a singularity, therefore the corresponding
2-dim. space, i.e., the (x3, x4) plane with ρ = 0 must be excluded from R4.
• S1(φ) is a 1-dimensional unit sphere, i.e., a unit circle with the coordinate φ ∈ [0, 2π).
SO(2) acts on S1(φ) in the standard way.
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Figure 1: Euclidean space R4(x1, x2, x3, x4) versus hyperbolic space H3(ρ, x3, x4).

The SO(2) ≃ S1 symmetric instanton solution on R4\R2 that does not depend
on the rotation angle φ reduces to the hyperbolic magnetic monopole solution on
H3: the φ-rotation symmetry = φ-independence as the dimensional reduction:

x = (x1, x2, x3, x4) ≡ (ρ, φ, x3, x4) → (ρ, x3, x4),

which is associated with the field identification: Φ(ρ, x3, x4) := Aφ(ρ, x
3, x4)

(Aρ(ρ, φ, x
3, x4),Aφ(ρ, φ, x

3, x4),A3(ρ, φ, x
3, x4),A4(ρ, φ, x

3, x4)) (ρ, φ, x3, x4) ∈ R4

→(Aρ(ρ, x
3, x4),Φ(ρ, x3, x4),A3(ρ, x

3, x4),A4(ρ, x
3, x4)), (ρ, x3, x4) ∈ H3.
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Any solution of the Bogomolny equation on H3 is a φ-independent instanton
solution of the self-dual equation on R4\R2, (∂φAℓ(ρ, x

3, x4) = 0)

(∗F )ℓφ(ρ, x
3, x4) =

1

ρ
DℓΦ(ρ, x

3, x4), (ρ, x3, x4) ∈ H3.

Since S1 is compact (unlike R1), any solution of the Bogomolny equation giving a finite
3-dim. action on H3 gives a configuration with a finite 4-dim. action

S =

∫ 2π

0

dφ

[∫ ∞

0

dρ ρ

∫ ∞

−∞
dx3

∫ ∞

−∞
dx4L (ρ, x3, x4)

]
<∞.

Therefore, S1 ≃ SO(2) symmetric instantons on R4 can be reinterpreted as
hyperbolic magnetic monopoles on H3, giving a configuration with a finite
4-dim. action. This case (I) was first pointed out by Atiyah (1984).

Therefore, the hyperbolic magnetic monopoles can contribute to the path integral,
because

exp(−S/ℏ) ̸= 0.

Thus, the hyperbolic magnetic monopoles can be responsible for quark
confinement.
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§ Conformal equivalence (II) Let us consider another example.
⊙ (II) We consider another solution with spatial rotation symmetry SO(3).
We introduce the polar coordinates (r, θ, φ) for the 3-dim. space (x1, x2, x3):

(ds)2(R4) = (dx4)2 + (dr)2 + r2((dθ)2 + sin2 θ(dφ)2),

where r :=
√

(x1)2 + (x2)2 + (x3)2. Then, we factor out r2 as a conformal factor to
rewrite

(ds)2(R4) = r2
[(dx4)2 + (dr)2

r2
+ (dθ)2 + sin2 θ(dφ)2

]
.

Therefore, we obtain the conformal equivalence: See Fig.2.

R4 = R2 × R2 → R4 \ R1 ≃ H2 × S2
∈ ∈ ∈ ∈

(t, x, y, z) t (t, r) (θ, φ)

• H2(x4, r) is a hyperbolic plane with x4 ∈ (−∞,∞), r ∈ (0,∞), and has the metric
gµν = r−2δµν and negative constant curvature (−1). The upper half plane model
with r > 0. Here r = 0 is a singularity:the x4-axis must be excluded from R4.
• S2(θ, φ) is a two-dimensional unit sphere with θ ∈ [0, π), φ ∈ [0, 2π) and has a
positive constant curvature (2). SO(3) acts on S2(θ, φ) in the standard way.
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Figure 2: Euclidean space R4(x1, x2, x3, x4) versus hyperbolic space H2(r, x4).

The SO(3) (spherically) symmetric instanton on R4\R1 that does not depend on
the rotation angles θ, φ reduce to the hyperbolic vortex solution on H2(t, r): the
θ, φ-rotation symmetry = θ, φ-independence as the dimensional reduction:

x = (t, x1, x2, x3) ≡ (t, r, θ, φ) → (t, r),

which is roughly associated with the field identification:

(At(t, r, θ, φ),Ar(t, r, θ, φ),Aθ(t, r, θ, φ),Aφ(t, r, θ, φ))(t, r, θ, φ) ∈ R4

→(at(t, r), ar(t, r), ϕ1(t, r), ϕ2(t, r)) (t, r) ∈ H2.

The exact relationship will be given in the next section.
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Any solution of the vortex equation on H2(r, x4) is a θ, φ-independent solution of
self-dual equation on R4\R1 for at = at(r, x

4), ar = ar(r, x
4), ϕ1 = ϕ1(r, x

4), ϕ2 =
ϕ2(r, x

4), (r, x4) ∈ H2: ∂4ar − ∂ra4 =
1

r2
(1− ϕ21 − ϕ22),

∂4ϕ1 + a4ϕ2 = ∂rϕ2 − arϕ1, ∂4ϕ2 − a4ϕ1 = −(∂rϕ1 + arϕ2).

Any solution of the vortex equation giving finite two-dim. action on H2(r, x4)∫∞
0
dr r2

∫∞
−∞ dx4L (r, x4) < ∞ gives a finite 4-dim. action: S =∫ π

0
dθ sin θ

∫ 2π

0
dφ

[∫∞
0
dr r2

∫∞
−∞ dx4L (r, x4)

]
<∞, since S2(θ, φ) is compact.

Therefore, SO(3) spherically symmetric instantons on R4 can be reinterpreted
as vortices on H2, giving a configuration with a finite 4-dim. action. This case (II)
was discovered by Witten (1977) to find multi-instanton solutions of 4-dim. Yang-Mills
theory, which is established as the symmetric instanton by Forgacs and Manton (1980).
Therefore, the hyperbolic vortices can contribute to the path integral exp(−S/ℏ) ̸= 0
and the hyperbolic vortices can be responsible for quark confinement.
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Summarizing the results.

Figure 3: Unifying magnetic monopole and vortices based on conformal equivalence,
symmetric instanton and dimensional reduction.
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§ Unifying magnetic monopole and vortices

Definition [Rotationally symmetric gauge field](Manton and Sutcliffe(2004))
If the space rotation R has the same effect on the gauge field as the gauge transformation
UR:

RkjAk(Rx) =UR(x)Aj(x)U
−1
R (x) + iUR(x)∂jU

−1
R (x),

the gauge field A (x) is called rotationally symmetric. Or equivalently, if we combine
R and U−1

R , the gauge field remains invariant.

Proposition[Witten transformation (Witten Ansatz) for SO(3) symmetric gauge field]
The transformation with the SO(3) spatial rotation symmetry from the D = 4 SU(2)
Yang-Mills field to the dimensionally reduced D = 2 field is given by the Witten
transformation (which was originally called the Witten Ansatz):

A4(x) =
σA
2

xA

r
at(r, x

4), r :=
√
(x1)2 + (x2)2 + (x3)2, (r, x4) ∈ H2.

Aj(x) =
σA
2

{
xA

r

xj

r
ar(r, x

4) +
δAj r

2 − xAxj

r3
ϕ1(r, x

4) + ϵjAk
xk

r2
[1 + ϕ2(r, x

4)]

}
,
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Proposition [hyperbolic magnetic monopole field on H3, hyperbolic vortex field on H2]
By applying the gauge transformation (a rotation around the x3 axis by an angle φ)

Uφ = exp
(
iφ
σ3
2

)
∈ SU(2)

(
φ := arctan

x2

x1
∈ [0, 2π)

)
to both sides of the instanton gauge field:
Aµ(x

1, x2, x3, x4) → UφAµ(x
1, x2, x3, x4)U †

φ + iUφ∂µU
†
φ =: A G

µ (ρ, x3, x4).
We can make Aµ(x

1, x2, x3, x4) independent of φ, and obtain an S1-symmetric

instanton A G
µ (ρ, x3, x4) (ρ :=

√
(x1)2 + (x2)2).

The magnetic monopole on H3(ρ, x3, x4) is written in terms of the vortex on H2(r, x4):

A G
t (ρ, x

3
, x

4
) =

1

2

{
1

r
(σ1ρ + σ3x3)

}
at(r, x

4
),

A G
3 (ρ, x

3
, x

4
) =

1

2

{
x3

r2
(σ1ρ + σ3x3)ar(r, x

4
) +

ρ

r3
(−σ1x3 + σ3ρ)ϕ1(r, x

4
) −

ρ

r2
σ2(1 + ϕ2(r, x

4
))

}
,

A G
ρ (ρ, x

3
, x

4
) =

1

2

{
ρ

r2
(σ1ρ + σ3x3)ar(r, x

4
) +

x3

r3
(σ1x3 − σ3ρ)ϕ1(r, x

4
) +

x3

r2
σ2(1 + ϕ2(r, x

4
))

}
,

Φ(ρ, x
3
, x

4
) =

1

2

{
ρ

r
σ2ϕ1(r, x

4
) +

ρ

r2
(−σ1x3 + σ3ρ)(1 + ϕ2(r, x

4
)) + σ3

}
.
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⊙ The relationship for the norm between the su(2)-valued hyperbolic magnetic
monopole field Φ(ρ, x3, x4) = A G

φ (ρ, x3, x4) and the complex-valued hyperbolic vortex
field ϕ(x4, r) = ϕ1(x

4, r) + iϕ2(x
4, r) is given as

||Φ(x4, x3, ρ)||2 = ρ2|ϕ(x4, r)|2 + (x3)2

4r2
, (r :=

√
ρ2 + (x3)2).

||Φ|| has the correct boundary value: ||Φ|| → v = 1
2 (ρ→ 0).

r

r
x

x
4

3

O

> 0

> 0

H =(x4,r)

H =(x4,x3,r)
3

2

Figure 4: The relationship between hyperbolic vortices (black circles) on H2 and
hyperbolic magnetic monopoles (white circles) on H3.
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§ Holography: bulk/boundary correspondence
It was rigorously shown that the holographic principle (‘t Hooft (1993), Susskind
(1995)) applies to hyperbolic magnetic monopoles in the hyperbolic space H3.
In contrast, it does not apply to magnetic monopoles in flat Euclidean space R3.
Proposition [Bulk/boundary correspondence of H3 = AdS3] A magnetic monopole on
hyperbolic space H3 = AdS3 is completely determined by its asymptotic boundary value
at infinity ∂H3, apart from the gauge equivalence. This situation is in sharp contrast
with the Euclidean case in which all monopole have the same boundary values.

Proposition [Abelian dominance and magnetic monopole dominance on ∂H3] On the
conformal boundary ∂H3 ≃ S2 of H3(ρ, x3, x4), that is, ρ→ 0: x4-x3 plane,

A G
4 (ρ, x3, x4) → σ3

2
at(x

4, x3), A G
3 (ρ, x3, x4) → σ3

2
ar(x

4, x3),

A G
ρ (ρ, x3, x4) → σ1

2

1

r
ϕ1(x

4, x3) +
σ2
2

1

r
[1 + ϕ2(x

4, x3)],

Φ(ρ, x3, x4) → σ3
2
(+1)

(
||Φ|| → v =

1

2

)
. (1)

Therefore, the gauge field A G
ρ (ρ, x3, x4) in the bulk direction is dominated by the

off-diagonal componens, while the gauge field A G
4 (ρ, x3, x4),A G

3 (ρ, x3, x4) on the
boundary ρ = 0 has only the diagonal components at(x

4, x3), ar(x
4, x3).
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§ Quark confinement: area law of Wilson loop average
Definition [Wilson loop operator] Let A be a Lie algebra valued connection 1-form:

A (x) := Aµ(x)dx
µ = A A

µ (x)TAdx
µ. (1)

For a given loop C, the Wilson loop operator WC[A ] in the representation R is
defined using the path ordered product P:

WC[A ] := trR

{
P exp

[
ig

YM

∮
C

A

]}
/trR(1). (2)

(I) Quark confinement due to hyperbolic magnetic monopoles on H3 and holography:
We take the Wilson loop C on the boundary ∂H3(x3, x4) of H3 by the limit ρ→ 0.

r

r
x

x
4

3

O

> 0

> 0

H =(x4,r)

H =(x4,x3,r)
3

2

C
R

T

Figure 5: The Wilson loop C on the conformal bounday ∂H3, i.e., x3 − x4 plane.
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Proposition [Wilson loop operator on the conformal boundary ∂H3] If the loop C lies
on the boundary x3 − x4, the Wilson loop operator in the fundamental representation
F defined for the S1-invariant SU(2) Yang-Mills field A G

µ takes the form:

WC[A ] =
1

2
trF

{
exp

[
i
σ3
2

∮
C

dxµaµ(x
4, x3)

]}
=
1

2
trF

{
exp

[
i
σ3
2

∫
Σ:∂Σ=C

dx4dx3F4r(x
4, x3)

]}
.

The SU(2) field strength on the boundary has only the maximal torus U(1) component:

FG
43(ρ, x

3, x4) → σ3
2
(∂4ar − ∂ra4) =

σ3
2
F4r(x

4, x3). (3)

This fact is regarded as the (infrared) Abelian dominance and the magnetic monopole
dominance, which is expected but not proved in the Euclidean case.
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(II) Quark confinement due to hyperbolic vortices on H2:

r
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> 0

H =(x4,r)

H =(x4,x3,r)
3

2

C
R

T

R

T

C

n
N

S

Figure 6: (Left) The relationship between the Wilson loop C and hyperbolic
vortices (black circles) and anti-vortices (white circles) on H2, (Right) The dilute
gas approximation.

Proposition [area law of the Wilson loop average] In the dilute (instanton) gas
approximation, the Wilson loop average in D = 4 Yang-Mills theory with the topological
ϑ term obeys the area law:

⟨ϑ|WC[A ]|ϑ⟩ = e−σA(C), σ := 2Ke−S1/ℏ [cos(ϑc2)− cos (ϑc2 + 2πJc1)] , (4)

where c1 and c2 are the first and second Chern numbers respectively.
When Jc1 is an integer, the vacuum is periodic with respect to ϑ with period 2π, so
the potential is zero. When Jc1 is not an integer, the static quark potential V (R) is
given by a linear potential σR with string tension σ as the proportionality coefficient.
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§ Conclusions and discussions

Conclusion:

• We have proposed to use the symmetric instantons with certain spatial symmetries
to study non-perturbative problems of the D = 4 Yang-Mills theory.

In particular, we have applied this stragety to quark confinement.

Then we have shown:

• Quark confinement follows from symmetric instantons in the D = 4 Yang-Mills theory
in a manner consistent with holography principle.

• The D = 3 hyperbolic magnetic monopoles and D = 2 hyperbolic vortices on
lower dimensional spaces are constructed through the associated dimensional reduction
starting from symmetric instantons in the D = 4 Euclidean space.

This resut supports the dual superconductor picture as the mechanism for quark
confinement.

Thank you very much for your attention!
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Detailed Conclusion:
• In this talk, we considered the space and time symmetric instantons as solutions of
the self-dual Yang-Mills equation with conformal symmetry in the SU(2) Yang-Mills
theory in the four-dimensional Euclidean space R4.

• In contrast to time translation symmetry, instantons with spatial rotation symmetries
give a finite four-dimensional action and hence can contribute to quark confinement.
For the spatial symmetry SO(2) ≃ U(1) ≃ S1, the instanton is reduced to a hyperbolic
magnetic monopole (of Atiyah) living in the three-dimensional hyperbolic space H3.
For the spatial symmetry SO(3) ≃ SU(2), the instanton is reduced to a hyperbolic
vortex (of Witten-Manton) living in the two-dimensional hyperbolic space H2.

• By requiring the spatial symmetry SO(2) or SO(3) for instantons, the four-dimensional
Euclidean space R4 in which instantons live is inevitably transformed to the curved
spacetime H3 × S1 or H2 × S2 with negative constant curvature by maintaining the
conformally equivalence through dimensional reduction.

• Three-dimensional hyperbolic magnetic monopoles and two-dimensional hyperbolic
vortices can be connected through conformal equivalence with the explicit relationship
between the magnetic monopole field and the vortex field has been obtained. This
allows magnetic monopoles and vortices can be treated in a unified manner.

• Both H3 and H2 are curved spaces AdS3 and AdS2 with a constant negative
curvature. The hyperbolic monopole in H3 is completely determined by its
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holographic image on the conformal boundary two-sphere S2
∞. (This is different

from Euclidean monopoles.) This fact enable us to reduce the non-Abelian Wilson loop
operator to the Abelian Wilson loop defined by the Abelian gauge field of the vortex:
Abelian dominance and magnetic monopole dominance.

• Using the hyperbolic magnetic monopole and hyperbolic vortex obtained in this way,
quark confinement was shown to be realized in the sense of Wilson area law within
the dilute gas approximation. This is a semi-classical quark confinement mechanism
originating from the unified hyperbolic magnetic monopole and hyperbolic vortex,
supporting the dual superconductor picture.

[ • Furthermore, by considering a symmetric instanton with a singularity (of Forgacs-
Horvath-Palla(1981)) in a compact subspace of spacetime, a symmetric instanton with
a non-integral topological charge can be obtained, and then by dimensional reduction, a
hyperbolic magnetic monopole and a hyperbolic vortex with a non-integral topological
charge have been obtained. ]

Thank you very much for your attention!
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Discussion:

• Why does the space-time obtained by dimensional reduction have negative curvature?
Is there no case where it has positive curvature? cf: The 4-dimensional standard model
can be obtained by dimensional reduction of 6-dimensional Yang-Mills theory to 4!
[Manton(1981)]

• How does the gauge group change due to dimensional reduction?

• How can it be extended to a large gauge group SU(N)?

• What happens when a matter field is introduced? For example, can QCD be analyzed
in the same way?

• How do we incorporate quantum effects that do not maintain conformal invariance?

Thank you for your attention!
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BUCKUP SLIDES
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⊙ On H3: the SU(2) gauge-scalar theory

SYM =2π

∫
H3
dx3dx4dρ

√
gL3,

L3 =
1

2
gµνgνβ tr(FµνFαβ) + gµν tr(DµΦDνΦ), (1)

where gµν = ρ−2δµν, g
µν = ρ2δµν, g := det(gµν) = ρ−6.Therefore,

L3 =ρ
1

2
tr(FµνFµν) +

1

ρ
tr{(DµΦ)(DµΦ)}. (2)

The topological action reads

Sϑ =

∫
d4x Lϑ =

ϑ

4π2

∫
dφdx3dtdρ [∂t tr(F3ρΦ) + ∂3 tr(FρtΦ) + ∂ρ tr(Ft3Φ)]

=
ϑ

2π

∫
dx3dtdρ [∂t tr(ΦF3ρ) + ∂3 tr(ΦFρt) + ∂ρ tr(ΦFt3)]

=
ϑ

2π

[∫
dx3dρ tr(ΦF3ρ) +

∫
dtdρ tr(ΦFρt) +

∫
dx3dt tr(ΦFt3)

]
. (3)

Here, tr(ΦFµν) is gauge invariant, tr(ΦF3ρ) is gauge invariant magnetic field, and
tr(ΦFρt) and tr(ΦFt3) are gauge invariant electric field.
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⊙ On H2: the U(1) gauge-scalar theory

SYM =4π

∫
dt

∫
dr LGS,

LGS =
1

4
r2FµνFµν + (Dµϕ)

∗Dµϕ+
1

2r2
(|ϕ|2 − 1)2 +

ϑ

16π2
εµνFµν. (4)

Here we defined Dµ = ∂µ− iaµ and ϕ = ϕ1+ iϕ2 and used DµφaDµφa = (Dµϕ)
∗Dµϕ.

SYM =

∫ ∞

−∞
dt

∫ ∞

0

dr
√
g LGS,

LGS =
1

4
gµαgνβFµνFαβ + gµν(Dµϕ)

∗Dνϕ+
1

2
(|ϕ|2 − 1)2 +

ϑ

16π2
εµνFµν, (5)

where gµν = r−2δµν, g
µν = r2, g := det(gµν) = r−2.
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Figure 7: Euclidean space R4(x4, x3, x2, x1) versus hyperbolic spaces H3(x4x3, ρ) with
ρ :=

√
(x1)2 + (x2)2 > 0 and H2(x4, r) with r :=

√
(x1)2 + (x2)2 + (x3)2 > 0.
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Proposition [non-Abelian Stokes theorem for the Wilson loop operator] The SU(2)
Wilson loop operator in any representation characterized by a half-integer single index
J = 1

2, 1,
3
2, 2,

5
2, · · · obeys the non-Abelian Stokes theorem. We introduce the unit

vector field nA(x) (nA(x)nA(x) = 1) called the color direction field defined by

nA(x)σA = U(x)σ3U
†(x), U(x) ∈ SU(2), (6)

with the third Pauli matrix σ3. Then the SU(2) Wilson loop operator is rewritten in
the form of the area integral over any surface Σ bounded by the loop C:

WC[A ] =

∫
[dµ(U)]Σ exp

{
ig

YM
J

∫
Σ:∂Σ=C

dSµνFU
µν

}
, (7)

where FU
µν is the gauge-invariant field strength defined by

FU
µν(x) := ∂µ[n

A(x)A A
ν (x)]− ∂ν[n

A(x)A A
µ (x)]− g−1

YM
ϵABCnA(x)∂µn

B(x)∂νn
C(x),

(8)

and [dµ(U)]Σ is the product measure of an invariant measure on SU(2)/U(1) over Σ:

[dµ(U)]Σ :=
∏
x∈Σ

dµ(n(x)), dµ(n(x)) =
2J + 1

4π
δ(nA(x)nA(x)− 1)d3n(x). (9)
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(I) Quark confinement due to hyperbolic vortices on H2:
The Witten transformation corresponds to choosing the color direction field as

nA(x) =
xA

r
(r :=

√
xAxA). (10)

Then the Abelian-like field defined by

cµ(x) := nA(x)A A
µ (x) (11)

is rewritten by using the Witten transformation into

cµ(x) =

{
c4(x) =

xA

r A A
4 (x) = a0(r, t) (µ = 4)

cj(x) =
xA

r A A
j (x) = xj

r a1(r, t) (µ = j)
. (12)

If we consider the loop C on the (t, r) plane, i.e., µ = 4, ν = r, the second term
vanishes: −g−1

YM
ϵABCnA(x)∂µn

B(x)∂νn
C(x) = 0. Therefore we find

FU
4r(x) =∂4cr(x)− ∂rc4(x) = ∂4

(
xj

r
cj(x)

)
− ∂rc4(x)

=∂4a1(r, t)− ∂ra0(r, t) := F4r(t, r). (13)
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In this setting, the Wilson loop operator for a rectangular loop C with the size
T × L is expressed as

WC=T×L[A ] = exp

{
iJ

∫ T/2

−T/2

dt

∫ L

0

drF4r(t, r)

}
. (14)

If the rectangular loop C is very large L, T → ∞ so that a vortex is located inside of
C, the integral becomes equal to the topological charge Nv = c1 according to (??):

∫ T/2

−T/2

dt

∫ L

0

drF4r(t, r)(L, T → ∞) →
∫ ∞

−∞
dt

∫ ∞

0

drF4r(t, r) = 2πc1. (15)

Since 2J is an integer, we find

WC=T×L[A ] → exp {i2πJc1} = exp(iπ)2Jc1 = (−1)2Jc1 =

{
(−1)c1 (J = 1

2,
3
2, ...)

(+1)c1 (J = 1, 2, ...)
.

(16)

For a 1-vortex with c1 = 1, we find WC=T×L → ± ∈ Z(2). Therefore, this vortex is
regarded as the center vortex, since the center of SU(2) is Z(2).
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Figure 8: 1-vortex solution with the center at (t, r) = (0, 1) and the size λ = 1.
The distribution of gauge-invariant quantities: (Left) field strength F01(t, r), (Right)
|ϕ(t, r)|2.

Now we evaluate the Wilson loop expectation value to obtain the static potential for
two widely separated color charges in a θ vacuum. Note that the integrand of the Wilson
loop operator shown above is the density of the instanton number, which means that
in this theory, the Wilson loop WC[A ] counts the number of instantons-antiinstantons
(or vorttices-antivortices) that exist within the region Σ enclosed by the loop C. The
expectation value of the Wilson loop, including the topological term iθQ, is expressed
as

⟨θ|WC[A ]|θ⟩GS =

∫
DADϕe−SGS+iθQWC[A ]∫

DADϕe−SGS+iθQ
=:

I2
I1
, (17)
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Note that a nonzero θ is not required to show the area law of the Wilson loop below.
We can set θ = 0 in the final result. Including the topological term iθQ in the action
is equivalent to defining the θ vacuum as follows:

|θ⟩ :=
+∞∑

n=−∞
einθ|n⟩. (18)

In the following, we calculate the Wilson loop expectation value (17) using the dilute
instanton gas approximation. This method is well known, see for example Chapter 11
of Rajaraman(1989) or Chapter 7 of Coleman(1985).
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