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Quark confinement consistent with holography

due to hyperbolic magnetic monopoles and hyperbolic vortices
unifiedly reduced from symmetric instantons

Quark confinement is derived from symmetric instantons in the D = 4 Yang-
Mills theory in a manner consistent with holography principle.
The D = 3 magnetic monopoles and D = 2 vortices on hyperbolic spaces are

_cgynstru%%(l_from symmetric instantons in the D = 4 Euclidean space.
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3 Introduction

We consider quark confinement in the D = 4 quantum Yang-Mills theory (with no
dynamical quarks) according to the Wilsonn criterion:

area law of the Wilson loop average < linear potential for static quark potential.

To understand quark confinement based on the dual superconductor picture, we need
topological objects: magnetic monopoles and/or (center) vortices. [For a review, see
Kondo, Kato, Shibata and Shinohara, Phys.Rept.579, 1-226 (2015), arXiv: 1409.1599
[hep-th]]

However, only topological solitons in the Yang-Mills theory are instantons in D =4
Euclidean space R*.

It is a big question how to derive such topological objects in D = 4 Yang-Mills theory.

We show that D = 3 magnetic monopoles and D = 2 (center) vortices are
constructed from instantons in the D = 4 Euclidean Yang-Mills theory to conclude
quark confinement in a consistent way with holography principle.

This result is based on the guiding principles:
e conformal equivalence: conformal symmetry,
e symmetric instanton gauge field: spatial symmetry SO(2), SO(3),

o dim%nélonal reductions: self-dual equation.
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g Translation invariance and dimensional reduction
©® We consider SU(2) Yang-Mills theory on D = 4 Euclidean space R*(z!, 22, 23, 2%):

1
& = 0 (F (@) P (0)), @ = (2%, 0%, 5) = (@,1) € RY

Fou(@) 1= Dt () — Byt () — igl (), Hy @), H(a) = M x) 2

with the flat Euclidean metric (ds)?(R*) = (dx!)? + (dz?)? + (dz3)? + (dz?)?.
The self-dual Yang-Mills equation is given by

1
* F(x,t) = iepgwﬁpa(w,t) = Zu(x,t).
® First, we consider a solution for the gauge field that has the translation symmetry

in the time ¢ = 2%, which is equivalent to the t-independence: (z,?) — (x).

(A (x,t), (1), H(x,t), du(x, 1)) = (A(x), (), F3(2), D(X)).

The time-independent solution of the self-dual equation reduces to the solution of
Bogomolny equation on R°:

(xF)pa(x) = 2p®(x), £ =1,2,3, x:= (z',2°% 2°) € R’
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In fact, the self-dual equation for p, v = /¢, 4 reads for ®(x) := 4 (x)

s (@) = Fualw) =0ph(w) — DusA(w) — iglh(w), ()] (Ousi(at, 2%, a) = 0)

=0pdy(x) — ig|F(x), Fu(x)] = DeD().

The solution of the Bogomolny equation is called the Prasad-Sommerfield (PS)
magnetic monopole.

(ds)2(RY) = [(dz1)? + (dz?)2 + (dzB)?] + (dzh)? = R* = R® x R%,

However, this solution leads to a divergent 4-dim. action:
S = / dz* [/ drtdx?de® L (zt, 2%, 2°)| = co = exp(—S/h) = 0,

even if [dxtdz?da® ¥ (xt, 2%, 2%) < co because of the t-independence.
Therefore, the PS magnetic monopole does not contribute to the path integral. Thus,
the PS magnetc monopole is not responsible for quark confinement.

How to avoid this difficulty?
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8 Conformal equivalence (1)

(1) Next, we consider solutions with spatial rotation symmetry S ~ SO(2).

In R* with the metric (ds)?(R*) = (dx')? + (dz?)? + (dz®)? + (dz?)?,

we introduce the coordinates (p, ) in the 2-dim. space (z', z?) to rewrite the metric:

(ds)*(RY) = (dp)* + p*(dp)” + (dz”)* + (da®)”.

We factor out p? as a conformal factor to further rewrite the metric:

2 [(dz”)* + (dz*)* + (dp)’

(ds)*(RY) = p pg + (dg)?].

Therefore, we obtain a conformal equivalence: See Fig.1.

R* =R* x R — R* \ R? ~ H? x St
W W W W
(z!, 2, 2°, z?) (z°, =) (p, ®, ™) @

o H3(p,23,2%) is a hyperbolic 3-space: z3,2* € (—o00,+0), p € (0,00), and has
the metric g, = ,0_25W and the negative constant curvature —1. This is the upper
half space model with p > 0. Here p = 0 is a singularity, therefore the corresponding
2-dim. space, i.e., the (23, 2%) plane with p = 0 must be excluded from R%.

e S1(¢) is a 1-dimensional unit sphere, i.e., a unit circle with the coordinate ¢ € [0, 27).
SO(2) acts on S'(p) in the standard way.
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Figure 1: Euclidean space R*(z!, 2%, 22, 2%) versus hyperbolic space H?(p, 23, 2%).

The SO(2) ~ S! symmetric instanton solution on R*\IR? that does not depend
on the rotation angle ¢ reduces to the hyperbolic magnetic monopole solution on
H3: the ¢-rotation symmetry = o-independence as the dimensional reduction:

L = (581737273737374) = (/079073737334) — (107 3337334)7

which is associated with the field identification: ®(p, z°, 2%) := o7, (p, 2°, 2%)

(A (p, 0, 2°, x%), ,(p, 0, °, 5%), ds(p, 0, °, 2%), Ay (p, p,2°, %)) (p, ¢, 2°,2*) € R*
—(y(p, 2%, ), ©(p,2*, 3%), H(p, 2°, 2*), Au(p, 2*, 2Y)), (p, 2%, 2*) € H>.
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Any solution of the Bogomolny equation on H? is a ¢-independent instanton
solution of the self-dual equation on R*\R?, (0,%(p, x>, z*) = 0)

1
(xF)ep(p, 2%, 2%) ==Dy®(p, 2°,2%), (p,x°,2") € H’.
o

Since St is compact (unlike R1), any solution of the Bogomolny equation giving a finite
3-dim. action on H?* gives a configuration with a finite 4-dim. action

27 o0 o0 o)
S :/ dy [/ dp p/ dx?’/ dz* % (p, x>, 2*)| < 0.
0 0 — 00 — 00

Therefore, S! ~ SO(2) symmetric instantons on R? can be reinterpreted as
hyperbolic magnetic monopoles on H?, giving a configuration with a finite
4-dim. action. This case (l) was first pointed out by Atiyah (1984).

Therefore, the hyperbolic magnetic monopoles can contribute to the path integral,
because

exp(—S/h) # 0.
Thus, the hyperbolic magnetic monopoles can be responsible for quark
confinement.
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§ Conformal equivalence (“) Let us consider another example.

® (II) We consider another solution with spatial rotation symmetry SO(3).

We introduce the polar coordinates (r, 6, ) for the 3-dim. space (z!, 22, 23):

(ds)*(RY) = (dz")* + (dr)* +77((df)* + sin” (d)?),

where 7 := /(21)2 + (22)2 + (23)2. Then, we factor out 72 as a conformal factor to

rewrite
(dx*)? + (dr)?
2

(ds)2(RY) = r2[ - + (d6)? + sin? e(dgp)ﬂ .

Therefore, we obtain the conformal equivalence: See Fig.2.

R*=R? x R? — R4 \ R' ~ H? x G2
NV N Ny N\

(t,2,y,2) t (t,7) (6, )

e H?(z*,r) is a hyperbolic plane with 2* € (—o00,0), r € (0,00), and has the metric
guw = 1 20,, and negative constant curvature (—1). The upper half plane model
with 7 > 0. Here » = 0 is a singularity:the z*-axis must be excluded from R*.
e S5%(,¢) is a two-dimensional unit sphere with § € [0,7), ¢ € [0,27) and has a
positive constant curvature (2). SO(3) acts on S?(f, ) in the standard way.
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Figure 2: Euclidean space R*(z!, 22, 2, 2%) versus hyperbolic space H?(r, z%).

The SO(3) (spherically) symmetric instanton on R*\R! that does not depend on
the rotation angles 0, v reduce to the hyperbolic vortex solution on H?(¢,7): the
6, po-rotation symmetry = 6, p-independence as the dimensional reduction:

v=(t,a,a2%) = (t,r0.0) = (t7),
which is roughly associated with the field identification:

(%(t,’l“, (97 90)7%@7 T, ‘97 90)7 %(tvra 97 90)7 =Q{<,0(t77a7 ‘97 @))(tv’ra 97 90) S R4
_>(at(t77a)7 ar(ta T)a gbl(tvr)v ng(taT)) (t,’l“) S HQ'

The exact relationship will be given in the next section.
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Any solution of the vortex equation on H?(r,z%) is a 0, p-independent solution of
self-dual equation on RY\R! for a; = as(r,2%),a, = a,(r,2%), ¢1 = ¢1(r,z?), P =

1

011 + aspa = Orp2 — arP1, Osp2 — asp1 = —(0rd1 + ard2).

84&7“ — arra4 —

Any solution of the vortex equation giving finite two-dim. action on HZ*(r,z%)
[ dr [T dstL(r,at) < oo gives a finite 4-dim. action: S =

[, do sin@fo27T dop {fooo dr r? [77_da* Z(r, :1:4)} < 00, since S%(0, ) is compact.

Therefore, SO(3) spherically symmetric instantons on R* can be reinterpreted
as vortices on H?, giving a configuration with a finite 4-dim. action. This case (Il)
was discovered by Witten (1977) to find multi-instanton solutions of 4-dim. Yang-Mills
theory, which is established as the symmetric instanton by Forgacs and Manton (1980).
Therefore, the hyperbolic vortices can contribute to the path integral exp(—S/h) # 0
and the hyperbolic vortices can be responsible for quark confinement.
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Summarizing the results.

Instantons on E*(x*, x3, x?, x1)

A A

S0(2) ~ U(1) symmetry Conformal S0(3) =~ SU(2) symmetry
reduction equivalence reduction

H3 x St(p) | v H? xS5?%(9,09)

-

3. 4 3 :
monopoles on H>(x*, x>, p) vortices on H?(x*,7)

p = (x1)? + (x2)? r =412+ (x2)2 + (x3)2

Figure 3: Unifying magnetic monopole and vortices based on conformal equivalence,
symmetric instanton and dimensional reduction.
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5 Unifying magnetic monopole and vortices

Definition [Rotationally symmetric gauge field](Manton and Sutcliffe(2004))
If the space rotation R has the same effect on the gauge field as the gauge transformation

URZ
Rijcti(Ra) =Up(@)of;(@)Us (@) + iUp(@)9,U5 (@),

the gauge field <7 (z) is called rotationally symmetric. Or equivalently, if we combine
R and Uél, the gauge field remains invariant.

Proposition[Witten transformation (Witten Ansatz) for SO(3) symmetric gauge field]
The transformation with the SO(3) spatial rotation symmetry from the D =4 SU(2)
Yang-Mills field to the dimensionally reduced D = 2 field is given by the Witten
transformation (which was originally called the Witten Ansatz):

oaz
() = —A—at(r, ), ri=/(x1)? + (22)2 + (23)2, (r,z?) € H2

2 r
o xA xJ 5A7"2 — ZEAZEj :ck
oj(z) = = { ar(r, ') + - 1 (r, ") + ejan g1+ da(r, )] ¢

2 ror rs
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Proposition [hyperbolic magnetic monopole field on H?, hyperbolic vortex field on H?]
By applying the gauge transformation (a rotation around the 3 axis by an angle ¢)

rl

2
U, = exp (i@%) c SU(2) (gp — arctan — € 0, 27r)>

to both sides of the instanton gauge fleld

dy(at 23, 1) = Uy (a!, 22, 2%, ") UL +iU,0,Uf =: 7 (p, 2°, x*).

We can make &, (z!,2? a? :1:4) independent of ¢, and obtain an Sl-symmetric
instanton &7 (p, :1:3,:134) (p:=+/(21)2 + (22)2).

The magnetic monopole on H>(p, 23, 2*) is written in terms of the vortex on H?(r, z%):

1
o (p,x’, zh) = {—(01/0 + 03963)} ay(r, z*),

A (p,x’, xt) = _(Ulp + osxs)a,(r, z*) + —( o1xs + o3p)di(r, ') — —02(1 + ¢o(r, x ))}
o (p,x’, ) =

®(p, z°, z") =

N | - N |~ N~ N+~

3
{ 01/) + 0'3%3)0,7(7"7 ':U4) + %(O—le - 0'3,0)¢1(’r', $4) + %02(1 + ¢2(T7 $4))} ’

L osn(r,a®) + (= orms + 03p)(1+ dalr,a")) + og}
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® The relationship for the norm between the su(2)-valued hyperbolic magnetic
monopole field ®(p, 23, 2%) = df(p, 23, 2%) and the complex-valued hyperbolic vortex
field ¢(z*,r) = ¢1(x*,r) + iga(x*, 1) is given as

[o(at, o, |2 = XD o @),

|®|| has the correct boundary value: ;L%)H —v=12%(p—0).

H3=(x4, x3,p)

Figure 4: The relationship between hyperbolic vortices (black circles) on H? and

hyperbolic magnetic monopoles (white circles) on H?.
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8 Holography: bulk/boundary correspondence

It was rigorously shown that the holographic principle (‘t Hooft (1993), Susskind
(1995)) applies to hyperbolic magnetic monopoles in the hyperbolic space H".
In contrast, it does not apply to magnetic monopoles in flat Euclidean space R3.
Proposition [Bulk/boundary correspondence of H* = AdS3] A magnetic monopole on
hyperbolic space H? = AdS5 is completely determined by its asymptotic boundary value
at infinity OH?, apart from the gauge equivalence. This situation is in sharp contrast
with the Euclidean case in which all monopole have the same boundary values.

Proposition [Abelian dominance and magnetic monopole dominance on 9H?] On the
conformal boundary OH? ~ S? of H3(p, 23, %), that is, p — 0: x*-23 plane,

;sz(p, 563,334) — %at(afl,a:?’), %G(p, x3,x4) — %ar(:ﬁ,x‘g),

o1l o2l
A (2% at) = (2t %) + o[l et 0]

1

b(p.a®,a) > P41) (J1ofl v =73) . (1)

Therefore, the gauge field </ (p, x>, x*) in the bulk direction is dominated by the

off-diagonal componens, while the gauge field 7" (p, 23, 2%), @& (p, 23, 2*) on the
boundar%_l%xz_ 0 has only the diagonal components a;(z?, 2°), a,(z?, 23).
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3 Quark confinement: area law of Wilson loop average
Definition [Wilson loop operator| Let o7 be a Lie algebra valued connection 1-form:

o (x) = o, (z)dz" = %MA(x)TAdx“. (1)

For a given loop C, the Wilson loop operator W |[7] in the representation R is
defined using the path ordered product &

Welof) = trr { Zexp |igys, § | b frm(0) )

(1) Quark confinement due to hyperbolic magnetic monopoles on H? and holography:
We take the Wilson loop C on the boundary OH?(z3, z*) of H? by the limit p — 0.

x3

N
) r>o

c[+
x4 A H2=(x;,})j>
T

o ~—> P >0
}f=(x4,x3,p)

Figure 5: The Wilson loop C on the conformal bounday OH?, i.e., 3 — z* plane.
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Proposition [Wilson loop operator on the conformal boundary OH?] If the loop C' lies
on the boundary 3 — x*, the Wilson loop operator in the fundamental representation
F defined for the S'-invariant SU(2) Yang-Mills field %MG takes the form:

Wele] :%trp {exp ;73 j[ data, (14,2 )]}

1
=—trp {exp i— dx*da’ Fyy (2 3)] } :
2 2 Js.on=C

The SU(2) field strength on the boundary has only the maximal torus U (1) component:

%(&mr — Oray) = $F4T(:134 :133) (3)

This fact is regarded as the (infrared) Abelian dominance and the magnetic monopole
dominance, which is expected but not proved in the Euclidean case.
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(11) Quark confinement due to hyperbolic vortices on H?:

x3
A~ N7’77‘¥¥\
N N >0 e SN
. > C A S I R
e -
. H=(7) [ T ’
o °® /// r ¢ / ’
/// }p>0 S C i
H3=(x4,x3,p) R

Figure 6: (Left) The relationship between the Wilson loop C' and hyperbolic
vortices (black circles) and anti-vortices (white circles) on H?, (Right) The dilute
gas approximation.

Proposition [area law of the Wilson loop average] In the dilute (instanton) gas
approximation, the Wilson loop average in D = 4 Yang-Mills theory with the topological
Y term obeys the area law:

(| Wele]|9) = e M 5 .= 2Ke 51/ [cos(Vea) — cos (Vea + 2nder)],  (4)

where ¢; and cy are the first and second Chern numbers respectively.
When Jc¢y is an integer, the vacuum is periodic with respect to ¢ with period 27, so
the potential is zero. When Jc¢; is not an integer, the static quark potential V(R) is

_ng\y/ngrAtL) FoeialTEIg(n_ear potential o R with string tension o as the proportionality coefﬁuent.18



3 Conclusions and discussions

Conclusion:

e \We have proposed to use the symmetric instantons with certain spatial symmetries
to study non-perturbative problems of the D = 4 Yang-Mills theory.

In particular, we have applied this stragety to quark confinement.
Then we have shown:

e Quark confinement follows from symmetric instantons in the D = 4 Yang-Mills theory
in a manner consistent with holography principle.

e The D = 3 hyperbolic magnetic monopoles and D = 2 hyperbolic vortices on
lower dimensional spaces are constructed through the associated dimensional reduction
starting from symmetric instantons in the D = 4 Euclidean space.

This resut supports the dual superconductor picture as the mechanism for quark
confinement.

Thank you very much for your attention!
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Detailed Conclusion:

e In this talk, we considered the space and time symmetric instantons as solutions of
the self-dual Yang-Mills equation with conformal symmetry in the SU(2) Yang-Mills
theory in the four-dimensional Euclidean space R*.

e [n contrast to time translation symmetry, instantons with spatial rotation symmetries
give a finite four-dimensional action and hence can contribute to quark confinement.
For the spatial symmetry SO(2) ~ U(1) ~ S1, the instanton is reduced to a hyperbolic
magnetic monopole (of Atiyah) living in the three-dimensional hyperbolic space H?.
For the spatial symmetry SO(3) ~ SU(2), the instanton is reduced to a hyperbolic
vortex (of Witten-Manton) living in the two-dimensional hyperbolic space HZ.

e By requiring the spatial symmetry SO(2) or SO(3) for instantons, the four-dimensional
Euclidean space R* in which instantons live is inevitably transformed to the curved
spacetime H? x St or H? x S? with negative constant curvature by maintaining the
conformally equivalence through dimensional reduction.

e Three-dimensional hyperbolic magnetic monopoles and two-dimensional hyperbolic
vortices can be connected through conformal equivalence with the explicit relationship
between the magnetic monopole field and the vortex field has been obtained. This
allows magnetic monopoles and vortices can be treated in a unified manner.

e Both H® and H? are curved spaces AdS3 and AdS, with a constant negative

rvature, _The hyperbolic monopole in H? is completely determined by its
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holographic image on the conformal boundary two-sphere S2 . (This is different
from Euclidean monopoles.) This fact enable us to reduce the non-Abelian Wilson loop
operator to the Abelian Wilson loop defined by the Abelian gauge field of the vortex:
Abelian dominance and magnetic monopole dominance.

e Using the hyperbolic magnetic monopole and hyperbolic vortex obtained in this way,
quark confinement was shown to be realized in the sense of Wilson area law within
the dilute gas approximation. This is a semi-classical quark confinement mechanism
originating from the unified hyperbolic magnetic monopole and hyperbolic vortex,
supporting the dual superconductor picture.

| @ Furthermore, by considering a symmetric instanton with a singularity (of Forgacs-
Horvath-Palla(1981)) in a compact subspace of spacetime, a symmetric instanton with
a non-integral topological charge can be obtained, and then by dimensional reduction, a
hyperbolic magnetic monopole and a hyperbolic vortex with a non-integral topological
charge have been obtained. |

Thank you very much for your attention!
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Discussion:

e \Why does the space-time obtained by dimensional reduction have negative curvature?
Is there no case where it has positive curvature? cf: The 4-dimensional standard model
can be obtained by dimensional reduction of 6-dimensional Yang-Mills theory to 4!
[Manton(1981)]

e How does the gauge group change due to dimensional reduction?
e How can it be extended to a large gauge group SU(N)?

e What happens when a matter field is introduced? For example, can QCD be analyzed
in the same way?

e How do we incorporate quantum effects that do not maintain conformal invariance?

Thank you for your attention!
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® On H?: the SU(2) gauge-scalar theory

SvM :27/ da:de4dp\/§$3,
H3

1
L5 :§g“”g’/5 tr(F,Fas) + g"" tr(2,22,9), (1)

where g, = p~%0,.,, gM" = p*d*”, g := det(g,) = p~°. Therefore,

Ly =05 0(FoF) + 5 0{(2,0)(2,9)), )

The topological action reads
v
Sy = / d*z Ly = o) / dipdxdtdp [0y tr(F3,P) + O3 tr(F @) + 0, tr(Fi3®)]
7

Y
:2—/d$3dtdp [(9t tr(@ﬁgp) ‘|‘ 83 tr(q)gzpt) + 6,p tr(q)gztig)]
70

9
27T

dz’dp tr(®F3,) + [ dtdp tr(®F ;) + [ da’dt tr(DF3)| . (3)
/ / / |

Here, tr(®.%#,,) is gauge invariant, tr(®.#3,) is gauge invariant magnetic field, and

P%ﬁ;ﬁiﬁl@?d tr(®.%;3) are gauge invariant electric field. N



©® On H?: the U(1) gauge-scalar theory

SvM —47T/dt/d7“ Zas,

osfgs—rF Fu + (Dud) Dyé + 5 <|¢|2—1>

4

Here we defined D, = 9, —ta, and ¢ = ¢,

SvM :/ dt/ dr\/§ Zas,
— 00 0

1

D%GS :_guagVBF,uuFaB + gwj< Mgb)*D,,gb T3 <|§b|2 - 1)

4

2 uv __ .2 R
YVTbrggbgHo.nExT Oy g =17, g := det(gp)

v

167?28WF’“W' (4)

+1i¢2 and used D, 0, D, 04, = (D,9)*D,¢.

U

—2
) 25



P>o0

Figure 7: Euclidean space R*(z?, 23, 22, x!) versus hyperbolic spaces H?(z*x3, p) with

p:=+/(x1)2 + (22)2 > 0 and H?(z4, r) with r := \/(21)2 + (22)2 + (23)2 > 0.
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Proposition [non-Abelian Stokes theorem for the Wilson loop operator] The SU(2)
Wilson loop operator in any representation characterized by a half-integer single index
J=121,2,2,2 ... obeys the non-Abelian Stokes theorem. We introduce the unit
vector field n*(z) (n*(z)n?(x) = 1) called the color direction field defined by

n(x)oa = U(z)osUT(x), Ulz) € SU(2), (6)

with the third Pauli matrix o3. Then the SU(2) Wilson loop operator is rewritten in
the form of the area integral over any surface X bounded by the loop C:

Weold| = /[dﬂ(U)]E exp {igYMJ/ dSMVFLEII/} ’ (7)
>:0x=C
where ng is the gauge-invariant field strength defined by
Fyp (x) == 0u[n (2) ) (2)] — 0, [ (2) 27, (x)] — g€ (2)0un” (2)0n (x),

(8)

and [du(U)]x is the product measure of an invariant measure on SU(2)/U (1) over X:

Au(O)]s = [ dutn@)). du(n(a)) = 2226 @)n (@) - DPn(z).  (9)

reEX
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(1) Quark confinement due to hyperbolic vortices on H?:
The Witten transformation corresponds to choosing the color direction field as

LA
n(z) ="— (r:=Vazizd). (10)
r
Then the Abelian-like field defined by
cu(T) = nA(x)dMA(:c) (11)

{04@) - S ) = aolrt)  (n=4) (12)

If we consider the loop C on the (t,7) plane, i.e., u = 4,v = r, the second term
vanishes: —g_1eAP%nA(2)d,nP(2)0,n%(x) = 0. Therefore we find

FU(z) =04¢,(x) — Orca(x) = 04 (%ch(a;)) — Bpea(w)
:(940,1(7“, t) — ara()(”l“, t) = F47~(t,7“). (13)
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In this setting, the Wilson loop operator for a rectangular loop C with the size
T x L is expressed as

Weoorxr|9] = exp {ZJ/T/2 dt /OL drF4r(t,r)} : (14)

T/2

If the rectangular loop C' is very large L, T" — oo so that a vortex is located inside of
C', the integral becomes equal to the topological charge N, = ¢; according to (?7?):

T/2 L 00 00
/ dt/ drFy.(t,r)(L,T — 00) %/ dt/ drFy.(t,r) = 2mcy. (15)
0 — 00 0

T/2

Since 2J is an integer, we find

. B oder o age ) D (T =355,
Wo=rxil/] = exp {i2mJer} = exp(im)™' = (=1)* _{(ﬂ)cl (J=1,2,..)
(16)

For a 1-vortex with ¢; = 1, we find Weo_r«r — + € Z(2). Therefore, this vortex is

re argbedF as the center vortex, since the center of SU(2) is Z(2). s
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Figure 8: 1-vortex solution with the center at (¢,7) = (0,1) and the size A = 1.
The distribution of gauge-invariant quantities: (Left) field strength Fyq(t,7), (Right)

[b(t,r)]%.

Now we evaluate the Wilson loop expectation value to obtain the static potential for
two widely separated color charges in a € vacuum. Note that the integrand of the Wilson
loop operator shown above is the density of the instanton number, which means that
in this theory, the Wilson loop W¢|.2/] counts the number of instantons-antiinstantons
(or vorttices-antivortices) that exist within the region ¥ enclosed by the loop C'. The
expectation value of the Wilson loop, including the topological term 20(), is expressed

das
[ DADge SestORW (o] I
<9’WCLQ7]|(9>GS — fDAD(/be_SGS—HOQ —. 1_1’

(17)
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Note that a nonzero 6 is not required to show the area law of the Wilson loop below.
We can set 6 = 0 in the final result. Including the topological term 6() in the action
is equivalent to defining the # vacuum as follows:

—+ 00

0) == > e™n). (18)

n=—oo
In the following, we calculate the Wilson loop expectation value (17) using the dilute

instanton gas approximation. This method is well known, see for example Chapter 11
of Rajaraman(1989) or Chapter 7 of Coleman(1985).
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