

Quark confinement due to symmetric instantons reflecting holography

Kei-Ichi Kondo (近藤 慶一)1,2

1. Department of Physics, Graduate School of Science, Chiba University, JAPAN
2. Research and Education Center for Natural Sciences, Keio University, JAPAN

Based on K.-I. Kondo, arXiv: 2507.20372[hep-th]

Quark confinement consistent with holography
due to hyperbolic magnetic monopoles and hyperbolic vortices
unifiedly reduced from symmetric instantons

Quark confinement is derived from symmetric instantons in the $D = 4$ Yang-Mills theory in a manner consistent with holography principle.
The $D = 3$ magnetic monopoles and $D = 2$ vortices on hyperbolic spaces are constructed from symmetric instantons in the $D = 4$ Euclidean space.

§ Introduction

We consider **quark confinement** in the $D = 4$ quantum Yang-Mills theory (with no dynamical quarks) according to the **Wilson criterion**:

area law of the Wilson loop average \Leftrightarrow **linear potential** for static quark potential.

To understand quark confinement based on the **dual superconductor picture**, we need topological objects: **magnetic monopoles** and/or (center) **vortices**. [For a review, see Kondo, Kato, Shibata and Shinohara, Phys.Rept.579, 1–226 (2015), arXiv: 1409.1599 [hep-th]]

However, only topological solitons in the Yang-Mills theory are **instantons** in $D = 4$ Euclidean space \mathbb{R}^4 .

It is a big question how to derive such topological objects in $D = 4$ Yang-Mills theory.

We show that $D = 3$ **magnetic monopoles** and $D = 2$ (center) **vortices** are **constructed from instantons in the $D = 4$ Euclidean Yang-Mills theory** to conclude quark confinement in a consistent way with **holography principle**.

This result is based on the guiding principles:

- **conformal equivalence**: conformal symmetry,
- **symmetric instanton gauge field**: spatial symmetry $SO(2)$, $SO(3)$,
- **dimensional reductions**: self-dual equation.

§ Translation invariance and dimensional reduction

- We consider $SU(2)$ Yang-Mills theory on $D = 4$ Euclidean space $\mathbb{R}^4(x^1, x^2, x^3, x^4)$:

$$\mathcal{L} = \frac{1}{2} \text{tr}(\mathcal{F}_{\mu\nu}(x)\mathcal{F}_{\mu\nu}(x)), \quad x = (x^1, x^2, x^3, x^4) = (\mathbf{x}, t) \in \mathbb{R}^4,$$

$$\mathcal{F}_{\mu\nu}(x) := \partial_\mu \mathcal{A}_\nu(x) - \partial_\nu \mathcal{A}_\mu(x) - ig[\mathcal{A}_\mu(x), \mathcal{A}_\nu(x)], \quad \mathcal{A}_\mu(x) := \mathcal{A}_\mu^A(x) \frac{\sigma_A}{2}.$$

with the flat Euclidean metric $(ds)^2(\mathbb{R}^4) = (dx^1)^2 + (dx^2)^2 + (dx^3)^2 + (dx^4)^2$.
The self-dual Yang-Mills equation is given by

$$* \mathcal{F}_{\mu\nu}(\mathbf{x}, t) := \frac{1}{2} \epsilon_{\rho\sigma\mu\nu} \mathcal{F}_{\rho\sigma}(\mathbf{x}, t) = \mathcal{F}_{\mu\nu}(\mathbf{x}, t).$$

- First, we consider a solution for the gauge field that has the **translation symmetry in the time $t = x^4$** , which is equivalent to the t -independence: $(\mathbf{x}, \mathbf{t}) \rightarrow (\mathbf{x})$.

$$(\mathcal{A}_1(\mathbf{x}, t), \mathcal{A}_2(\mathbf{x}, t), \mathcal{A}_3(\mathbf{x}, t), \mathcal{A}_4(\mathbf{x}, t)) \rightarrow (\mathcal{A}_1(\mathbf{x}), \mathcal{A}_2(\mathbf{x}), \mathcal{A}_3(\mathbf{x}), \Phi(\mathbf{x})).$$

The time-independent solution of the self-dual equation reduces to the solution of **Bogomolny equation** on \mathbb{R}^3 :

$$(*\mathcal{F})_{\ell 4}(\mathbf{x}) = \mathcal{D}_\ell \Phi(\mathbf{x}), \quad \ell = 1, 2, 3, \quad \mathbf{x} := (x^1, x^2, x^3) \in \mathbb{R}^3.$$

In fact, the self-dual equation for $\mu, \nu = \ell, 4$ reads for $\Phi(\mathbf{x}) := \mathcal{A}_4(\mathbf{x})$

$$\begin{aligned} \pm \frac{1}{2} \epsilon_{jkl4} \mathcal{F}_{jk}(\mathbf{x}) &= \mathcal{F}_{\ell 4}(\mathbf{x}) = \partial_\ell \mathcal{A}_4(\mathbf{x}) - \partial_4 \mathcal{A}_\ell(\mathbf{x}) - ig[\mathcal{A}_\ell(\mathbf{x}), \mathcal{A}_4(\mathbf{x})] \quad (\partial_4 \mathcal{A}_\ell(x^1, x^2, x^3) = 0) \\ &= \partial_\ell \mathcal{A}_4(\mathbf{x}) - ig[\mathcal{A}_\ell(\mathbf{x}), \mathcal{A}_4(\mathbf{x})] = \mathcal{D}_\ell \Phi(\mathbf{x}). \end{aligned}$$

The solution of the Bogomolny equation is called the **Prasad-Sommerfield (PS) magnetic monopole**.

$$(ds)^2(\mathbb{R}^4) = [(dx^1)^2 + (dx^2)^2 + (dx^3)^2] + (dx^4)^2 \implies \mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}^1.$$

However, this solution leads to a divergent 4-dim. action:

$$S = \int_{-\infty}^{\infty} dx^4 \left[\int dx^1 dx^2 dx^3 \mathcal{L}(x^1, x^2, x^3) \right] = \infty \implies \exp(-S/\hbar) = 0,$$

even if $\int dx^1 dx^2 dx^3 \mathcal{L}(x^1, x^2, x^3) < \infty$ because of the t -independence.

Therefore, the PS magnetic monopole does not contribute to the path integral. Thus, the PS magnetic monopole is not responsible for quark confinement.

How to avoid this difficulty?

§ Conformal equivalence (I)

(I) Next, we consider solutions with **spatial rotation symmetry** $S^1 \simeq SO(2)$.

In \mathbb{R}^4 with the metric $(ds)^2(\mathbb{R}^4) = (dx^1)^2 + (dx^2)^2 + (dx^3)^2 + (dx^4)^2$,

we introduce the coordinates (ρ, φ) in the 2-dim. space (x^1, x^2) to rewrite the metric:

$$(ds)^2(\mathbb{R}^4) = (d\rho)^2 + \rho^2(d\varphi)^2 + (dx^3)^2 + (dx^4)^2.$$

We factor out ρ^2 as a **conformal factor** to further rewrite the metric:

$$(ds)^2(\mathbb{R}^4) = \rho^2 \left[\frac{(dx^3)^2 + (dx^4)^2 + (d\rho)^2}{\rho^2} + (d\varphi)^2 \right].$$

Therefore, we obtain a conformal equivalence: See Fig.1.

$$\begin{array}{ccccccc} \mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}^1 \rightarrow & \mathbb{R}^4 & \setminus & \mathbb{R}^2 & \simeq & \mathbb{H}^3 & \times S^1 \\ & \Downarrow & & \Downarrow & & \Downarrow & \\ & (x^1, x^2, x^3, x^4) & & (x^3, x^4) & & (\rho, x^3, x^4) & \varphi \end{array}$$

- $\mathbb{H}^3(\rho, x^3, x^4)$ is a **hyperbolic 3-space**: $x^3, x^4 \in (-\infty, +\infty)$, $\rho \in (0, \infty)$, and has the metric $g_{\mu\nu} = \rho^{-2}\delta_{\mu\nu}$ and the **negative constant curvature** -1 . This is the **upper half space model** with $\rho > 0$. Here $\rho = 0$ is a singularity, therefore the corresponding 2-dim. space, i.e., the (x^3, x^4) plane with $\rho = 0$ must be excluded from \mathbb{R}^4 .
- $S^1(\varphi)$ is a 1-dimensional unit sphere, i.e., a unit circle with the coordinate $\varphi \in [0, 2\pi)$. $SO(2)$ acts on $S^1(\varphi)$ in the standard way.

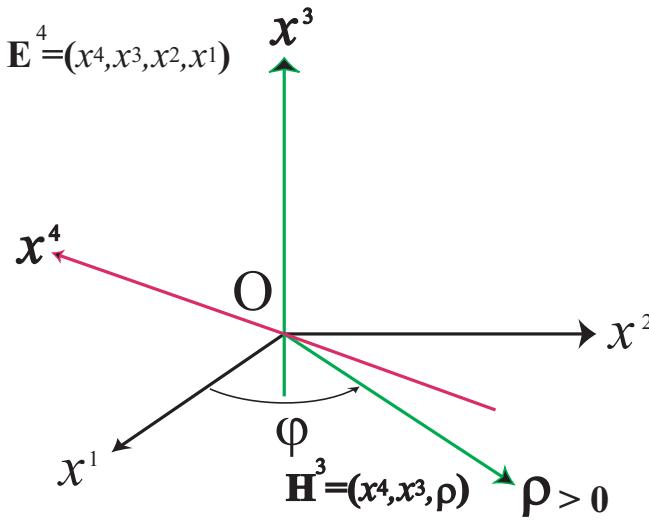


Figure 1: Euclidean space $\mathbb{R}^4(x^1, x^2, x^3, x^4)$ versus hyperbolic space $\mathbb{H}^3(\rho, x^3, x^4)$.

The $SO(2) \simeq S^1$ **symmetric instanton** solution on $\mathbb{R}^4 \setminus \mathbb{R}^2$ that does not depend on the rotation angle φ reduces to the **hyperbolic magnetic monopole** solution on \mathbb{H}^3 : the φ -rotation symmetry = φ -independence as the dimensional reduction:

$$x = (x^1, x^2, x^3, x^4) \equiv (\rho, \varphi, x^3, x^4) \rightarrow (\rho, x^3, x^4),$$

which is associated with the field identification: $\Phi(\rho, x^3, x^4) := \mathcal{A}_\varphi(\rho, x^3, x^4)$

$$(\mathcal{A}_\rho(\rho, \varphi, x^3, x^4), \mathcal{A}_\varphi(\rho, \varphi, x^3, x^4), \mathcal{A}_3(\rho, \varphi, x^3, x^4), \mathcal{A}_4(\rho, \varphi, x^3, x^4)) \quad (\rho, \varphi, x^3, x^4) \in \mathbb{R}^4 \\ \rightarrow (\mathcal{A}_\rho(\rho, x^3, x^4), \Phi(\rho, x^3, x^4), \mathcal{A}_3(\rho, x^3, x^4), \mathcal{A}_4(\rho, x^3, x^4)), \quad (\rho, x^3, x^4) \in \mathbb{H}^3.$$

Any solution of the Bogomolny equation on \mathbb{H}^3 is a **φ -independent instanton solution** of the self-dual equation on $\mathbb{R}^4 \setminus \mathbb{R}^2$, ($\partial_\varphi \mathcal{A}_\ell(\rho, x^3, x^4) = 0$)

$$(*\mathcal{F})_{\ell\varphi}(\rho, x^3, x^4) = \frac{1}{\rho} \mathcal{D}_\ell \Phi(\rho, x^3, x^4), \quad (\rho, x^3, x^4) \in \mathbb{H}^3.$$

Since S^1 is compact (unlike \mathbb{R}^1), any solution of the Bogomolny equation giving a finite 3-dim. action on \mathbb{H}^3 gives a configuration with a finite 4-dim. action

$$S = \int_0^{2\pi} d\varphi \left[\int_0^\infty d\rho \rho \int_{-\infty}^\infty dx^3 \int_{-\infty}^\infty dx^4 \mathcal{L}(\rho, x^3, x^4) \right] < \infty.$$

Therefore, **$S^1 \simeq SO(2)$ symmetric instantons on \mathbb{R}^4 can be reinterpreted as hyperbolic magnetic monopoles on \mathbb{H}^3 , giving a configuration with a finite 4-dim. action.** This case (I) was first pointed out by Atiyah (1984).

Therefore, the hyperbolic magnetic monopoles can contribute to the path integral, because

$$\exp(-S/\hbar) \neq 0.$$

Thus, the hyperbolic magnetic monopoles can be responsible for quark confinement.

§ Conformal equivalence (II)

Let us consider another example.

○ (II) We consider another solution with **spatial rotation symmetry** $SO(3)$.

We introduce the polar coordinates (r, θ, φ) for the 3-dim. space (x^1, x^2, x^3) :

$$(ds)^2(\mathbb{R}^4) = (dx^4)^2 + (dr)^2 + r^2((d\theta)^2 + \sin^2 \theta (d\varphi)^2),$$

where $r := \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}$. Then, we factor out r^2 as a **conformal factor** to rewrite

$$(ds)^2(\mathbb{R}^4) = r^2 \left[\frac{(dx^4)^2 + (dr)^2}{r^2} + (d\theta)^2 + \sin^2 \theta (d\varphi)^2 \right].$$

Therefore, we obtain the **conformal equivalence**: See Fig.2.

$$\begin{array}{ccccccc} \mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow & \mathbb{R}^4 & \setminus & \mathbb{R}^1 & \simeq & \mathbb{H}^2 & \times & S^2 \\ & \Downarrow & & \Downarrow & & \Downarrow & & \Downarrow \\ (t, x, y, z) & & t & & (t, r) & & (\theta, \varphi) \end{array}$$

- $\mathbb{H}^2(x^4, r)$ is a **hyperbolic plane** with $x^4 \in (-\infty, \infty)$, $r \in (0, \infty)$, and has the metric $g_{\mu\nu} = r^{-2} \delta_{\mu\nu}$ and **negative constant curvature** (-1) . The **upper half plane model** with $r > 0$. Here $r = 0$ is a singularity: the x^4 -axis must be excluded from \mathbb{R}^4 .
- $S^2(\theta, \varphi)$ is a two-dimensional unit sphere with $\theta \in [0, \pi]$, $\varphi \in [0, 2\pi)$ and has a **positive constant curvature** (2) . $SO(3)$ acts on $S^2(\theta, \varphi)$ in the standard way.

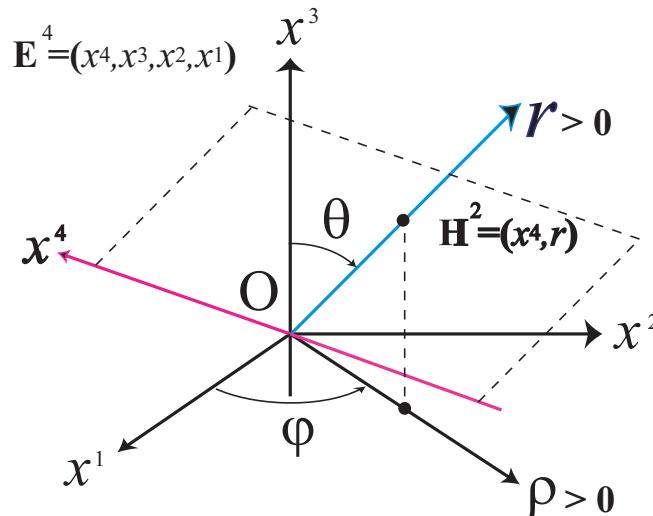


Figure 2: Euclidean space $\mathbb{R}^4(x^1, x^2, x^3, x^4)$ versus hyperbolic space $\mathbb{H}^2(r, x^4)$.

The **$SO(3)$ (spherically) symmetric instanton** on $\mathbb{R}^4 \setminus \mathbb{R}^1$ that does not depend on the rotation angles θ, φ reduce to **the hyperbolic vortex** solution on $\mathbb{H}^2(t, r)$: the θ, φ -rotation symmetry = θ, φ -independence as the dimensional reduction:

$$x = (t, x^1, x^2, x^3) \equiv (t, r, \theta, \varphi) \rightarrow (t, r),$$

which is roughly associated with the field identification:

$$\begin{aligned} (\mathcal{A}_t(t, r, \theta, \varphi), \mathcal{A}_r(t, r, \theta, \varphi), \mathcal{A}_\theta(t, r, \theta, \varphi), \mathcal{A}_\varphi(t, r, \theta, \varphi)) (t, r, \theta, \varphi) &\in \mathbb{R}^4 \\ \rightarrow (a_t(t, r), a_r(t, r), \phi_1(t, r), \phi_2(t, r)) \quad (t, r) &\in \mathbb{H}^2. \end{aligned}$$

The exact relationship will be given in the next section.

Any solution of the vortex equation on $\mathbb{H}^2(r, x^4)$ is a θ, φ -independent solution of self-dual equation on $\mathbb{R}^4 \setminus \mathbb{R}^1$ for $a_t = a_t(r, x^4), a_r = a_r(r, x^4), \phi_1 = \phi_1(r, x^4), \phi_2 = \phi_2(r, x^4), (r, x^4) \in \mathbb{H}^2$:

$$\begin{cases} \partial_4 a_r - \partial_r a_4 = \frac{1}{r^2}(1 - \phi_1^2 - \phi_2^2), \\ \partial_4 \phi_1 + a_4 \phi_2 = \partial_r \phi_2 - a_r \phi_1, \quad \partial_4 \phi_2 - a_4 \phi_1 = -(\partial_r \phi_1 + a_r \phi_2). \end{cases}$$

Any solution of the **vortex equation** giving finite two-dim. action on $\mathbb{H}^2(r, x^4)$ $\int_0^\infty dr r^2 \int_{-\infty}^\infty dx^4 \mathcal{L}(r, x^4) < \infty$ gives a finite 4-dim. action: $S = \int_0^\pi d\theta \sin \theta \int_0^{2\pi} d\varphi \left[\int_0^\infty dr r^2 \int_{-\infty}^\infty dx^4 \mathcal{L}(r, x^4) \right] < \infty$, since $S^2(\theta, \varphi)$ is compact.

Therefore, **$SO(3)$ spherically symmetric instantons on \mathbb{R}^4 can be reinterpreted as vortices on \mathbb{H}^2 , giving a configuration with a finite 4-dim. action.** This case (II) was discovered by Witten (1977) to find multi-instanton solutions of 4-dim. Yang-Mills theory, which is established as the symmetric instanton by Forgacs and Manton (1980). Therefore, the hyperbolic vortices can contribute to the path integral $\exp(-S/\hbar) \neq 0$ and **the hyperbolic vortices can be responsible for quark confinement.**

Summarizing the results.

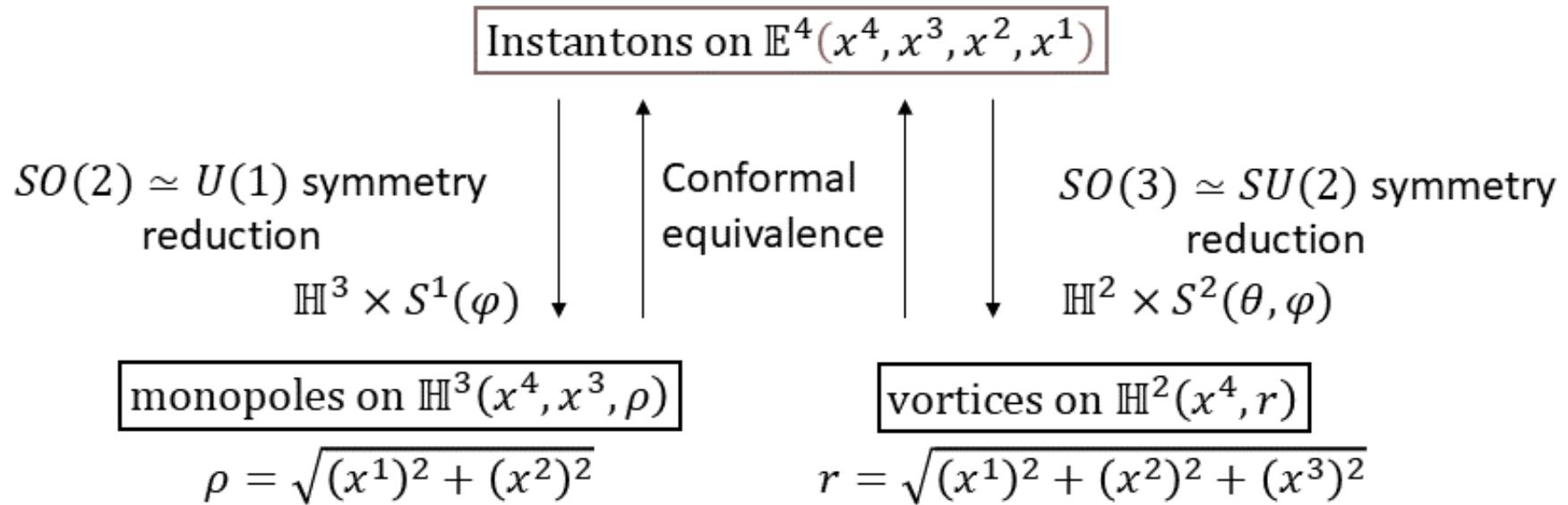


Figure 3: Unifying magnetic monopole and vortices based on conformal equivalence, symmetric instanton and dimensional reduction.

§ Unifying magnetic monopole and vortices

Definition [Rotationally symmetric gauge field](Manton and Sutcliffe(2004))

If the space rotation R has the same effect on the gauge field as the gauge transformation U_R :

$$R_{kj}\mathcal{A}_k(R\mathbf{x}) = U_R(\mathbf{x})\mathcal{A}_j(\mathbf{x})U_R^{-1}(\mathbf{x}) + iU_R(\mathbf{x})\partial_j U_R^{-1}(\mathbf{x}),$$

the gauge field $\mathcal{A}(\mathbf{x})$ is called **rotationally symmetric**. Or equivalently, if we combine R and U_R^{-1} , the gauge field remains invariant.

Proposition[Witten transformation (Witten Ansatz) for $SO(3)$ symmetric gauge field]

The transformation with the $SO(3)$ spatial rotation symmetry from the $D = 4$ $SU(2)$ Yang-Mills field to the dimensionally reduced $D = 2$ field is given by the **Witten transformation** (which was originally called the Witten Ansatz):

$$\mathcal{A}_4(x) = \frac{\sigma_A}{2} \frac{x^A}{r} a_t(r, x^4), \quad r := \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}, \quad (r, x^4) \in \mathbb{H}^2.$$

$$\mathcal{A}_j(x) = \frac{\sigma_A}{2} \left\{ \frac{x^A}{r} \frac{x^j}{r} a_r(r, x^4) + \frac{\delta_j^A r^2 - x^A x^j}{r^3} \phi_1(r, x^4) + \epsilon_{jAk} \frac{x^k}{r^2} [1 + \phi_2(r, x^4)] \right\},$$

Proposition [hyperbolic magnetic monopole field on \mathbb{H}^3 , hyperbolic vortex field on \mathbb{H}^2]
 By applying the gauge transformation (a rotation around the x_3 axis by an angle φ)

$$U_\varphi = \exp\left(i\varphi \frac{\sigma_3}{2}\right) \in SU(2) \quad \left(\varphi := \arctan \frac{x^2}{x^1} \in [0, 2\pi)\right)$$

to both sides of the instanton gauge field:

$$\mathcal{A}_\mu(x^1, x^2, x^3, x^4) \rightarrow U_\varphi \mathcal{A}_\mu(x^1, x^2, x^3, x^4) U_\varphi^\dagger + i U_\varphi \partial_\mu U_\varphi^\dagger =: \mathcal{A}_\mu^G(\rho, x^3, x^4).$$

We can make $\mathcal{A}_\mu(x^1, x^2, x^3, x^4)$ independent of φ , and obtain an S^1 -symmetric instanton $\mathcal{A}_\mu^G(\rho, x^3, x^4)$ ($\rho := \sqrt{(x^1)^2 + (x^2)^2}$).

The magnetic monopole on $\mathbb{H}^3(\rho, x^3, x^4)$ is written in terms of the vortex on $\mathbb{H}^2(r, x^4)$:

$$\mathcal{A}_t^G(\rho, x^3, x^4) = \frac{1}{2} \left\{ \frac{1}{r} (\sigma_1 \rho + \sigma_3 x_3) \right\} a_t(r, x^4),$$

$$\mathcal{A}_3^G(\rho, x^3, x^4) = \frac{1}{2} \left\{ \frac{x_3}{r^2} (\sigma_1 \rho + \sigma_3 x_3) a_r(r, x^4) + \frac{\rho}{r^3} (-\sigma_1 x_3 + \sigma_3 \rho) \phi_1(r, x^4) - \frac{\rho}{r^2} \sigma_2 (1 + \phi_2(r, x^4)) \right\},$$

$$\mathcal{A}_\rho^G(\rho, x^3, x^4) = \frac{1}{2} \left\{ \frac{\rho}{r^2} (\sigma_1 \rho + \sigma_3 x_3) a_r(r, x^4) + \frac{x_3}{r^3} (\sigma_1 x_3 - \sigma_3 \rho) \phi_1(r, x^4) + \frac{x^3}{r^2} \sigma_2 (1 + \phi_2(r, x^4)) \right\},$$

$$\Phi(\rho, x^3, x^4) = \frac{1}{2} \left\{ \frac{\rho}{r} \sigma_2 \phi_1(r, x^4) + \frac{\rho}{r^2} (-\sigma_1 x_3 + \sigma_3 \rho) (1 + \phi_2(r, x^4)) + \sigma_3 \right\}.$$

- The relationship for the norm between the $su(2)$ -valued hyperbolic magnetic monopole field $\Phi(\rho, x^3, x^4) = \mathcal{A}_\varphi^G(\rho, x^3, x^4)$ and the complex-valued hyperbolic vortex field $\phi(x^4, r) = \phi_1(x^4, r) + i\phi_2(x^4, r)$ is given as

$$\|\Phi(x^4, x^3, \rho)\|^2 = \frac{\rho^2 |\phi(x^4, r)|^2 + (x^3)^2}{4r^2}, \quad (r := \sqrt{\rho^2 + (x^3)^2}).$$

$\|\Phi\|$ has the correct boundary value: $\|\Phi\| \rightarrow v = \frac{1}{2}$ ($\rho \rightarrow 0$).

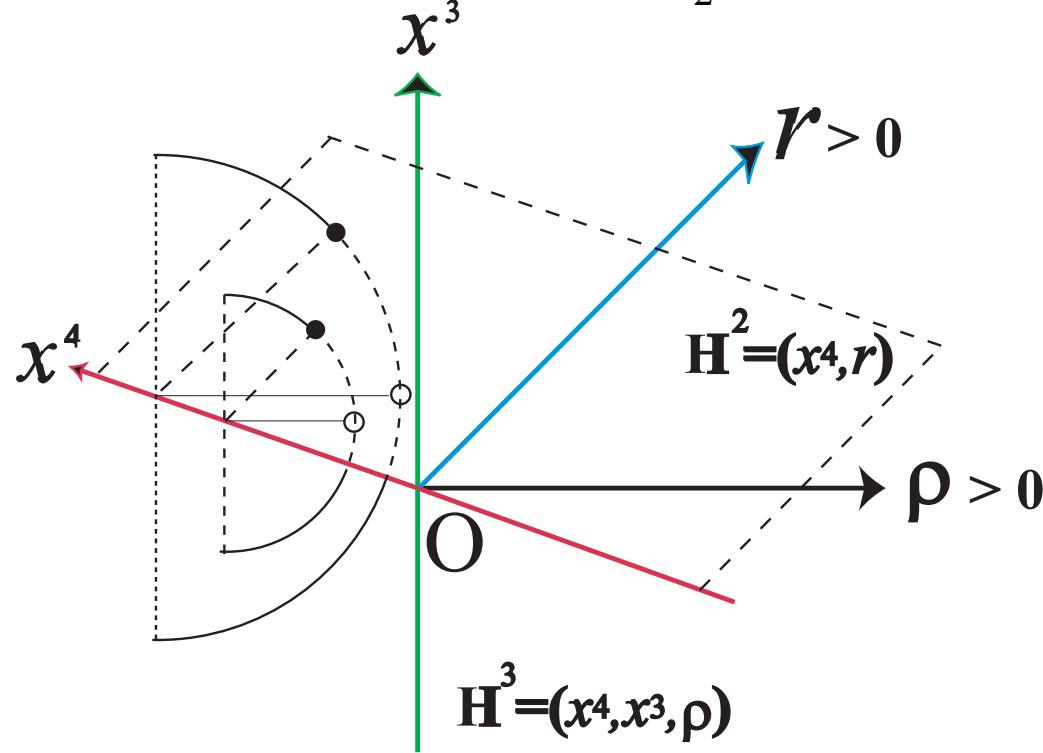


Figure 4: The relationship between hyperbolic vortices (black circles) on \mathbb{H}^2 and hyperbolic magnetic monopoles (white circles) on \mathbb{H}^3 .

§ Holography: bulk/boundary correspondence

It was rigorously shown that **the holographic principle** ('t Hooft (1993), Susskind (1995)) **applies to hyperbolic magnetic monopoles in the hyperbolic space \mathbb{H}^3** . In contrast, **it does not apply to magnetic monopoles in flat Euclidean space \mathbb{R}^3** .

Proposition [Bulk/boundary correspondence of $\mathbb{H}^3 = AdS_3$] A magnetic monopole on hyperbolic space $\mathbb{H}^3 = AdS_3$ is completely determined by its asymptotic boundary value at infinity $\partial\mathbb{H}^3$, apart from the gauge equivalence. This situation is in sharp contrast with the Euclidean case in which all monopole have the same boundary values.

Proposition [Abelian dominance and magnetic monopole dominance on $\partial\mathbb{H}^3$] On the conformal boundary $\partial\mathbb{H}^3 \simeq S^2$ of $\mathbb{H}^3(\rho, x^3, x^4)$, that is, $\rho \rightarrow 0$: x^4 - x^3 plane,

$$\begin{aligned} \mathcal{A}_4^G(\rho, x^3, x^4) &\rightarrow \frac{\sigma_3}{2} a_t(x^4, x^3), \quad \mathcal{A}_3^G(\rho, x^3, x^4) \rightarrow \frac{\sigma_3}{2} a_r(x^4, x^3), \\ \mathcal{A}_\rho^G(\rho, x^3, x^4) &\rightarrow \frac{\sigma_1}{2} \frac{1}{r} \phi_1(x^4, x^3) + \frac{\sigma_2}{2} \frac{1}{r} [1 + \phi_2(x^4, x^3)], \\ \Phi(\rho, x^3, x^4) &\rightarrow \frac{\sigma_3}{2} (+1) \quad \left(\|\Phi\| \rightarrow v = \frac{1}{2} \right). \end{aligned} \quad (1)$$

Therefore, the gauge field $\mathcal{A}_\rho^G(\rho, x^3, x^4)$ **in the bulk direction** is dominated by the **off-diagonal components**, while the gauge field $\mathcal{A}_4^G(\rho, x^3, x^4), \mathcal{A}_3^G(\rho, x^3, x^4)$ **on the boundary** $\rho = 0$ has only the **diagonal components** $a_t(x^4, x^3), a_r(x^4, x^3)$.

§ Quark confinement: area law of Wilson loop average

Definition [Wilson loop operator] Let \mathcal{A} be a Lie algebra valued **connection 1-form**:

$$\mathcal{A}(x) := \mathcal{A}_\mu(x)dx^\mu = \mathcal{A}_\mu^A(x)T_A dx^\mu. \quad (1)$$

For a given loop C , the **Wilson loop operator** $W_C[\mathcal{A}]$ in the representation \mathcal{R} is defined using the **path ordered product** \mathcal{P} :

$$W_C[\mathcal{A}] := \text{tr}_{\mathcal{R}} \left\{ \mathcal{P} \exp \left[ig_{\text{YM}} \oint_C \mathcal{A} \right] \right\} / \text{tr}_{\mathcal{R}}(1). \quad (2)$$

(I) Quark confinement due to **hyperbolic magnetic monopoles** on \mathbb{H}^3 and **holography**: We take the Wilson loop C on the boundary $\partial\mathbb{H}^3(x^3, x^4)$ of \mathbb{H}^3 by the limit $\rho \rightarrow 0$.

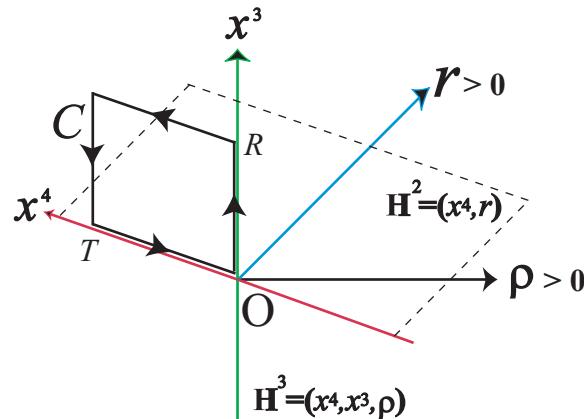


Figure 5: The Wilson loop C on the conformal boundary $\partial\mathbb{H}^3$, i.e., $x^3 - x^4$ plane.
 – Typeset by FoilTeX –

Proposition [Wilson loop operator on the conformal boundary $\partial\mathbb{H}^3$] If the loop C lies on the boundary $x^3 - x^4$, the Wilson loop operator in the fundamental representation F defined for the S^1 -invariant $SU(2)$ Yang-Mills field \mathcal{A}_μ^G takes the form:

$$\begin{aligned} W_C[\mathcal{A}] &= \frac{1}{2} \text{tr}_F \left\{ \exp \left[i \frac{\sigma_3}{2} \oint_C dx^\mu a_\mu(x^4, x^3) \right] \right\} \\ &= \frac{1}{2} \text{tr}_F \left\{ \exp \left[i \frac{\sigma_3}{2} \int_{\Sigma: \partial\Sigma=C} dx^4 dx^3 F_{4r}(x^4, x^3) \right] \right\}. \end{aligned}$$

The $SU(2)$ field strength on the boundary has only the maximal torus $U(1)$ component:

$$\mathcal{F}_{43}^G(\rho, x^3, x^4) \rightarrow \frac{\sigma_3}{2}(\partial_4 a_r - \partial_r a_4) = \frac{\sigma_3}{2} F_{4r}(x^4, x^3). \quad (3)$$

This fact is regarded as the (infrared) **Abelian dominance** and the **magnetic monopole dominance**, which is expected but not proved in the Euclidean case.

(II) Quark confinement due to **hyperbolic vortices** on \mathbb{H}^2 :

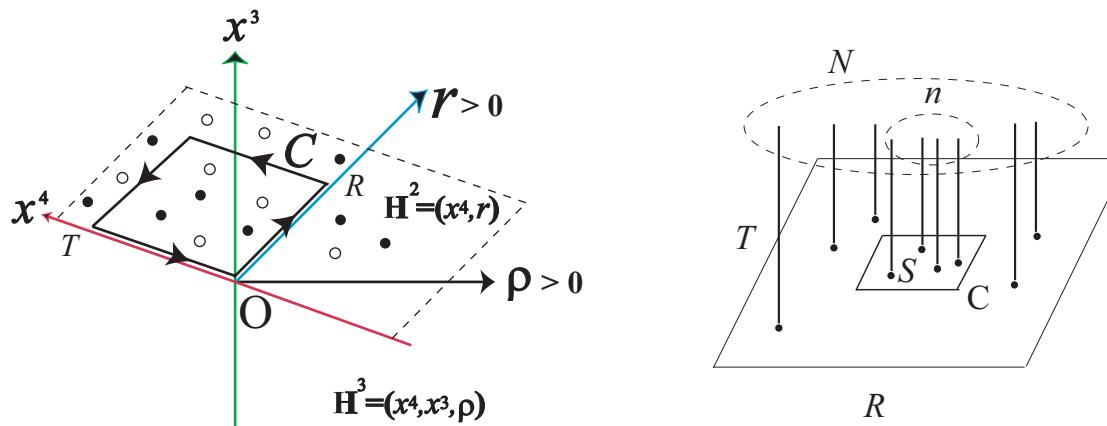


Figure 6: (Left) The relationship between the Wilson loop C and hyperbolic vortices (black circles) and anti-vortices (white circles) on \mathbb{H}^2 , (Right) The dilute gas approximation.

Proposition [area law of the Wilson loop average] In the **dilute (instanton) gas approximation**, the Wilson loop average in $D = 4$ Yang-Mills theory with the topological ϑ term obeys the **area law**:

$$\langle \vartheta | W_C[\mathcal{A}] | \vartheta \rangle = e^{-\sigma A(C)}, \sigma := 2K e^{-S_1/\hbar} [\cos(\vartheta c_2) - \cos(\vartheta c_2 + 2\pi J c_1)], \quad (4)$$

where c_1 and c_2 are the first and second Chern numbers respectively.

When $J c_1$ is an integer, the vacuum is periodic with respect to ϑ with period 2π , so the potential is zero. When $J c_1$ is not an integer, the static quark potential $V(R)$ is given by a linear potential σR with string tension σ as the proportionality coefficient.

§ Conclusions and discussions

Conclusion:

- We have proposed to use the symmetric instantons with certain spatial symmetries to study non-perturbative problems of the $D = 4$ Yang-Mills theory.

In particular, we have applied this strategy to quark confinement.

Then we have shown:

- Quark confinement follows from symmetric instantons in the $D = 4$ Yang-Mills theory in a manner consistent with holography principle.
- The $D = 3$ hyperbolic magnetic monopoles and $D = 2$ hyperbolic vortices on lower dimensional spaces are constructed through the associated dimensional reduction starting from symmetric instantons in the $D = 4$ Euclidean space.

This result supports the dual superconductor picture as the mechanism for quark confinement.

Thank you very much for your attention!

Detailed Conclusion:

- In this talk, we considered the space and time **symmetric instantons** as solutions of the **self-dual Yang-Mills equation with conformal symmetry** in the $SU(2)$ Yang-Mills theory in the four-dimensional Euclidean space \mathbb{R}^4 .
- In contrast to time translation symmetry, instantons with **spatial rotation symmetries** give a finite four-dimensional action and hence can contribute to quark confinement. For the **spatial symmetry** $SO(2) \simeq U(1) \simeq S^1$, the instanton is reduced to a **hyperbolic magnetic monopole** (of Atiyah) living in the three-dimensional **hyperbolic space** \mathbb{H}^3 . For the **spatial symmetry** $SO(3) \simeq SU(2)$, the instanton is reduced to a **hyperbolic vortex** (of Witten-Manton) living in the two-dimensional **hyperbolic space** \mathbb{H}^2 .
- By requiring the spatial symmetry $SO(2)$ or $SO(3)$ for instantons, the four-dimensional Euclidean space \mathbb{R}^4 in which instantons live is inevitably transformed to the curved spacetime $\mathbb{H}^3 \times S^1$ or $\mathbb{H}^2 \times S^2$ with negative constant curvature by maintaining the **conformally equivalence** through **dimensional reduction**.
- Three-dimensional **hyperbolic magnetic monopoles** and two-dimensional **hyperbolic vortices** can be connected through **conformal equivalence** with the explicit relationship between the magnetic monopole field and the vortex field has been obtained. This allows magnetic monopoles and vortices can be treated in a unified manner.
- Both \mathbb{H}^3 and \mathbb{H}^2 are curved spaces AdS_3 and AdS_2 with a constant negative curvature. The **hyperbolic monopole in \mathbb{H}^3 is completely determined by its**

holographic image on the conformal boundary two-sphere S^2_∞ . (This is different from Euclidean monopoles.) This fact enable us to reduce the non-Abelian Wilson loop operator to the Abelian Wilson loop defined by the Abelian gauge field of the vortex: **Abelian dominance** and **magnetic monopole dominance**.

- Using the hyperbolic magnetic monopole and hyperbolic vortex obtained in this way, quark confinement was shown to be realized in the sense of **Wilson area law** within the **dilute gas approximation**. This is a semi-classical quark confinement mechanism originating from the unified hyperbolic magnetic monopole and hyperbolic vortex, supporting the **dual superconductor picture**.

[• Furthermore, by considering a symmetric instanton with a singularity (of Forgacs-Horvath-Palla(1981)) in a compact subspace of spacetime, a symmetric instanton with a **non-integral topological charge** can be obtained, and then by dimensional reduction, a hyperbolic magnetic monopole and a hyperbolic vortex with a non-integral topological charge have been obtained.]

Thank you very much for your attention!

Discussion:

- Why does the space-time obtained by dimensional reduction have negative curvature? Is there no case where it has positive curvature? cf: The 4-dimensional standard model can be obtained by dimensional reduction of 6-dimensional Yang-Mills theory to 4! [Manton(1981)]
- How does the gauge group change due to dimensional reduction?
- How can it be extended to a large gauge group $SU(N)$?
- What happens when a matter field is introduced? For example, can QCD be analyzed in the same way?
- How do we incorporate quantum effects that do not maintain conformal invariance?

Thank you for your attention!

BUCKUP SLIDES

○ On \mathbb{H}^3 : the $SU(2)$ gauge-scalar theory

$$S_{\text{YM}} = 2\pi \int_{\mathbb{H}^3} dx^3 dx^4 d\rho \sqrt{g} \mathcal{L}_3,$$

$$\mathcal{L}_3 = \frac{1}{2} g^{\mu\nu} g^{\nu\beta} \text{tr}(\mathcal{F}_{\mu\nu} \mathcal{F}_{\alpha\beta}) + g^{\mu\nu} \text{tr}(\mathcal{D}_\mu \Phi \mathcal{D}_\nu \Phi), \quad (1)$$

where $g_{\mu\nu} = \rho^{-2} \delta_{\mu\nu}$, $g^{\mu\nu} = \rho^2 \delta^{\mu\nu}$, $g := \det(g_{\mu\nu}) = \rho^{-6}$. Therefore,

$$\mathcal{L}_3 = \rho \frac{1}{2} \text{tr}(\mathcal{F}_{\mu\nu} \mathcal{F}_{\mu\nu}) + \frac{1}{\rho} \text{tr}\{(\mathcal{D}_\mu \Phi)(\mathcal{D}_\mu \Phi)\}. \quad (2)$$

The topological action reads

$$S_\vartheta = \int d^4x \mathcal{L}_\vartheta = \frac{\vartheta}{4\pi^2} \int d\varphi dx^3 dt d\rho [\partial_t \text{tr}(\mathcal{F}_{3\rho} \Phi) + \partial_3 \text{tr}(\mathcal{F}_{\rho t} \Phi) + \partial_\rho \text{tr}(\mathcal{F}_{t3} \Phi)]$$

$$= \frac{\vartheta}{2\pi} \int dx^3 dt d\rho [\partial_t \text{tr}(\Phi \mathcal{F}_{3\rho}) + \partial_3 \text{tr}(\Phi \mathcal{F}_{\rho t}) + \partial_\rho \text{tr}(\Phi \mathcal{F}_{t3})]$$

$$= \frac{\vartheta}{2\pi} \left[\int dx^3 d\rho \text{tr}(\Phi \mathcal{F}_{3\rho}) + \int dt d\rho \text{tr}(\Phi \mathcal{F}_{\rho t}) + \int dx^3 dt \text{tr}(\Phi \mathcal{F}_{t3}) \right]. \quad (3)$$

Here, $\text{tr}(\Phi \mathcal{F}_{\mu\nu})$ is gauge invariant, $\text{tr}(\Phi \mathcal{F}_{3\rho})$ is gauge invariant magnetic field, and $\text{tr}(\Phi \mathcal{F}_{\rho t})$ and $\text{tr}(\Phi \mathcal{F}_{t3})$ are gauge invariant electric field.

- On \mathbb{H}^2 : the $U(1)$ gauge-scalar theory

$$S_{\text{YM}} = 4\pi \int dt \int dr \mathcal{L}_{\text{GS}},$$

$$\mathcal{L}_{\text{GS}} = \frac{1}{4}r^2 F_{\mu\nu} F_{\mu\nu} + (D_\mu \phi)^* D_\mu \phi + \frac{1}{2r^2} (|\phi|^2 - 1)^2 + \frac{\vartheta}{16\pi^2} \varepsilon_{\mu\nu} F_{\mu\nu}. \quad (4)$$

Here we defined $D_\mu = \partial_\mu - ia_\mu$ and $\phi = \phi_1 + i\phi_2$ and used $D_\mu \varphi_a D_\mu \varphi_a = (D_\mu \phi)^* D_\mu \phi$.

$$S_{\text{YM}} = \int_{-\infty}^{\infty} dt \int_0^{\infty} dr \sqrt{g} \mathcal{L}_{\text{GS}},$$

$$\mathcal{L}_{\text{GS}} = \frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + g^{\mu\nu} (D_\mu \phi)^* D_\nu \phi + \frac{1}{2} (|\phi|^2 - 1)^2 + \frac{\vartheta}{16\pi^2} \varepsilon_{\mu\nu} F_{\mu\nu}, \quad (5)$$

where $g_{\mu\nu} = r^{-2} \delta_{\mu\nu}$, $g^{\mu\nu} = r^2$, $g := \det(g_{\mu\nu}) = r^{-2}$.

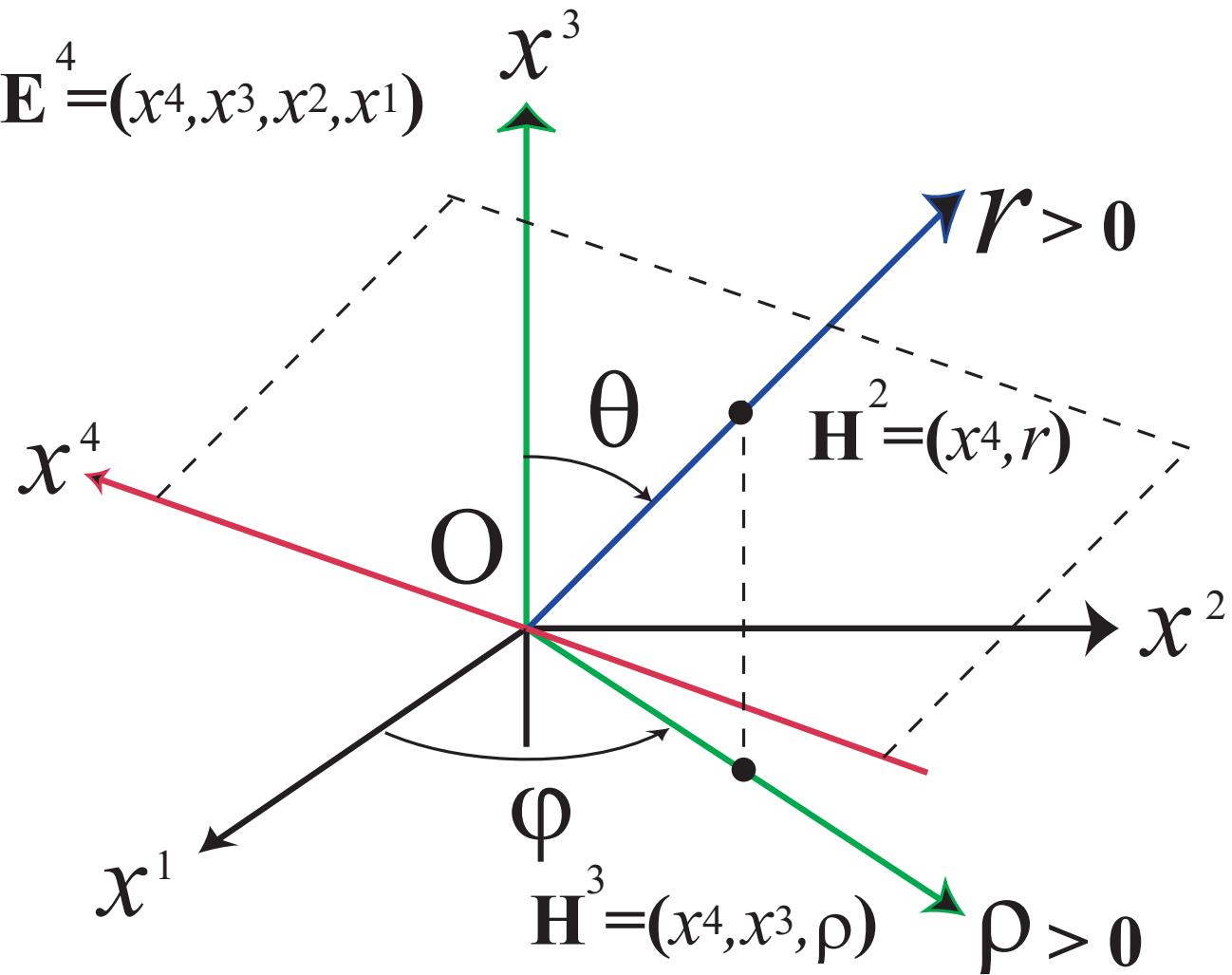


Figure 7: Euclidean space $\mathbb{R}^4(x^4, x^3, x^2, x^1)$ versus hyperbolic spaces $\mathbb{H}^3(x^4, x^3, \rho)$ with $\rho := \sqrt{(x^1)^2 + (x^2)^2} > 0$ and $\mathbb{H}^2(x^4, r)$ with $r := \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2} > 0$.

Proposition [non-Abelian Stokes theorem for the Wilson loop operator] The $SU(2)$ Wilson loop operator in any representation characterized by a half-integer single index $J = \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \dots$ obeys the **non-Abelian Stokes theorem**. We introduce the unit vector field $n^A(x)$ ($n^A(x)n^A(x) = 1$) called the **color direction field** defined by

$$n^A(x)\sigma_A = U(x)\sigma_3 U^\dagger(x), \quad U(x) \in SU(2), \quad (6)$$

with the third Pauli matrix σ_3 . Then the $SU(2)$ Wilson loop operator is rewritten in the form of the area integral over any surface Σ bounded by the loop C :

$$W_C[\mathcal{A}] = \int [d\mu(U)]_\Sigma \exp \left\{ ig_{\text{YM}} J \int_{\Sigma: \partial\Sigma=C} dS^{\mu\nu} F_{\mu\nu}^U \right\}, \quad (7)$$

where $F_{\mu\nu}^U$ is the gauge-invariant field strength defined by

$$F_{\mu\nu}^U(x) := \partial_\mu[n^A(x)\mathcal{A}_\nu^A(x)] - \partial_\nu[n^A(x)\mathcal{A}_\mu^A(x)] - g_{\text{YM}}^{-1}\epsilon^{ABC}n^A(x)\partial_\mu n^B(x)\partial_\nu n^C(x), \quad (8)$$

and $[d\mu(U)]_\Sigma$ is the product measure of an invariant measure on $SU(2)/U(1)$ over Σ :

$$[d\mu(U)]_\Sigma := \prod_{x \in \Sigma} d\mu(\mathbf{n}(x)), \quad d\mu(\mathbf{n}(x)) = \frac{2J+1}{4\pi} \delta(\mathbf{n}^A(x)\mathbf{n}^A(x) - 1) d^3\mathbf{n}(x). \quad (9)$$

(I) Quark confinement due to hyperbolic vortices on \mathbb{H}^2 :

The Witten transformation corresponds to choosing the color direction field as

$$n^A(x) = \frac{x^A}{r} \quad (r := \sqrt{x^A x^A}). \quad (10)$$

Then the Abelian-like field defined by

$$c_\mu(x) := n^A(x) \mathcal{A}_\mu^A(x) \quad (11)$$

is rewritten by using the Witten transformation into

$$c_\mu(x) = \begin{cases} c_4(x) = \frac{x^A}{r} \mathcal{A}_4^A(x) = a_0(r, t) & (\mu = 4) \\ c_j(x) = \frac{x^A}{r} \mathcal{A}_j^A(x) = \frac{x^j}{r} a_1(r, t) & (\mu = j) \end{cases}. \quad (12)$$

If we consider the loop C on the (t, r) plane, i.e., $\mu = 4, \nu = r$, the second term vanishes: $-g_{\text{YM}}^{-1} \epsilon^{ABC} n^A(x) \partial_\mu n^B(x) \partial_\nu n^C(x) = 0$. Therefore we find

$$\begin{aligned} F_{4r}^U(x) &= \partial_4 c_r(x) - \partial_r c_4(x) = \partial_4 \left(\frac{x^j}{r} c_j(x) \right) - \partial_r c_4(x) \\ &= \partial_4 a_1(r, t) - \partial_r a_0(r, t) := F_{4r}(t, r). \end{aligned} \quad (13)$$

In this setting, the Wilson loop operator for a rectangular loop C with the size $T \times L$ is expressed as

$$W_{C=T \times L}[\mathcal{A}] = \exp \left\{ iJ \int_{-T/2}^{T/2} dt \int_0^L dr F_{4r}(t, r) \right\}. \quad (14)$$

If the rectangular loop C is very large $L, T \rightarrow \infty$ so that a vortex is located inside of C , the integral becomes equal to the topological charge $N_v = c_1$ according to (??):

$$\int_{-T/2}^{T/2} dt \int_0^L dr F_{4r}(t, r) (L, T \rightarrow \infty) \rightarrow \int_{-\infty}^{\infty} dt \int_0^{\infty} dr F_{4r}(t, r) = 2\pi c_1. \quad (15)$$

Since $2J$ is an integer, we find

$$W_{C=T \times L}[\mathcal{A}] \rightarrow \exp \{i2\pi J c_1\} = \exp(i\pi)^{2Jc_1} = (-1)^{2Jc_1} = \begin{cases} (-1)^{c_1} & (J = \frac{1}{2}, \frac{3}{2}, \dots) \\ (+1)^{c_1} & (J = 1, 2, \dots) \end{cases}. \quad (16)$$

For a 1-vortex with $c_1 = 1$, we find $W_{C=T \times L} \rightarrow \pm \in Z(2)$. Therefore, this vortex is regarded as the **center vortex**, since the center of $SU(2)$ is $Z(2)$.

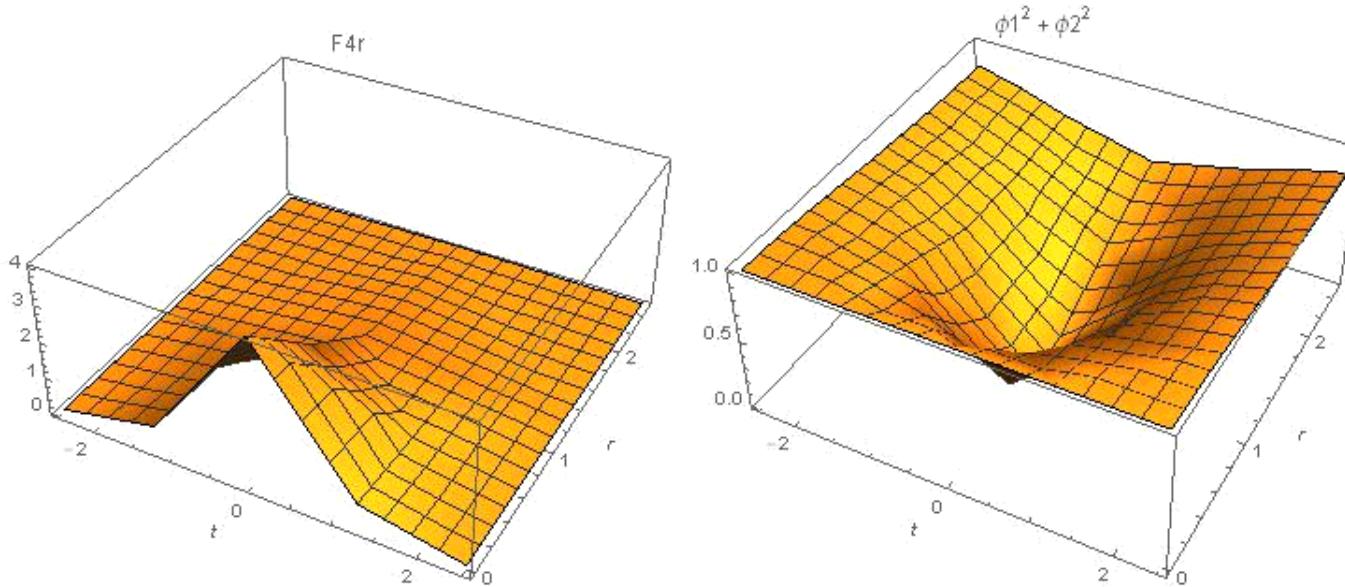


Figure 8: 1-vortex solution with the center at $(t, r) = (0, 1)$ and the size $\lambda = 1$. The distribution of gauge-invariant quantities: (Left) field strength $F_{01}(t, r)$, (Right) $|\phi(t, r)|^2$.

Now we evaluate the Wilson loop expectation value to obtain the static potential for two widely separated color charges in a θ vacuum. Note that the integrand of the Wilson loop operator shown above is the density of the instanton number, which means that in this theory, the Wilson loop $W_C[\mathcal{A}]$ counts the number of instantons-antiinstantons (or vortices-antivortices) that exist within the region Σ enclosed by the loop C . The expectation value of the Wilson loop, including the topological term $i\theta Q$, is expressed as

$$\langle \theta | W_C[\mathcal{A}] | \theta \rangle_{\text{GS}} = \frac{\int \mathcal{D}A \mathcal{D}\phi e^{-S_{\text{GS}} + i\theta Q} W_C[\mathcal{A}]}{\int \mathcal{D}A \mathcal{D}\phi e^{-S_{\text{GS}} + i\theta Q}} =: \frac{I_2}{I_1}, \quad (17)$$

Note that a nonzero θ is not required to show the area law of the Wilson loop below. We can set $\theta = 0$ in the final result. Including the topological term $i\theta Q$ in the action is equivalent to defining the θ vacuum as follows:

$$|\theta\rangle := \sum_{n=-\infty}^{+\infty} e^{in\theta} |n\rangle. \quad (18)$$

In the following, we calculate the Wilson loop expectation value (17) using the dilute instanton gas approximation. This method is well known, see for example Chapter 11 of Rajaraman(1989) or Chapter 7 of Coleman(1985).