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θ term and sign problem
The θ term

θQ, Q =
1

2π

∫

d2F01 ∈ Z (for 2D U(1) gauge theory)

Since it appears as purely imaginary in the Euclid action, the
Monte Carlo method is not directly applicable (sign problem).

Reweighting method: a “solution" to the sign problem� �
〈O(ϕ)〉 =

∫

Dϕ
�

O(ϕ)e− mS(ϕ)
�

e− ReS(ϕ)
∫

Dϕe− mS(ϕ)e− ReS(ϕ)

=



O(ϕ)e− mS(ϕ)�

Re /



e− mS(ϕ)�

Re

→ 0/0 due to sign fluctuations of e− mS(ϕ)� �
Tensor network method
Difficult for higher dimensional systems
Complex Langevin method
Wrong convergence can occur (next talk by Miura-san)
Lefschetz thimble method (this work) 1 /10



Lefschetz thimble method Witten, ’10

The Lefschetz thimble method is an improvement of the
reweighting method by complexifying the field variables:

〈O()〉 =

∫

R
dO()e−S()
∫

R
de−S()

=

∫

Jσ
dz
�

O(z)e− mS(z)
�

e− ReS(z)
∫

Jσ
dz e− mS(z)e− ReS(z)

The complex path is determined by the flow equation:

dz

dt
=
dS(z)

dz
, z(t = 0) = 

dS(z)

dt
=
dS(z)

dz

dz

dt
=
�

�

�

�

dS(z)

dt

�

�

�

�

2

figure by W. Piensuk

As flow time increases, oscillation of e− mS(z) is suppressed,
and observables can be evaluated with better precision.
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2D U(1) gauge thoery with the θ term
Content of this talk� �
We present our ongoing, the first Lefschetz thimble study of
the θ term, using the 2D U(1) gauge theory as a testbed.� �
Lattice 2D U(1) gauge theory with the θ term� �

S(U) =
β

2

∑

n

�

Pn + P−1
n

�

− θQsine(U),

Pn = Un,1Un+1̂,2U
−1
n+2̂,1

U−1
n,2,

Qsine(U) = −


4π

∑

n

�

Pn − P−1n
�

This model can be solved analytically.� �
cf. another lattice discretization of topological charge

Qlog = −


2π

∑

n

lnPn ∈ Z

takes strictly integer values and discontinuous. 3 /10



Solving sign problem and
freezing problem by

introducing slit variable and
Lefschetz thimble method
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Thimble study at zero flow time t = 0
At zero flow time, the thimble method is equivalent to the
reweighting method, and the θ term is treated as a part of
observables.
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Topological property of Q makes multiple peaks in the
reweighing factor at θ = π, leading to




e− mS(ϕ)
�

Re ≃ 0.

What would happen if we complexify and flow the link variable?
Is the topological property of Q preserved, or is it lost? 4 /10



Thimble study at flow time t = 0.05
A. The topological property of Qsine is preserved.
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cf. ReQlog takes integer values even after complexification,
and its value remains the same under the continuous flow.

In applying the thimble method, we encounter two difficulties:

Global sign problem: multiple peaks remain after flow
Freezing problem

To avoid them, we have to somehow destroy the topology. 5 /10



Introducing a slit variable at a single link

ePn =

¨

P0eϕ, n = 0,
Pn, otherwise.

S(U,ϕ, k) =
β

2

∑

n

�

ePn + eP−1n
�

− θQsine(U,ϕ),−α LLτ kϕ

Qsine(U,ϕ) = −


4π

∑

n

�

ePn − eP−1n
�

Introduing new fields ϕ, k does not change the physics, since
∫

R

dk exp(αLLτkϕ) ∝ δ(ϕ).

α is a free parameter, which controls the weight of slit term.

The numerical cost is almost the same as no-slit simulation,
since the number of d.o.f is nearly equal: 2LLτ + 2 ≃ 2LLτ.6 /10



Thimble study with a slit at θ = 0
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Although the slit term αkϕ is purely imaginary, the sign
problem is under control already at a tiny flow time t = 0.005,

As α increases, the weight of the slit term becomes larger,
which accelerates the flow of ϕ and k, leading to freezing
yet milder sign problem.

We have to tune α so that both the sign problem and the
freezing problem are under control.
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Dependence of freezing on α with a slit

The freezing can be quantitatively discussed using the
autocorrelation function and integrated autocorrelation time of
the topological charge.

Small α =⇒ the freezing problem is absent.
Large α =⇒ the freezing problem appears.
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Thimble study with a slit at finite θ

Unlike other methods to solve the freezing problem,
our method:

Slit × Lefschetz thimble

is directly applicable to finite θ systems.
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The expectation values of the plaquette and mQsine are
consistent with analytical results.
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Summary and future study

Summary� �
We have presented our ongong, the first Lefschetz
thimble study of the θ term in 2D U(1) gauge theory.
The topological nature prevents thimble method to
solve the global sign problem and causes freezing.
To avoid such difficulties, we proposed a new method
that introduces delta function δ(ϕ) to the path-integral,
which results two new fields ϕ, k in the action.
The slit ϕ solves the freezing problem, and the sign
problem from slit is solved by the thimble method.� �

Future study� �
Check wether our method is applicable to larger
system size and larger β, and evaluate the efficiency.� �
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Introducing slit at every link

S(U,ϕ, k) =
β

2

∑

n

�

ePn + eP−1n
�

− θQsine(U,ϕ),−α
∑

n,μ

kn,μϕn,μ

ePn = Un,1Un+1̂,2U
−1
n+2̂,1

U−1
n,2e

ϕn+1̂,2e−ϕn+2̂,1

Qsine(U,ϕ) = −


4π

∑

n

�

ePn − eP−1n
�

Introduing new fields ϕ, k does not change the physics, since
∫

R

Dk exp

�

α
∑

n,μ

kn,μϕn,μ

�

∝
∏

n,μ

δ(ϕn,μ).

α is a free parameter, which controls the weight of slit term.
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Thimble study with slit at every link at θ = 0

0 1000 2000 3000 4000 5000
s

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Re
Q

lo
g(

U
)

trajectory of Qlog at = 4.0, Lx = 8, L = 8, s = 0.05
/ = 0.00, t = 0.00

0 1000 2000 3000 4000 5000
s

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Re
Q

lo
g(

U
)

trajectory of Qlog(U) at = 4.0, Lx = 8, L = 8, s = 0.05

= 1.0, = 0.00, / = 0.00, t = 0.050
= 5.0, = 0.00, / = 0.00, t = 0.050
= 20.0, = 0.00, / = 0.00, t = 0.050
= 50.0, = 0.00, / = 0.00, t = 0.050

The freezing problem is completely absent when α is small.
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Our slit method is flexible and
allows for arbitrary choices of
how the slits are introduced.
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