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6 term and sign problem

The 6 term
1
i0Q, Q= ﬂf d’xFgy €Z (for 2D U(1) gauge theory)

Since it appears as purely imaginary in the Euclid action, the
Monte Carlo method is not directly applicable (sign problem).

~ Reweighting method: a “solution" to the sign problem ——
D¢ (O(¢)eImS(9))e=ReS(9)
(ot =1 TDge T
D¢ e—iImS(9)e—ReS(9)
= (o(¢)e—ilm5(¢)>R /<e—i1m5(¢)>R
€ e
— 0/0 due to sign fluctuations of e~{Im3($)

-

m Tensor network method
Difficult for higher dimensional systems
m Complex Langevin method
Wrong convergence can occur (next talk by Miura-san)

m Lefschetz thimble method (this work) 1/10



Lefschetz thimble method witten, '10

The Lefschetz thimble method is an improvement of the
reweighting method by complexifying the field variables:

[pdxO(x)e=5% _ [, dz(0(2)e~imS()e=Res(2)
[pdxe=5x) [, dze~ImS@)e=Res(2)

The complex path is determined by the flow equation:
saddle point: (()TS =0

az dS(Z) \ Lefschetz thimble
—_—= , t=0)=x
” o Z( ) Xb/ /ds (z > )

dS(Z) dS(Z) dz _ 'dS(Z) 2 I_ \ /gradlent flow

dt  dz dt | dt e e @l e o 1 € R

(0(x)) =

. figure by W. Piensuk
As flow time increases, oscillation of e~(Im5(2) js suppressed,

and observables can be evaluated with better precision.
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2D U(1) gauge thoery with the 6 term

~ Content of this talk

We present our ongoing, the first Lefschetz thimble study of
the 6 term, using the 2D U(1) gauge theory as a testbed.
=
-~ Lattice 2D U(1) gauge theory with the 6 term ~N
B 1
S(U) = EZ(Pn + Pnl)— (0Qsine(V),
n
Pn=Un1Up, 12U 75 U3,
{
Qsine(U) =—— Z (Pn - Pgl)
4m <
\_This model can be solved analytically. Y,

cf. another lattice discretization of topological charge

L
=—— > InPheZ
Olog 21'[; n

takes strictly integer values and discontinuous. 3/10



Solving sign problem and
freezing problem by

Introducing slit variable and
Lefschetz thimble method



Thimble study at zero flow time t =10

At zero flow time, the thimble method is equivalent to the
reweighting method, and the 6 term is treated as a part of
observables.
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Topological property of Q makes multiple peaks in the
reweighing factor at 6 = 7, leading to (e=IMS(®)__~0.

What would happen if we complexify and flow the link variable?

Is the topological property of Q preserved, or is it lost? 4/10



Thimble study at flow time t = 0.05

A. The topological property of Qsine is preserved.
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cf. Re Qjog takes integer values even after complexification,
and its value remains the same under the continuous flow.

In applying the thimble method, we encounter two difficulties:

m Global sign problem: multiple peaks remain after flow
m Freezing problem

To avoid them, we have to somehow destroy the topology. s/10



Introducing a slit variable at a single link

o~ n —

P Py

S, ¢, k) = EZ(/?,, +P1) = 0Qsine(U, ¢), —iat Lyl k¢

n

adding a slit ~ PO ei¢, n= O,
:J\l/ P —
{Pn, otherwise.

[ ~ o~
Osine(Ur ¢) = __Z(Pn - Pgl)
4m
Introduing new fields ¢, k does not change the physics, since
J dk exp(iaLyxL-k®) o< 6(¢).
R

a is a free parameter, which controls the weight of slit term.

The numerical cost is almost the same as no-slit simulation,
since the number of d.o.f is nearly equal: 2LxL++ 2 ~2LxL1.6/10



Thimble study with a slitat 6 =0

B=40,Ly=8,Lr =8 Neonr = 10000 Re <P(U) > vs 6.at f=4.0, Ly =8, L, =8, Neow = 10000
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Although the slit term iak¢ is purely imaginary, the sign
problem is under control already at a tiny flow time t = 0.005,

As a increases, the weight of the slit term becomes larger,
which accelerates the flow of ¢ and k, leading to freezing
yet milder sign problem.

We have to tune a so that both the sign problem and the

freezing problem are under control. 7110



Dependence of freezing on a with a slit

The freezing can be quantitatively discussed using the
autocorrelation function and integrated autocorrelation time of
the topological charge.
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m Smalla = the freezing problem is absent.
m Largea = the freezing problem appears.
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Thimble study with a slit at finite 6

Unlike other methods to solve the freezing problem,
our method:

Slit x Lefschetz thimble
is directly applicable to finite 6 systems.
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The expectation values of the plaquette and Im Qsjne are
consistent with analytical results.
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Summary and future study

/Summary ~

m We have presented our ongong, the first Lefschetz
thimble study of the 6 term in 2D U(1) gauge theory.

m The topological nature prevents thimble method to
solve the global sign problem and causes freezing.

m To avoid such difficulties, we proposed a new method
that introduces delta function é6(¢) to the path-integral,
which results two new fields ¢, k in the action.

m The slit ¢ solves the freezing problem, and the sign
problem from slit is solved by the thimble method.

-
~ Future study ~N
m Check wether our method is applicable to larger
system size and larger 3, and evaluate the efficiency.
-
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Introducing slit at every link

Adding “slits”
\_(\_( T
- i Um,2
Pn pn \< (—”rrz.Z(' e

Po=UniUp15U, 05 \Unz Py = UnaU, 5 ,U7}

13, 1U7:2 ew +i2¢e —iPnys1

S(U, ¢, k)= EZ (ﬁn + 5;1)— (0Qsine(U, 9), —iaz Kn,u®n,u
n.u

n

L —l
Pn—Un 1Un+12U +2 1Un e¢n+12e ¢n+21

Qsine(U, ¢)=__Z(Pn—P_ )

Introduing new fields ¢ k does not change the physics, since

f Dk exp(iaan,u(;bn,u) o [ [6(¢n,)-
R mH N

a is a free parameter, which controls the weight of slit terml.0

/10



Thimble study with slit at every link at 6 =0
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The freezing problem is completely absent when a is small.

B=4.0, Ly =8,Lc =8, Neow = 10000
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2, Our slit method is flexible and
2o allows for arbitrary choices of
%o how the slits are introduced.

o
o
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