

# **Vacuum structures of $\text{QCD}_2$ from non-invertible anyon condensation**

---

Naoto Kan (The University of Osaka)

Based on collaborations w/ Soichiro Shimamori (U. Osaka), Hiroki Wada (Tohoku U.)

@ KEK Theory Workshop 2025

# Introduction

In this talk, we focus on 2d theory, so 0-form symmetries are described by topological defect lines (TDLs).

TDLs possess structure of a fusion category  $\mathcal{C}$ , rather than a group. [Bhardwaj–Tachikawa '17, Chang–Lin–Shao–Wang–Yin 18,...].

The fusion rule is described by

$$a \otimes b = \bigoplus_{c \in \text{Irr}(\mathcal{C})} N_{ab}^c c, \quad N_{ab}^c \in \mathbb{Z}_{\geq 0},$$

where the TDLs are denoted by  $a, b, \dots$

In particular, they generally don't have an inverse, i.e., given  $a$ , no another TDL  $a^{-1}$  s.t.  $a \otimes a^{-1} = a^{-1} \otimes a = \mathbf{1}$ .

For example, the Ising CFT possesses the TDLs, so-called Verlinde lines  $\{\mathbf{1}, \eta, \mathcal{N}\}$ , satisfying the fusion rule:

$$\eta \otimes \eta = \mathbf{1}, \quad \eta \otimes \mathcal{N} = \mathcal{N} \otimes \eta = \mathcal{N}, \quad \mathcal{N} \otimes \mathcal{N} = \mathbf{1} \oplus \eta.$$

We see  $\text{NO } \mathcal{N}^{-1}$ .

In above description, we assume systems are bosonic.

To describe fermionic systems, we extend the fusion category to

## fermionic fusion supercategory

[Bhardwaj–Inamura–Tiwari '24]

## Fermionic fusion supercategories

- In a fusion category, topological point-like defect (TPD) b/w  $a$  and  $b$  form a finite dim  $\mathbb{C}$ -vector space,  $\text{Hom}(a, b)$ .
- In a fusion supercategory,  $\text{Hom}(a, b)$  is equipped with a  $\mathbb{Z}_2$ -grading that represents the fermion parity of TPDs.
- A simple line  $a$  is called an  $m$ -type if  $\text{Hom}(a, a) \cong \mathbb{C}^{1|0}$ .  
Physically,  $a$  CANNOT have a fermionic TPD on it.
- A simple line  $a$  is called a  $q$ -type if  $\text{Hom}(a, a) \cong \mathbb{C}^{1|1}$ .  
Physically,  $a$  CAN have a fermionic TPD on it.

Any fermionic system has “ $\mathbb{Z}_2$ -symmetry”, which is generated by a 1d fermionic invertible TQFT denoted by a  $\pi$  line.

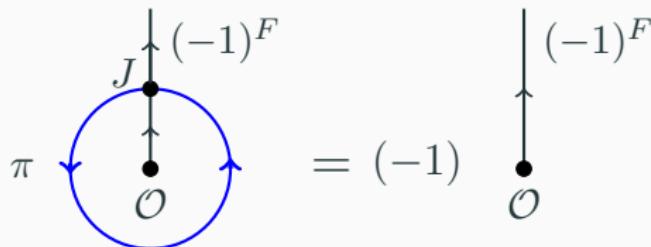
The  $\pi$  line is fermionically isomorphic to  $\mathbf{1}$ ; the fermionic endpoint  $\mathcal{O}_\pi \in \text{Hom}(\mathbf{1}, \pi)$  exists.

When  $a$  is  $m$ -type,  $\pi a$  ( $:= \pi \otimes a$ ) is isomorphic to  $a$  via a fermionic isomorphism  $\mathcal{O}_\pi \otimes 1_a$ , where  $1_a$  is a trivial TPD on  $a$ .

When  $a$  is  $q$ -type, there is also a bosonic isomorphism  $\mathcal{O}_\pi \otimes f_a$  b/w  $a$  and  $\pi a$ , where  $f_a \in \text{Hom}(a, a)$  is a fermionic isomorphism from  $a$  to itself.

Any fermionic system also has a fermion parity symmetry  $\mathbb{Z}_2^f$ , which is non-anomalous.

The  $\pi$  and  $(-1)^F$  lines have a canonical junction  $J$



This shows that the  $\pi$  line acts as  $-1$  on operators in the  $(-1)^F$ -twisted sector.

Namely, the  $\pi$  acts as  $-1$  on the Ramond sector; it acts as  $+1$  on the Neveu-Schwarz sector.

# Vacua and TDLs in $\text{QCD}_2$

---

Let us consider massless  $\text{QCD}_2$  w/ a gauge group  $G$ , a fermion in representation  $R$ .

The IR eff theory is described by the gauged WZW model with the coset

$$\frac{\text{SO}(\dim(R))_1}{G_{I(R)}},$$

where  $I(R)$  is the Dynkin index.

A theory is gapped if and only if

$$c_{\text{SO}(\dim(R_\pm))/G_{I(R_\pm)}} = c_{\text{SO}(\dim(R_\pm))} - c_{G_{I(R_\pm)}} = 0,$$

equivalently,  $G_{I(R)} \subset \text{SO}(\dim(R))_1$  is the conformal embedding.

[Delmastro–Gomis–Yu '21]

Since  $c_{SO}(\dim(R_{\pm})) / G_{I(R_{\pm})} = 0$  for the gapped theories, there are no dynamical d.o.f. in the IR.

However, there can exist topological d.o.f.

- topological local ops  $\implies$  degeneracy of vacua
- topological line ops  $\implies$  (non-invertible) symmetry

We focus on  $SU(N)$  adjoint QCD.

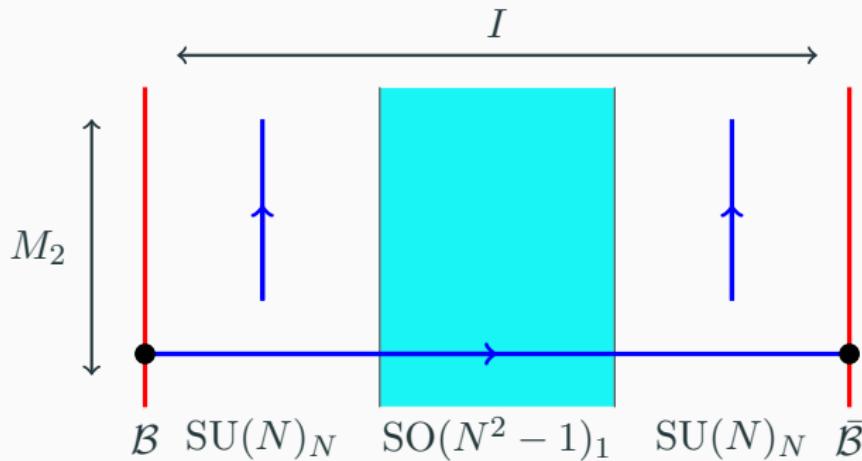
The vacuum structure and TDLs in the bosonized adjoint QCD is studied by [\[Komargodski–Ohmori–Roumpedakis–Seifnashri '20\]](#) in detail.

We study the (fermionic) adjoint QCD itself by applying the fermionic fusion supercategory.

## Topological operators in $\text{QCD}_2$

To find the vacua and TDLs, we note that  $\text{SO}(N^2 - 1)_1$  WZW model can be obtained by gauging the (non-)invertible symmetry  $A$  of  $\text{SU}(N)_N$  WZW model.

One convenient way to understand is to realize the WZW model as a CS theory on  $M_2 \times I$ :



## An example: $N = 3$

### Vacua:

The vacua  $v_i^{(p)}$  with 1-form charge  $p \in \mathbb{Z}_3$  are

$$\alpha(L_{00}) = v_0^{(0)}, \quad \alpha(L_{10}) = v_1^{(1)}, \quad \alpha(L_{01}) = v_2^{(2)},$$

$$\alpha(L_{11}) = v_0^{(0)} + 2v_3^{(0)},$$

We find four vacua, and  $v_{0,3}^{(0)}$  have the same 1-form charge (i.e., in the same universe).

## TDLs:

The TDLs  $\mathcal{L}_\mu^m$  and  $\mathcal{L}_\mu^q$  are

$$\alpha_{00}^\pm = \mathbf{1}, \quad \alpha_{10}^+ = \mathcal{L}_1^q, \quad \alpha_{01}^+ = \mathcal{L}_2^q, \quad \alpha_{11}^+ = \pi + \mathcal{L}_3^m + \pi \mathcal{L}_3^m,$$

$$\alpha_{10}^- = \mathcal{L}_4^q, \quad \alpha_{01}^- = \mathcal{L}_5^q, \quad \alpha_{11} = \pi + \mathcal{L}_6^m + \pi \mathcal{L}_6^m,$$

$$\alpha_{10}^+ \alpha_{10}^- = \mathcal{L}_7^m, \quad \alpha_{10}^+ \alpha_{01}^- = \mathcal{L}_8^m, \quad \alpha_{01}^+ \alpha_{10}^- = \mathcal{L}_9^m, \quad \alpha_{01}^+ \alpha_{01}^- = \mathcal{L}_{10}^m,$$

$$\alpha_{10}^+ \alpha_{11}^- = \mathcal{L}_1^m + 2\mathcal{L}_{11}^q, \quad \alpha_{01}^+ \alpha_{11}^- = \mathcal{L}_2^m + 2\mathcal{L}_{12}^q,$$

$$\alpha_{11}^+ \alpha_{10}^- = \mathcal{L}_4^m + 2\mathcal{L}_{13}^q, \quad \alpha_{11}^+ \alpha_{01}^- = \mathcal{L}_5^m + 2\mathcal{L}_{14}^q,$$

$$\alpha_{11}^+ \alpha_{11}^- = \mathbf{1} + \mathcal{L}_3^m + \pi \mathcal{L}_3^m + \mathcal{L}_6^m + \pi \mathcal{L}_6^m + 2(-1)^F + \pi(-1)^F,$$

where  $\alpha_\mu^\pm := \alpha^\pm(L_\mu)$ .

We find 8  $m$ -type lines up to  $\pi$  line, and 8  $q$ -type lines.

## An example: $N = 4$

### Vacua:

The vacua  $v_i^{(p)}$  with 1-form charge  $p \in \mathbb{Z}_4$  are

$$\begin{aligned}\alpha(L_{000}) &= v_0^{(0)}, \quad \alpha(L_{100}) = v_1^{(1)}, \quad \alpha(L_{010}) = v_2^{(2)}, \quad \alpha(L_{001}) = v_3^{(3)}, \\ \alpha(L_{011}) &= v_1^{(1)} + 2v_4^{(2)}, \quad \alpha(L_{020}) = 2v_5^{(0)}, \quad \alpha(L_{110}) = v_3^{(3)} + 2v_6^{(3)}, \\ \alpha(L_{111}) &= 2v_2^{(2)} + 2v_7^{(2)}.\end{aligned}$$

We find totally eight vacua, and each universe has a two-fold degenerate vacuum.

## TDLs:

The TDLs  $\mathcal{L}_\mu^m$  and  $\mathcal{L}_\mu^q$  are

$$\alpha_{000}^\pm = 1, \quad \alpha_{400}^\pm = \pi, \quad \alpha_{100}^+ = \mathcal{L}_1^q, \quad \alpha_{010}^+ = \mathcal{L}_2^q, \quad \alpha_{001}^+ = \mathcal{L}_3^q,$$

$$\alpha_{011}^+ = \mathcal{L}_1^q + \mathcal{L}_4^m + \pi \mathcal{L}_4^m, \quad \alpha_{020}^+ = \mathcal{L}_5^m + \pi \mathcal{L}_5^m,$$

$$\alpha_{110}^+ = \mathcal{L}_3^q + \mathcal{L}_6^m + \pi \mathcal{L}_6^m, \quad \alpha_{111}^+ = 2\mathcal{L}_2^q + 2\mathcal{L}_7^q,$$

$$\alpha_{100}^- = \mathcal{L}_8^q, \quad \alpha_{010}^- = \mathcal{L}_9^q, \quad \alpha_{001}^- = \mathcal{L}_{10}^q, \quad \alpha_{011}^- = \mathcal{L}_8^q + \mathcal{L}_{11}^m + \pi \mathcal{L}_{11}^m,$$

$$\alpha_{020}^- = \mathcal{L}_{12}^m + \pi \mathcal{L}_{12}^m, \quad \alpha_{110}^- = \mathcal{L}_{10}^q + \mathcal{L}_{13}^m + \pi \mathcal{L}_{13}^m,$$

$$\alpha_{111}^- = 2\mathcal{L}_9^q + 2\mathcal{L}_{14}^q.$$

In addition, these fusions give rise to 25 m-type lines and 24 q-type lines. Consequently, in total there are 32 m-type lines (up to the  $\pi$  line) and 32 q-type lines.

## Comparison with compactified $\text{QCD}_2$

---

The above results agree with those obtained from the small circle expansion of adjoint QCD<sub>2</sub> [Dempsey–Klebanov–Pufu–Søgaard '24].

We compactify the SU( $N$ ) adjoint QCD<sub>2</sub> on a circle  $S^1$  with radius  $R$ .

For  $gR \ll 1$ , the leading order of the effective action is given by

$$S = \int dt \left( \dot{\vec{q}} \cdot \dot{\vec{q}} - \frac{Ng^2}{2\pi} \vec{q} \cdot \vec{q} + i\vec{\chi} \cdot \dot{\vec{\chi}} \right),$$

where  $\vec{q}(t) = (q_1(t), \dots, q_N(t))$  and  $\vec{\chi}(t) = (\chi_1(t), \dots, \chi_N(t))$  are bosons and fermions originating from the  $A_\mu(t, x)$  and  $\psi(t, x)$  in the adjoint representation, respectively.

They satisfy  $\sum_i q_i = 0$  and  $\sum_i \chi_i = 0$ .

The action is nothing but  $N - 1$  harmonic oscillators w/  $N - 1$  decoupled fermions.

We denote the creation and annihilation operators built from  $\vec{q}$  by  $a_j^\dagger, a_j$ , and  $\vec{\chi}$  by  $c_j^\dagger, c_j$  ( $j = 1, \dots, N - 1$ ), respectively.

By acting  $c_j^\dagger$ 's on  $|0\rangle$ , we find the degenerate vacua:

$N = 3$ :

| $\mathbb{Z}_3^{[1]}$ : | 0                                              | 1                       | 2                       |
|------------------------|------------------------------------------------|-------------------------|-------------------------|
|                        | $ 0\rangle, c_1^\dagger c_2^\dagger  0\rangle$ | $c_1^\dagger  0\rangle$ | $c_2^\dagger  0\rangle$ |

$N = 4$ :

| $\mathbb{Z}_4^{[1]}$ : | 0                                              | 1                                                          | 2                                                                      | 3                                                          |
|------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|
|                        | $ 0\rangle, c_1^\dagger c_3^\dagger  0\rangle$ | $c_1^\dagger  0\rangle, c_2^\dagger c_3^\dagger  0\rangle$ | $c_2^\dagger  0\rangle, c_1^\dagger c_2^\dagger c_3^\dagger  0\rangle$ | $c_3^\dagger  0\rangle, c_1^\dagger c_2^\dagger  0\rangle$ |

## Summary

We discussed **vacua** and **non-invertible symmetry** in  $SU(N)$  adjoint massless QCD<sub>2</sub> based on formulation of fermionic fusion supercategory.

The gapped QCDs may have degenerate vacua with different 1-form symmetry charges.

We explicitly compute the vacuum degeneracy and TDLs in  $SU(N)$  adjoint QCD for  $N = 3$  and  $N = 4$ .

The results agree with the analysis of the small circle expansion.

## Back-up

---

# Topological defects

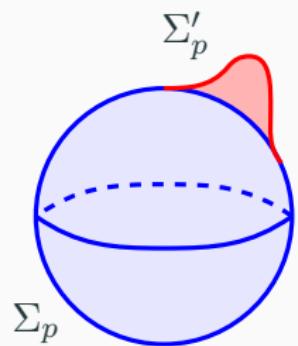
Symmetries are [Gaiotto–Kapustin–Seiberg–Willett '14]

## Topological defects

A topological defect is an operator  $\mathcal{D}(\Sigma_p)$  supported on a closed mfd  $\Sigma_p$  s.t.

$$\langle \cdots \mathcal{D}(\Sigma_p) \cdots \rangle = \langle \cdots \mathcal{D}(\Sigma'_p) \cdots \rangle,$$

if no charged objects b/w the region  $\Sigma_p$  and  $\Sigma'_p$ .



## Fermionic fusion supercategories

In a fusion category, topological point-like defect (TPD)  $b/w a$  and  $b$  form a finite dim  $\mathbb{C}$ -vector space,  $\text{Hom}(a, b)$ .

In a fusion supercategory,  $\text{Hom}(a, b)$  is equipped with a  $\mathbb{Z}_2$ -grading that represents the fermion parity of TPDs.

The  $\mathbb{Z}_2$ -grading of  $f \in \text{Hom}(a, b)$  is denoted by  $|f|$ , which is 0 if  $f$  is bosonic and 1 if  $f$  is fermionic.

The TPDs satisfy the (anti-)commutation relation depicted as

$$\begin{array}{c} f \\ \mid \\ a \end{array} \quad \begin{array}{c} g \\ \bullet \\ \mid \\ b \end{array} = (-1)^{|f||g|} \quad \begin{array}{c} f \\ \bullet \\ \mid \\ a \end{array} \quad \begin{array}{c} g \\ \mid \\ b \end{array}$$

# Gapped theories

The complete list of the gapped theories is

| $\mathfrak{g}$                                          | $R$                    | $\mathfrak{g}$                         | $R$     |
|---------------------------------------------------------|------------------------|----------------------------------------|---------|
| $\forall \mathfrak{g}$                                  | adjoint                | $\mathfrak{su}(2)$                     | 5       |
| $\mathfrak{so}(N)$                                      | $\square$              | $\mathfrak{so}(9)$                     | 16      |
| $\mathfrak{u}(N)$                                       | $\square_q$            | $\mathfrak{f}_4$                       | 26      |
| $\mathfrak{so}(N)$                                      | $\square \square$      | $\mathfrak{sp}(4)$                     | 42      |
| $\mathfrak{sp}(N)$                                      | $\square \square$      | $\mathfrak{su}(8)$                     | 70      |
| $\mathfrak{u}(N)$                                       | $\square \square_q$    | $\mathfrak{so}(16)$                    | 128     |
| $\mathfrak{u}(N)$                                       | $\square_q$            | $\mathfrak{so}(10) + \mathfrak{u}(1)$  | $16_q$  |
| $\mathfrak{su}(M) + \mathfrak{su}(N) + \mathfrak{u}(1)$ | $(\square, \square)_q$ | $\mathfrak{e}_6 + \mathfrak{u}(1)$     | $27_q$  |
| $\mathfrak{so}(M) + \mathfrak{so}(N)$                   | $(\square, \square)$   | $\mathfrak{su}(2) + \mathfrak{su}(2)$  | (2, 4)  |
| $\mathfrak{sp}(M) + \mathfrak{sp}(N)$                   | $(\square, \square)$   | $\mathfrak{su}(2) + \mathfrak{sp}(3)$  | (2, 14) |
|                                                         |                        | $\mathfrak{su}(2) + \mathfrak{su}(6)$  | (2, 20) |
|                                                         |                        | $\mathfrak{su}(2) + \mathfrak{so}(12)$ | (2, 32) |
|                                                         |                        | $\mathfrak{su}(2) + \mathfrak{e}_7$    | (2, 56) |

Mathematically, it is given as follows. Let  $\mathcal{C}$  be the fusion category of the diagonal  $SU(N)_N$  WZW model. Then the vacua of the IR theory are given by  $A$ -module  $\mathcal{C}_A$ ; the TDLs are given by  $A$ - $A$ -bimodule  ${}_A\mathcal{C}_A$ .

To identify the vacua and TDLs in the  $QCD_2$ , we need to find maps  $\mathcal{C} \rightarrow \mathcal{C}_A$  and  $\mathcal{C} \rightarrow {}_A\mathcal{C}_A$ . The latter is called  $\alpha$ -induction.