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1.Background



Background1: Petz map and Bayes’ rule

Petz map[Petz, 1988]

PA,γ̂(·) = γ̂1/2A†(A(γ̂)−1/2(·)A(σ̂)−1/2)γ̂1/2

▶ A: TPCP map(A†: adjoint with respect to the Hilbert-Schmidt inner product)
▶ γ̂: reference state (density matrix)
▶ By definition, PA,γ̂ ◦ A(γ̂) = γ̂.

⇒ Petz map is a “good” reverse process for quantum dynamics.

Petz map is nowadays used in
▶ Quantum error correction (cf. [Barnum and Knill, 2002])
▶ Black hole information paradox (cf.[Penington et al., 2022])
▶ Bulk reconstruction in the AdS/CFT correspondence (cf. [Chen et al., 2020])

⇒ It is important to understand the Petz map better.

Petz map is a quantum analog of Bayes’ rule.
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Schematic correspondence between Petz map and Bayes’ rule
Bayes’ rule

P (xt, t|xs, s) =
P (xs, s|xt, t)P (xt, t)

P (xs, s)
(s > t)

→ transition probability that traces time backward

Q(xt, t) :=

∫
xs

P (xt, t|xs, s)Q(xs, s)

= P (xt, t)
1/2

[∫
xs

P (xs, s|xt, t)
(
P (xs, s)

−1/2Q(xs, s)P (xs, s)
−1/2

)]
P (xt, t)

1/2

Note: P (xs, s) =
∫
xt
P (xs, s|xt, t)P (xt, t)

Petz map

PA,γ̂(ρ) = γ̂1/2A†(A(γ̂)−1/2(ρ)A(γ̂)−1/2)γ̂1/2

→ We see that the Petz map is a quantum analog of Bayes’ rule.
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Backgrounds 2: A reverse process for quantum and classical processes
In this talk, we focus on the Markov process.
Quantum Markov process (semigroup TPCP) ⇔ Lindblad equation, a master equation for
open quantum system

∂γ̂t
∂t

= − i

ℏ

[
Ĥt, γ̂t

]
+
∑
α

(
L̂α,tγ̂tL̂

†
α,t −

1

2

{
L̂†
α,tL̂α,t, γ̂t

})
▶ A reverse process for the Lindblad dynamics based on the Petz map was constructed in

[Kwon and Kim, 2019, Kwon et al., 2022].

Classical Markov process ⇔ Fokker-Planck equation

∂P (xt, t)

∂t
= −

∑
i

∂

∂xit

[
f i(xt, t)P (xt, t)

]
+

1

2

∑
ij

∂2

∂xit∂x
j
t

[
Dij(xt, t)P (xt, t)

]
▶ A reverse process of the Fokker-Planck dynamics based on Bayes’ rule is known as reverse

diffusion [Anderson, 1982].
▶ This provides a mathematical foundation for diffusion models [Song et al., 2020], which have

recently gained attention in the context of image-generating AI.

⇒ Are there any relationships between quantum and classical reverse processess?
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The goal of this talk.

In this talk, we show that there is a concrete correspondence between the reverse process
of the Lindblad equation and the reverse diffusion process, by using a semi-classical
approximation based on the Wigner transform and an ℏ expansion.

Lindblad eq

Fokker-Planck eq

A reverse process of
the Lindblad dynamics

Reverse diffusion diffusion model

semi-classical approximation

Petz map

Bayes’ rule

semi-classical approximation
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2.Reverse process of the Lindblad dynamics (review)
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Reverse process of the Lindblad dynamics [Kwon and Kim, 2019, Kwon et al., 2022]

Lindblad equation:

∂γ̂t
∂t

= − i

ℏ

[
Ĥt, γ̂t

]
+
∑
α

(
L̂α,tγ̂tL̂

†
α,t −

1

2

{
L̂†
α,tL̂α,t, γ̂t

})
www� Petz map which uses γ̂t as reference state.

A reverse process of the Lindblad dynamics

−∂ρ̂

∂t
= − i

ℏ

[
ˆ̃Ht, ρ̂

]
+
∑
α

(
ˆ̃Lα,tρ̂

ˆ̃L†
α,t −

1

2

{
ˆ̃L†
α,t

ˆ̃Lα,t, ρ̂
})

where

Ĝt = γ̂
1/2
t ,

˙̂
Gt = dĜt/dt ,

ˆ̃Ht = −1

2

(
ĜtĤtĜt + iℏ ˙̂

GtĜ
−1
t +

iℏ
2

∑
α

ĜtL̂
†
α,tL̂α,tĜ

−1
t

)
+ h.c. ,

ˆ̃Lα,t = ĜtL̂
†
α,tĜ

−1
t .
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3.Reverse diffusion (review)
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Reverse diffusion[Anderson, 1982]
Fokker – Planck eq:

∂P (xt, t)

∂t
= −

∑
i

∂

∂xit

[
f i(xt, t)P (xt, t)

]
+

1

2

∑
ij

∂2

∂xit∂x
j
t

[
Dij(xt, t)P (xt, t)

]
www� Bayes’ rule:

Reverse diffusion :

−∂Q(xt, t)

∂t
=
∑
i

∂

∂xit

[
f̄ i(xt, t)Q(xt, t)

]
+

1

2

∑
ij

∂2

∂xit∂x
j
t

[
Dij(xt, t)Q(xt, t)

]
where f̄ i(xt, t) = f i(xt, t)−

1

P (xt, t)

∑
j

∂

∂xjt

[
Dij(xt, t)P (xt, t)

]
→the drift term adjusts the distribution to the initial distribution P (x, 0).
(cf. diffusion model→ approximate the diffusion correction term by neural networks.)
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Q(xt, t) =
∫
xs

P (xt, t|xs, s)Q(xs, s) =
∫
xs

Q(xs, s)
P (xs,s|xt,t)P (xt,t)

P (xs,s)
(s > t)



4.Fokker–Planck eq from Lindblad eq
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Wigner transformation
Wigner transformation: A transformation between operators in the Hilbert space and
functions on the phase space.

O(Q,P ) =

∫
dNσ

〈
Q+

σ

2

∣∣∣ Ô(q̂, p̂)
∣∣∣Q− σ

2

〉
e−

i
ℏP ·σ

where Q =
q1 + q2

2
, σ = q1 − q2

Wigner function: Wigner transform of the density operator.

W (ρ)(Q,P ) =

∫
dNσ

〈
Q+

σ

2

∣∣∣ ρ̂ ∣∣∣Q− σ

2

〉
e−

i
ℏP ·σ

▶ Properties:
∫

dNQdNP

(2πℏ)N
W (ρ)(Q,P ) = 1〈

Ô
〉
= Tr

(
Ôρ̂
)
=

∫
dNQdNP

(2πℏ)N
O(Q,P )W (ρ)(Q,P )

⇒ (quasi) probability on phase space.
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Moyal product

Wigner transform of the product of operators:

f̂ ĝ
Wigner−−−−→ f(Q,P ) ⋆ g(Q,P )

Here

f(Q,P ) ⋆ g(Q,P ) := exp

[
iℏ
2

N∑
i=1

(
∂

∂Qi

∂

∂P ′
i

− ∂l

∂Q′
i

∂

∂Pi

)]
f(Q,P )g(Q′,P ′)

∣∣∣∣∣
Q′=Q
P ′=P

= fg +
iℏ
2
{f, g}p −

ℏ2

8

∑
i

[{
∂f

∂Qi
,
∂g

∂Pi

}
p

−
{

∂f

∂Pi
,
∂g

∂Qi

}
p

]
+O

(
ℏ3
)
,

where {, }p is the Poisson bracket.
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Lindblad eq→Fokker-Planck eq

We assume L̂α,t = ℏ−1/2ℓ̂α,t.

Apply the Wigner transformation to the Lindblad equation and expand it up to the first
order in ℏ.
⇒ we obtain the Fokker-Planck type equation as follows:

∂W
(γ)
t

∂t
= −

∑
µ

∂

∂Xµ

(
fµ(X, t)W

(γ)
t

)
+

1

2

∑
µ,ν

∂2

∂Xµ∂Xν

(
Gµν

R (X, t)W
(γ)
t

)
.

Here, Xµ = (Q,P ) is a position on the phase space and

fµ(X, t) :=
∑
ν

ωµν

[
∂Ht

∂Xν
+
∑
α

(
Im

(
ℓα,t

∂ℓ∗α,t
∂Xν

)
− ℏ

2
Re

{
ℓα,t,

∂ℓ∗α,t
∂Xν

}
p

)]
, (1)

Gµν(X, t) = ℏ
∑
λ,ρ

∑
α

ωµλωνρ Re

(
∂ℓα,t
∂Xλ

∂ℓ∗α,t
∂Xρ

)
, (2)

where ωµν is a sympletic form.
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4. Reverse diffusion from a reverse process for Lindblad dynamics
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A reverse process of Lindblad eq→ reverse diffusion

The reverse process of the Lindblad dynamics is also a Lindblad equation, so we can apply
the result for the forward process:

−∂W
(ρ)
t

∂t
= −

∑
µ

∂

∂Xµ

(
f̃µ(X, t)W

(ρ)
t

)
+

1

2

∑
µ,ν

∂2

∂Xµ∂Xν

(
G̃µν

R (X, t)W
(ρ)
t

)
Here,

f̃ , G̃R =

(
The one obtaind by replacing the Ht and ℓα,t appearing in f and GR

in the forward process with H̃t and ℓ̃α,t

)

H̃t and ℓ̃α,t are still contains Moyal product→ Expand them up to the first order in ℏ.
Diffusion matrix: G̃R = GR +O

(
ℏ2
)

10 / 17



A reverse process of Lindblad eq→ reverse diffusion: correction for drift

ˆ̃Ht = −Ĥt +
i

4

∑
k

{[
ℓ̂k,tℓ̂k,t, Ĝ

]
, Ĝ−1

}
+

1

2

[[
Ĥt, Ĝ

]
, Ĝ−1

]
− iℏ

2

[
˙̂
G, Ĝ−1

]
︸ ︷︷ ︸

∼O(ℏ2)

Wigner&ℏ expansion−−−−−−−−−−−−→ −Ht +
i

2

∑
k

(
iℏ
{
|ℓk,t|2, GW

}
p
G−1

W

)
+O

(
ℏ2
)

ˆ̃
ℓk,t = ℓ̂†k,t − Ĝ

[
Ĝ−1, ℓ̂†k,t

]
Wigner&ℏ expansion−−−−−−−−−−−−→ ℓ∗k,t − iℏGW

{
G−1

W , ℓ∗k,t
}
p
+O

(
ℏ2
)

On the zeroth-order term of ℏ,{
|ℓk,t|2, GW

}
p
G−1

W → 1

2

1

W
(γ)
t

∂W
(γ)
t

∂Xµ
, GW

{
G−1

W , ℓ∗k,t
}
p
→ −1

2

1

W
(γ)
t

∂W
(γ)
t

∂Xµ

−→The structure of the correction term for the drift term appearing in the reverse
diffusion.
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A reverse process of Lindblad eq→reverse diffusion: result

−∂W
(ρ)
t

∂t
=
∑
µ

∂

∂Xµ

(
f̄µ(X, t)W

(ρ)
t

)
+

1

2

∑
µ,ν

∂2

∂Xµ′∂Xν′

(
Gµν

R (X, t)W
(ρ)
t

)
where f̄µ = fµ− 1

W
(γ)
t

∑
ν

∂

∂Xν′

(
Gµν

R W
(γ)
t

)
w�

We obtain the reverse diffusion equation from the reverse process of the Lindblad
equation.
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5. Application to the renormalization group (on going)
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A inverse of the renormalization group flow

Motivation:
▶ Predicting high-energy theory from low-energy data
▶ A relationship between AdS/CFT and RG→Understanding the Emergence of Bulk Geometry

[de Boer et al., 2000, Swingle, 2012, Nozaki et al., 2012]
▶ application to critical slowing down[Bachtis et al., 2022]

Exact renormalization group equation for density matrix (our work)

− Λ
∂

∂Λ
ρΛ[φ

+, φ−]

=

∫
p

[
−1

2

K̇Λ,p

2ωp
coth

(
βωp

2

)(
δ

δφ+
+

δ

δφ−

)2

− 1

2

K̇Λ,p

KΛ,p

(
δ

δφ+
+

δ

δφ−

)(
φ+ + φ−)

+
1

4

K̇Λ,p

K2
Λ,p

ωp coth

(
βωp

2

)(
φ+ − φ−)2] ρΛ[φ+, φ−]
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The feature of ERG eq for density matrix
The ERG eq for the density matrix is equivalent to the Lindblad eq, which has the
following Hamiltonian and jump operators:

▶ “Hamiltonian”:

XΛ = −1

4

∫
p

−K̇Λ,p

KΛ,p

(
π̂−pϕ̂p + ϕ̂pπ̂−p

)
= − i

4

∫
p

(
â†Λ,pâ

†
Λ,−p − âΛ,pâΛ,−p

)
▶ Jump operators:

L1(p) =

√
−K̇Λ,p

2KΛ,p

(
coth

(
βωp

2

)
+ 1

)
âΛ,p, L2(p) =

√
−K̇Λ,p

2KΛ,p

(
coth

(
βωp

2

)
− 1

)
â†Λ,p

âΛ,p =
1√
2

(√
ωp

KΛ,p
ϕ̂p + i

√
KΛ,p

ωp
π̂p

)
It becomes the Fokker-Planck equation on the phase space by Wigner transformation
without ℏ expansion.

⇒We can analyze the inverse of the renormalization group in terms of the diffusion model
by using the previous result.
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6. Conclusion



Conclusion

Conclusion

Using the semi-classical approximation based on the Wigner transform and ℏ expansion, we
showed the relationship between the reverse process of the Lindblad dynamics via Petz map
and the reverse diffusion process via Bayes’ rule.

Lindblad eq

Fokker-Planck eq

A reverse process of
Lindblad dynamics

Reverse diffusion diffusion model

semi-classical approximation

Petz map

Bayes’ rule

semi-classical approximation
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Future prospects

Numerical Verification

▶ ℏ dependence
▶ Using the ERG eq for density matrix

Ĥ ∝ (â†)2 − (â)2, L̂1 ∝ â, L̂2 ∝ â†

Note: ERG eq for density matrix becomes a Fokker-Planck type equation without ℏ
expansion.

Analysis of the inverse of the renormalization group based on the diffusion model.

Construct a quantum version of the diffusion model based on Petz map
(cf. [Liu et al., 2025, Hu et al., 2025]).
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Reverse process of the Lindblad dynamics[Kwon and Kim, 2019, Kwon et al., 2022]

Lindblad equation:

∂ρ̂t
∂t

= L(ρ̂t) = − i

ℏ

[
Ĥt, ρ̂t

]
+
∑
k

(
L̂k,tρ̂tL̂

†
k,t −

1

2

{
L̂†
k,tL̂k,t, ρ̂t

})
Infinitesimal time evolution:

ρ̂t+∆t = T∆t(ρ̂t) = (1 + ∆tL)(ρ̂t)

γ̂t: a quantum state which follow the Lindblad eq.

Petz map for T∆t:

PT∆t,γ̂t(·) = γ̂
1/2
t (1 + ∆tL)†

(
γ̂
−1/2
t+∆t(·)γ̂

−1/2
t+∆t

)
γ̂
1/2
t
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Reverse process of the Lindblad dynamics(Cont’d)

Expanding it around t and truncate the terms which order is higher than O
(
∆t2

)
:

−∂ρ̂

∂t
= − i

ℏ

[
ˆ̃Ht, ρ̂

]
+
∑
k

(
ˆ̃Lk,tρ̂

ˆ̃L†
k,t −

1

2

{
ˆ̃L†
k,t

ˆ̃Lk,t, ρ̂
})

where we have set Ĝt = γ̂
1/2
t ,

˙̂
Gt = dĜt/dt and

ˆ̃Ht = −1

2

(
ĜtĤtĜt + iℏ ˙̂

GtĜ
−1
t +

iℏ
2

∑
k

ĜtL̂
†
k,tL̂k,tĜ

−1
t

)
+ h.c.

ˆ̃Lk,t = ĜtL̂
†
k,tĜ

−1
t

We have got a reverse process for Lindblad dynamics.
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ERG eq for density matrix: setup 1

Finite temperature scalar field theory

SΛ =
1

2

∫ β/2

−β/2
dt

∫
p
K−1

Λ,p

(
∂ϕ(t,p)

∂t

∂ϕ(t,−p)

∂t
+ ω2

pϕ(t,p)ϕ(t,−p)

)
+ Sint,Λ

Λ: effective energy scale

ωp =
√
p2 +m2

KΛ,p = K(|p|/Λ): cutoff function.

partition function

ZΛ =

∫
Dϕ(−β/2 ≤ t ≤ β/2)δ[ϕ(+β/2)− ϕ(−β/2)]e−SΛ

1

|p|/Λ

K
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ERG eq for density matrix: setup 2

density matrix

ρΛ[φ
+, φ−] =

1

ZΛ

∫
Dϕ(−β/2 < t < β/2)e

−SΛ|ϕ(±β/2)=φ±

requirement:
1 −ΛdZΛ

dΛ = AΛZΛ (AΛ : a quantity which is independent to fields)

2 −Λ∂e−Sint,Λ

∂Λ

∣∣∣
φ+=φ−=φ

= −Λ
∂ e−Sint,Λ |

φ+=φ−=φ

∂Λ

3 −Λ
∂ e−Sint,Λ |

φ+=φ−=φ

∂Λ =

− 1
2

∫
p

K̇Λ,p

2ωp
coth

(
βωp

2

) δ2 e−Sint,Λ |
φ+=φ−=φ

δφpδφ−p
− 1

2

∫ β/2

−β/2
dtds

∫
p
K̇Λ,p∆(t, s)

δ2 e−Sint,Λ |
φ+=φ−=φ

δϕq(t,p)δϕq(s,−p)

(cf. Polchinski eq)

φ+

φ−

+β/2

−β/2

p

t
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ERG eq for density matrix: result

− Λ
∂

∂Λ
ρΛ[φ

+, φ−]

=

∫
p

[
−1

2

K̇Λ,p

2ωp
coth

(
βωp

2

)(
δ

δφ+
+

δ

δφ−

)2

− 1

2

K̇Λ,p

KΛ,p

(
δ

δφ+
+

δ

δφ−

)(
φ+ + φ−)

− χ

4

K̇Λ,p

KΛ,p

(
φ+ − φ−)( δ

δφ+
− δ

δφ−

)
+
1− χ

4

K̇Λ,p

K2
Λ,p

ωp coth

(
βωp

2

)(
φ+ − φ−)2] ρ[φ+, φ−]

−Λ
∂e−Sint,Λ

∂Λ
=− 1

2

∫ β/2

−β/2

dtds

∫
p

K̇Λ,p∆(t, s)
δ2e−Sint,Λ

δϕq(t,p)δϕq(s,−p)

+
1

2

∫
p

[
−K̇Λ,p

2ωp
coth

(
βωp

2

)(
δ

δφ+
+

δ

δφ−

)2

− χ

2

K̇Λ,p

KΛ,p

(
φ+ − φ−)( δ

δφ− − δ

δφ−

)]
e−Sint,Λ

χ →a parameter which depends on RG scheme.

17 / 17



ERG as a quantum operation

General evolution of a quantum state ⇒ trace-preserving completely positive (TPCP) map

The renormalization group procedure constructs semi-group: RΛ3,Λ2 ◦RΛ2,Λ1 = RΛ3,Λ1

TPCP map forming a semi-group ⇔ Lindblad equation

∂ρ

∂t
= −i[X, ρ] +

∑
m

(
LmρL†

m − 1

2

{
L†
mLm, ρ

})
Q. Are there cases where the ERG equation for the density matrix becomes the Lindblad
equation?
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ERG as a quantum operation(Cont’d)
A. Yes, there are.

The range of χ is determined by βωp.

χ = 0 is the special case that is allowed for any βωp.
▶ Unitary part of RG (“Hamiltonian”)

XΛ = −1

4

∫
p

−K̇Λ,p

KΛ,p

(
π̂−pϕ̂p + ϕ̂pπ̂−p

)
= − i

4

∫
p

(
â†Λ,pâ

†
Λ,−p − âΛ,pâΛ,−p

)
→disentanger! (cf. [Kuwahara et al., 2024])

▶ Non-unitary part (“jump operator”)

L1(p) =

√
−K̇Λ,p

2KΛ,p

(
coth

(
βωp

2

)
+ 1

)
â
(0)
Λ,p, L2(p) =

√
−K̇Λ,p

2KΛ,p

(
coth

(
βωp

2

)
− 1

)
â
(0)†
Λ,p

â
(0)
Λ,p =

1√
2

(√
ωp

KΛ,p
ϕ̂p + i

√
KΛ,p

ωp
π̂p

)
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(Score based)diffusion model: learning

 

  

Forward SDE (data → noise) 

Reverse SDE (noise → data) 

score function

Figure: Conceptual diagram. adapted from [Song et al., 2020]

Learning process
1 Pemp,0(x): Empirical distribution constructed from data that reflects the statistical features

of the data.
2 Diffusing Pemp,0(x) yields Gaussian noise at time T : Pemp,t(x)

3 Learn a neural network siθ,t that approximates siθ,t ∼ 1
Pemp,t

∑
j

∂(DijPemp,t)
∂xj .
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(Score based)diffusion model: generating process
 

  

Forward SDE (data → noise) 

Reverse SDE (noise → data) 

score function

Figure: Conceptual diagram. adapted from [Song et al., 2020]

Generating process
1 Prepare Gaussian noise qT (x), which we take as an “initial” distribution for reverse diffusion.
2 “Evolve”t : T → 0 by using the reverse diffusion equation whose drift correction is

approximated by a neural network:

−∂qt(x)

∂t
=
∑
i

∂

∂xi
t

[
f̄ i
θ,t(xt)q(xt, t)

]
+

1

2

∑
ij

∂2

∂xi
t∂x

j
t

[
Dij(xt, t)p(xt, t)

]
whre f̄ i

θ,t(xt) = f i
t (xt)− siθ,t(xt)

3 We get a new sample from q0(x).
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