

Semi-classical correspondence between Petz map and Bayes' rule: from Lindbladian to reverse diffusion

Ryota Nasu¹

in collaboration with: Gota Tanaka² and Asato Tsuchiya¹

¹Shizuoka Univ. , ²Meiji Gakuin Univ.

arXiv: 2510.18512

KEK Theory Workshop 2025
17 - 19 December 2025

1. Background

Background1: Petz map and Bayes' rule

- Petz map[Petz, 1988]

$$\mathcal{P}_{\mathcal{A}, \hat{\gamma}}(\cdot) = \hat{\gamma}^{1/2} \mathcal{A}^\dagger (\mathcal{A}(\hat{\gamma})^{-1/2}(\cdot) \mathcal{A}(\hat{\sigma})^{-1/2}) \hat{\gamma}^{1/2}$$

- ▶ \mathcal{A} : TPCP map (\mathcal{A}^\dagger : adjoint with respect to the Hilbert-Schmidt inner product)
- ▶ $\hat{\gamma}$: reference state (density matrix)
- ▶ By definition, $\mathcal{P}_{\mathcal{A}, \hat{\gamma}} \circ \mathcal{A}(\hat{\gamma}) = \hat{\gamma}$.
⇒ Petz map is a “good” reverse process for quantum dynamics.
- Petz map is nowadays used in
 - ▶ Quantum error correction (cf. [Barnum and Knill, 2002])
 - ▶ Black hole information paradox (cf. [Penington et al., 2022])
 - ▶ Bulk reconstruction in the AdS/CFT correspondence (cf. [Chen et al., 2020])⇒ It is important to understand the Petz map better.
- Petz map is a quantum analog of Bayes' rule.

Schematic correspondence between Petz map and Bayes' rule

- Bayes' rule

$$P(x_t, t|x_s, s) = \frac{P(x_s, s|x_t, t)P(x_t, t)}{P(x_s, s)} \quad (s > t)$$

→ transition probability that traces time backward

$$\begin{aligned} Q(x_t, t) &:= \int_{x_s} P(x_t, t|x_s, s)Q(x_s, s) \\ &= P(x_t, t)^{1/2} \left[\int_{x_s} P(x_s, s|x_t, t) \left(P(x_s, s)^{-1/2} Q(x_s, s) P(x_s, s)^{-1/2} \right) \right] P(x_t, t)^{1/2} \end{aligned}$$

- Note: $P(x_s, s) = \int_{x_t} P(x_s, s|x_t, t)P(x_t, t)$
- Petz map

$$\mathcal{P}_{\mathcal{A}, \hat{\gamma}}(\rho) = \hat{\gamma}^{1/2} \mathcal{A}^\dagger (\mathcal{A}(\hat{\gamma})^{-1/2} (\rho) \mathcal{A}(\hat{\gamma})^{-1/2}) \hat{\gamma}^{1/2}$$

→ We see that the Petz map is a quantum analog of Bayes' rule.

Backgrounds 2: A reverse process for quantum and classical processes

- In this talk, we focus on the Markov process.
- Quantum Markov process (semigroup TPCP) \Leftrightarrow Lindblad equation, a master equation for open quantum system

$$\frac{\partial \hat{\gamma}_t}{\partial t} = -\frac{i}{\hbar} [\hat{H}_t, \hat{\gamma}_t] + \sum_{\alpha} \left(\hat{L}_{\alpha,t} \hat{\gamma}_t \hat{L}_{\alpha,t}^\dagger - \frac{1}{2} \left\{ \hat{L}_{\alpha,t}^\dagger \hat{L}_{\alpha,t}, \hat{\gamma}_t \right\} \right)$$

- ▶ A reverse process for the Lindblad dynamics based on the Petz map was constructed in [Kwon and Kim, 2019, Kwon et al., 2022].
- Classical Markov process \Leftrightarrow Fokker-Planck equation

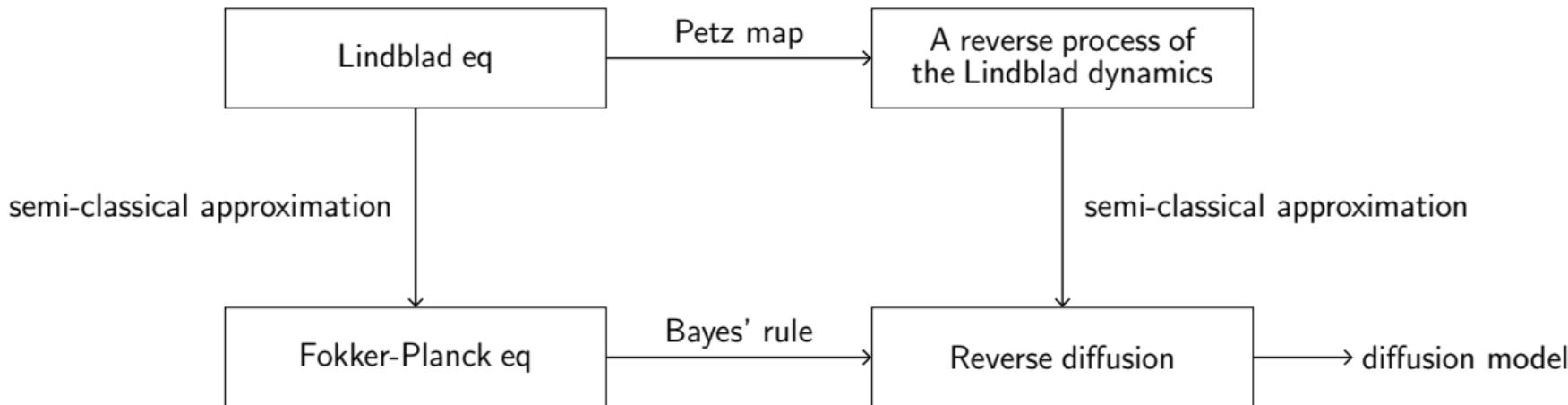
$$\frac{\partial P(x_t, t)}{\partial t} = - \sum_i \frac{\partial}{\partial x_t^i} [f^i(x_t, t) P(x_t, t)] + \frac{1}{2} \sum_{ij} \frac{\partial^2}{\partial x_t^i \partial x_t^j} [D^{ij}(x_t, t) P(x_t, t)]$$

- ▶ A reverse process of the Fokker-Planck dynamics based on Bayes' rule is known as reverse diffusion [Anderson, 1982].
- ▶ This provides a mathematical foundation for diffusion models [Song et al., 2020], which have recently gained attention in the context of image-generating AI.

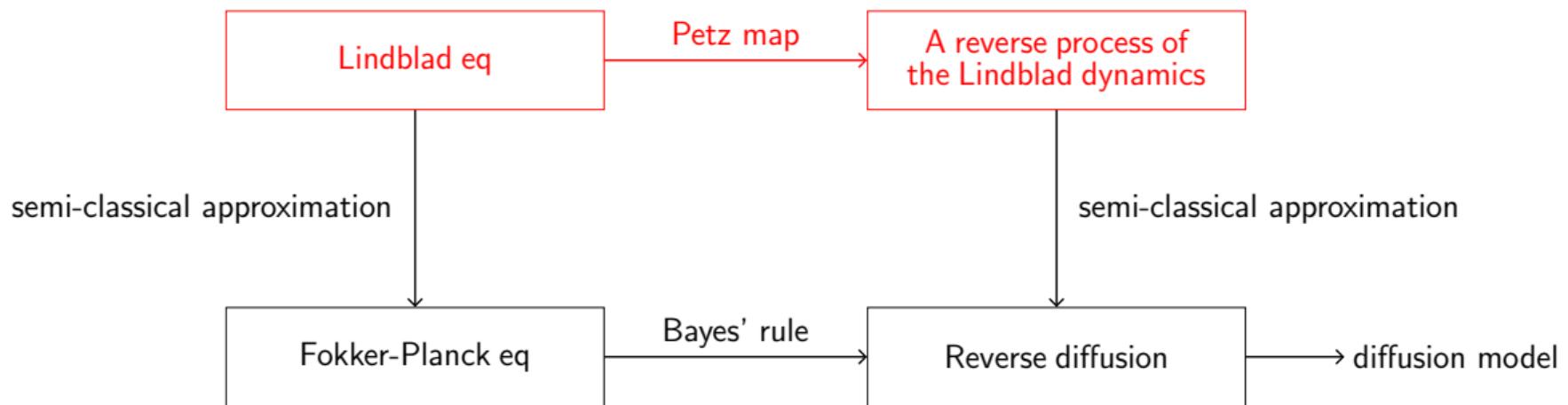
⇒ Are there any relationships between quantum and classical reverse processes?

The goal of this talk.

- In this talk, we show that there is a concrete correspondence between the reverse process of the Lindblad equation and the reverse diffusion process, by using a semi-classical approximation based on the Wigner transform and an \hbar expansion.



2. Reverse process of the Lindblad dynamics (review)



Reverse process of the Lindblad dynamics [Kwon and Kim, 2019, Kwon et al., 2022]

- Lindblad equation:

$$\frac{\partial \hat{\gamma}_t}{\partial t} = -\frac{i}{\hbar} [\hat{H}_t, \hat{\gamma}_t] + \sum_{\alpha} \left(\hat{L}_{\alpha,t} \hat{\gamma}_t \hat{L}_{\alpha,t}^\dagger - \frac{1}{2} \left\{ \hat{L}_{\alpha,t}^\dagger \hat{L}_{\alpha,t}, \hat{\gamma}_t \right\} \right)$$

↓
Petz map which uses $\hat{\gamma}_t$ as reference state.

- A reverse process of the Lindblad dynamics

$$-\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}_t, \hat{\rho}] + \sum_{\alpha} \left(\hat{L}_{\alpha,t} \hat{\rho} \hat{L}_{\alpha,t}^\dagger - \frac{1}{2} \left\{ \hat{L}_{\alpha,t}^\dagger \hat{L}_{\alpha,t}, \hat{\rho} \right\} \right)$$

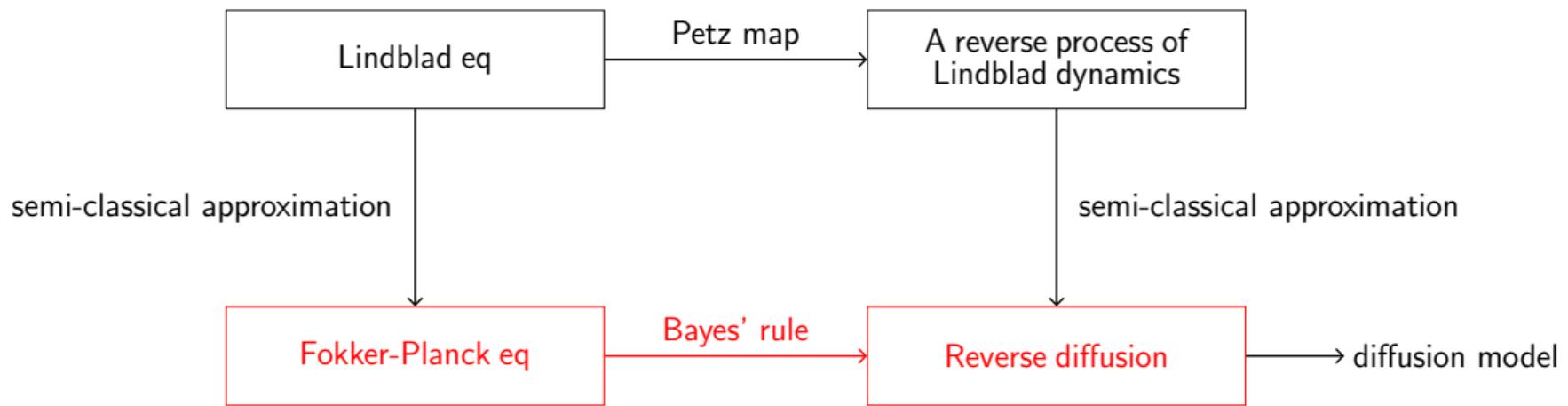
where

$$\hat{G}_t = \hat{\gamma}_t^{1/2}, \quad \dot{\hat{G}}_t = d\hat{G}_t/dt ,$$

$$\hat{H}_t = -\frac{1}{2} \left(\hat{G}_t \hat{H}_t \hat{G}_t + i\hbar \dot{\hat{G}}_t \hat{G}_t^{-1} + \frac{i\hbar}{2} \sum_{\alpha} \hat{G}_t \hat{L}_{\alpha,t}^\dagger \hat{L}_{\alpha,t} \hat{G}_t^{-1} \right) + h.c. ,$$

$$\hat{L}_{\alpha,t} = \hat{G}_t \hat{L}_{\alpha,t}^\dagger \hat{G}_t^{-1} .$$

3. Reverse diffusion (review)



Reverse diffusion[Anderson, 1982]

- Fokker – Planck eq:

$$\frac{\partial P(x_t, t)}{\partial t} = - \sum_i \frac{\partial}{\partial x_t^i} [f^i(x_t, t)P(x_t, t)] + \frac{1}{2} \sum_{ij} \frac{\partial^2}{\partial x_t^i \partial x_t^j} [D^{ij}(x_t, t)P(x_t, t)]$$

↓ Bayes' rule: $Q(x_t, t) = \int_{x_s} P(x_t, t|x_s, s)Q(x_s, s) = \int_{x_s} Q(x_s, s) \frac{P(x_s, s|x_t, t)P(x_t, t)}{P(x_s, s)} (s > t)$

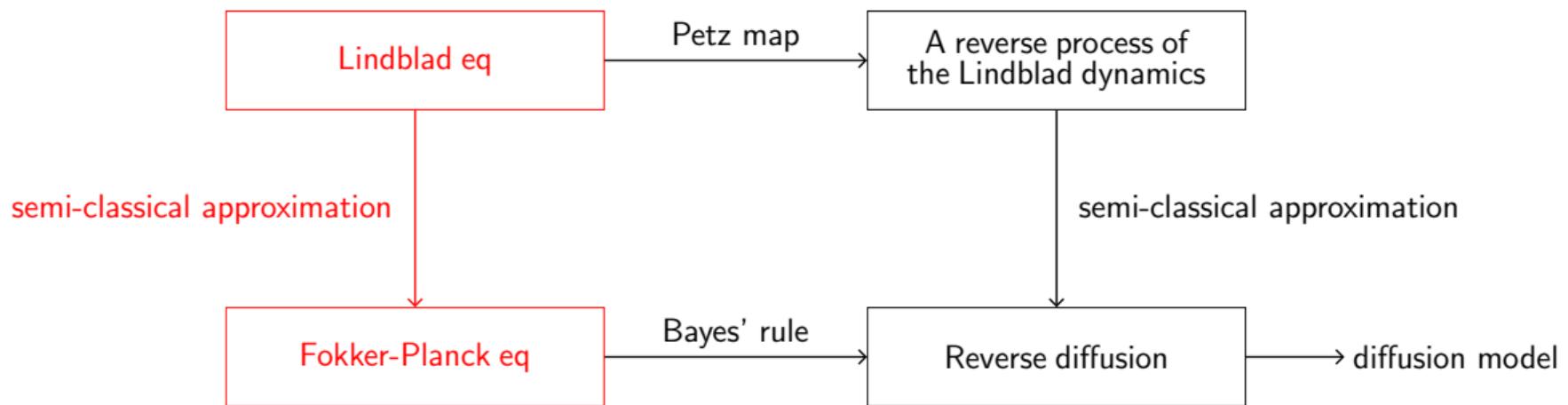
- Reverse diffusion :

$$-\frac{\partial Q(x_t, t)}{\partial t} = \sum_i \frac{\partial}{\partial x_t^i} [\bar{f}^i(x_t, t)Q(x_t, t)] + \frac{1}{2} \sum_{ij} \frac{\partial^2}{\partial x_t^i \partial x_t^j} [D^{ij}(x_t, t)Q(x_t, t)]$$

where $\bar{f}^i(x_t, t) = f^i(x_t, t) - \frac{1}{P(x_t, t)} \sum_j \frac{\partial}{\partial x_t^j} [D^{ij}(x_t, t)P(x_t, t)]$

→the drift term adjusts the distribution to the initial distribution $P(x, 0)$.
(cf. diffusion model→ approximate the diffusion correction term by neural networks.)

4. Fokker–Planck eq from Lindblad eq



Wigner transformation

- Wigner transformation: A transformation between operators in the Hilbert space and functions on the phase space.

$$O(\mathbf{Q}, \mathbf{P}) = \int d^N \sigma \left\langle \mathbf{Q} + \frac{\boldsymbol{\sigma}}{2} \right| \hat{O}(\hat{q}, \hat{p}) \left| \mathbf{Q} - \frac{\boldsymbol{\sigma}}{2} \right\rangle e^{-\frac{i}{\hbar} \mathbf{P} \cdot \boldsymbol{\sigma}}$$

where $\mathbf{Q} = \frac{\mathbf{q}_1 + \mathbf{q}_2}{2}$, $\boldsymbol{\sigma} = \mathbf{q}_1 - \mathbf{q}_2$

- Wigner function: Wigner transform of the density operator.

$$W^{(\rho)}(\mathbf{Q}, \mathbf{P}) = \int d^N \sigma \left\langle \mathbf{Q} + \frac{\boldsymbol{\sigma}}{2} \right| \hat{\rho} \left| \mathbf{Q} - \frac{\boldsymbol{\sigma}}{2} \right\rangle e^{-\frac{i}{\hbar} \mathbf{P} \cdot \boldsymbol{\sigma}}$$

► Properties:

$$\left\{ \begin{array}{l} \int \frac{d^N Q d^N P}{(2\pi\hbar)^N} W^{(\rho)}(\mathbf{Q}, \mathbf{P}) = 1 \\ \left\langle \hat{O} \right\rangle = \text{Tr}(\hat{O} \hat{\rho}) = \int \frac{d^N Q d^N P}{(2\pi\hbar)^N} O(\mathbf{Q}, \mathbf{P}) W^{(\rho)}(\mathbf{Q}, \mathbf{P}) \end{array} \right. \Rightarrow \text{(quasi) probability on phase space.}$$

Moyal product

- Wigner transform of the product of operators:

$$\hat{f}\hat{g} \xrightarrow{\text{Wigner}} f(\mathbf{Q}, \mathbf{P}) \star g(\mathbf{Q}, \mathbf{P})$$

Here

$$\begin{aligned} f(\mathbf{Q}, \mathbf{P}) \star g(\mathbf{Q}, \mathbf{P}) &:= \exp \left[\frac{i\hbar}{2} \sum_{i=1}^N \left(\frac{\partial}{\partial Q_i} \frac{\partial}{\partial P'_i} - \frac{\partial l}{\partial Q'_i} \frac{\partial}{\partial P_i} \right) \right] f(\mathbf{Q}, \mathbf{P}) g(\mathbf{Q}', \mathbf{P}') \Big|_{\substack{Q' = Q \\ P' = P}} \\ &= fg + \frac{i\hbar}{2} \{f, g\}_p - \frac{\hbar^2}{8} \sum_i \left[\left\{ \frac{\partial f}{\partial Q_i}, \frac{\partial g}{\partial P_i} \right\}_p - \left\{ \frac{\partial f}{\partial P_i}, \frac{\partial g}{\partial Q_i} \right\}_p \right] + \mathcal{O}(\hbar^3) , \end{aligned}$$

where $\{, \}_p$ is the Poisson bracket.

Lindblad eq \rightarrow Fokker-Planck eq

- We assume $\hat{L}_{\alpha,t} = \hbar^{-1/2} \hat{\ell}_{\alpha,t}$.
- Apply the Wigner transformation to the Lindblad equation and expand it up to the first order in \hbar .
 \Rightarrow we obtain the Fokker-Planck type equation as follows:

$$\frac{\partial W_t^{(\gamma)}}{\partial t} = - \sum_{\mu} \frac{\partial}{\partial X^{\mu}} \left(f^{\mu}(X, t) W_t^{(\gamma)} \right) + \frac{1}{2} \sum_{\mu, \nu} \frac{\partial^2}{\partial X^{\mu} \partial X^{\nu}} \left(G_R^{\mu\nu}(X, t) W_t^{(\gamma)} \right) .$$

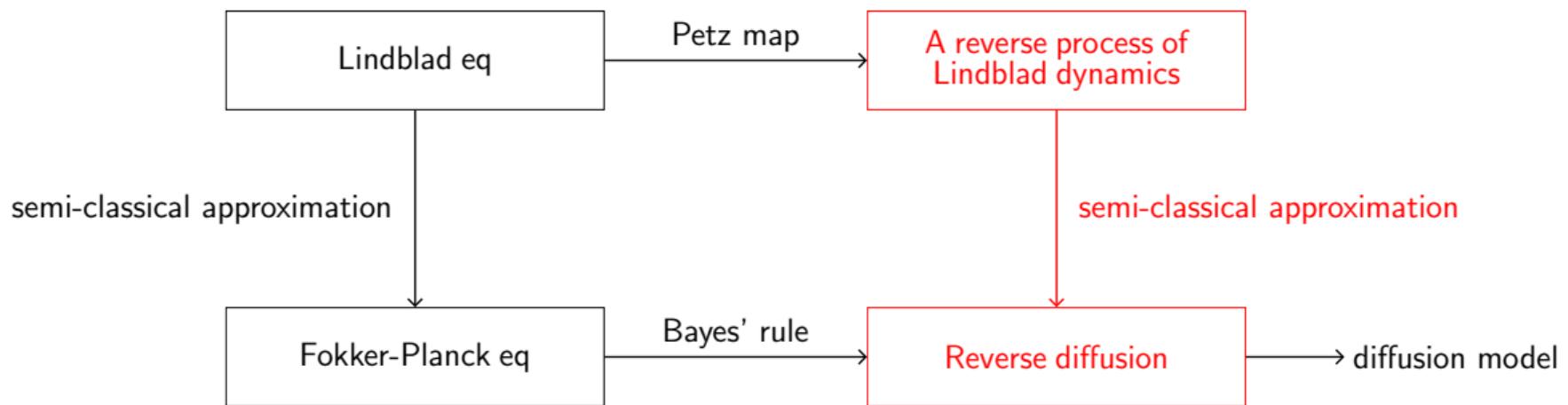
- Here, $X^{\mu} = (\mathbf{Q}, \mathbf{P})$ is a position on the phase space and

$$f^{\mu}(X, t) := \sum_{\nu} \omega^{\mu\nu} \left[\frac{\partial H_t}{\partial X^{\nu}} + \sum_{\alpha} \left(\text{Im} \left(\ell_{\alpha,t} \frac{\partial \ell_{\alpha,t}^*}{\partial X^{\nu}} \right) - \frac{\hbar}{2} \text{Re} \left\{ \ell_{\alpha,t}, \frac{\partial \ell_{\alpha,t}^*}{\partial X^{\nu}} \right\}_p \right) \right] , \quad (1)$$

$$G^{\mu\nu}(X, t) = \hbar \sum_{\lambda, \rho} \sum_{\alpha} \omega^{\mu\lambda} \omega^{\nu\rho} \text{Re} \left(\frac{\partial \ell_{\alpha,t}}{\partial X^{\lambda}} \frac{\partial \ell_{\alpha,t}^*}{\partial X^{\rho}} \right) , \quad (2)$$

where $\omega^{\mu\nu}$ is a symplectic form.

4. Reverse diffusion from a reverse process for Lindblad dynamics



A reverse process of Lindblad eq→ reverse diffusion

- The reverse process of the Lindblad dynamics is also a Lindblad equation, so we can apply the result for the forward process:

$$-\frac{\partial W_t^{(\rho)}}{\partial t} = -\sum_{\mu} \frac{\partial}{\partial X^{\mu}} \left(\tilde{f}^{\mu}(X, t) W_t^{(\rho)} \right) + \frac{1}{2} \sum_{\mu, \nu} \frac{\partial^2}{\partial X^{\mu} \partial X^{\nu}} \left(\tilde{G}_R^{\mu\nu}(X, t) W_t^{(\rho)} \right)$$

Here,

$$\tilde{f}, \tilde{G}_R = \begin{pmatrix} \text{The one obtained by replacing the } H_t \text{ and } \ell_{\alpha,t} \text{ appearing in } f \text{ and } G_R \\ \text{in the forward process with } \tilde{H}_t \text{ and } \tilde{\ell}_{\alpha,t} \end{pmatrix}$$

- \tilde{H}_t and $\tilde{\ell}_{\alpha,t}$ are still contains Moyal product → Expand them up to the first order in \hbar .
- Diffusion matrix: $\tilde{G}_R = G_R + \mathcal{O}(\hbar^2)$

A reverse process of Lindblad eq \rightarrow reverse diffusion: correction for drift

$$\hat{\tilde{H}}_t = -\hat{H}_t + \frac{i}{4} \sum_k \left\{ \left[\hat{\ell}_{k,t} \hat{\ell}_{k,t}^\dagger, \hat{G} \right], \hat{G}^{-1} \right\} + \underbrace{\frac{1}{2} \left[\left[\hat{H}_t, \hat{G} \right], \hat{G}^{-1} \right] - \frac{i\hbar}{2} \left[\dot{\hat{G}}, \hat{G}^{-1} \right]}_{\sim \mathcal{O}(\hbar^2)}$$

$$\xrightarrow{\text{Wigner \& } \hbar \text{ expansion}} -H_t + \frac{i}{2} \sum_k \left(i\hbar \left\{ |\ell_{k,t}|^2, G_W \right\}_p G_W^{-1} \right) + \mathcal{O}(\hbar^2)$$

$$\hat{\tilde{\ell}}_{k,t} = \hat{\ell}_{k,t}^\dagger - \hat{G} \left[\hat{G}^{-1}, \hat{\ell}_{k,t}^\dagger \right] \xrightarrow{\text{Wigner \& } \hbar \text{ expansion}} \ell_{k,t}^* - i\hbar G_W \left\{ G_W^{-1}, \ell_{k,t}^* \right\}_p + \mathcal{O}(\hbar^2)$$

- On the zeroth-order term of \hbar ,

$$\left\{ |\ell_{k,t}|^2, G_W \right\}_p G_W^{-1} \rightarrow \frac{1}{2} \frac{1}{W_t^{(\gamma)}} \frac{\partial W_t^{(\gamma)}}{\partial X^\mu}, \quad G_W \left\{ G_W^{-1}, \ell_{k,t}^* \right\}_p \rightarrow -\frac{1}{2} \frac{1}{W_t^{(\gamma)}} \frac{\partial W_t^{(\gamma)}}{\partial X^\mu}$$

→ The structure of the correction term for the drift term appearing in the reverse diffusion.

A reverse process of Lindblad eq→reverse diffusion: result

$$-\frac{\partial W_t^{(\rho)}}{\partial t} = \sum_{\mu} \frac{\partial}{\partial X^{\mu}} \left(\bar{f}^{\mu}(X, t) W_t^{(\rho)} \right) + \frac{1}{2} \sum_{\mu, \nu} \frac{\partial^2}{\partial X^{\mu} \partial X^{\nu}} \left(G_R^{\mu \nu}(X, t) W_t^{(\rho)} \right)$$

where $\bar{f}^{\mu} = f^{\mu} - \frac{1}{W_t^{(\gamma)}} \sum_{\nu} \frac{\partial}{\partial X^{\nu}} \left(G_R^{\mu \nu} W_t^{(\gamma)} \right)$

We obtain the reverse diffusion equation from the reverse process of the Lindblad equation.

5. Application to the renormalization group (on going)

A inverse of the renormalization group flow

- Motivation:
 - ▶ Predicting high-energy theory from low-energy data
 - ▶ A relationship between AdS/CFT and RG→Understanding the Emergence of Bulk Geometry [de Boer et al., 2000, Swingle, 2012, Nozaki et al., 2012]
 - ▶ application to critical slowing down[Bachtis et al., 2022]
- Exact renormalization group equation for density matrix (our work)

$$\begin{aligned} & -\Lambda \frac{\partial}{\partial \Lambda} \rho_{\Lambda}[\varphi^+, \varphi^-] \\ &= \int_{\mathbf{p}} \left[-\frac{1}{2} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{2\omega_{\mathbf{p}}} \coth\left(\frac{\beta\omega_{\mathbf{p}}}{2}\right) \left(\frac{\delta}{\delta\varphi^+} + \frac{\delta}{\delta\varphi^-}\right)^2 - \frac{1}{2} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{K_{\Lambda, \mathbf{p}}} \left(\frac{\delta}{\delta\varphi^+} + \frac{\delta}{\delta\varphi^-}\right) (\varphi^+ + \varphi^-) \right. \\ & \quad \left. + \frac{1}{4} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{K_{\Lambda, \mathbf{p}}^2} \omega_{\mathbf{p}} \coth\left(\frac{\beta\omega_{\mathbf{p}}}{2}\right) (\varphi^+ - \varphi^-)^2 \right] \rho_{\Lambda}[\varphi^+, \varphi^-] \end{aligned}$$

The feature of ERG eq for density matrix

- The ERG eq for the density matrix is equivalent to the Lindblad eq, which has the following Hamiltonian and jump operators:
 - ▶ “Hamiltonian”:

$$X_{\Lambda} = -\frac{1}{4} \int_{\mathbf{p}} \frac{-\dot{K}_{\Lambda,\mathbf{p}}}{K_{\Lambda,\mathbf{p}}} \left(\hat{\pi}_{-\mathbf{p}} \hat{\phi}_{\mathbf{p}} + \hat{\phi}_{\mathbf{p}} \hat{\pi}_{-\mathbf{p}} \right) = -\frac{i}{4} \int_{\mathbf{p}} \left(\hat{a}_{\Lambda,\mathbf{p}}^\dagger \hat{a}_{\Lambda,-\mathbf{p}}^\dagger - \hat{a}_{\Lambda,\mathbf{p}} \hat{a}_{\Lambda,-\mathbf{p}} \right)$$

- ▶ Jump operators:

$$L_1(\mathbf{p}) = \sqrt{\frac{-\dot{K}_{\Lambda,\mathbf{p}}}{2K_{\Lambda,\mathbf{p}}}} \left(\coth\left(\frac{\beta\omega_{\mathbf{p}}}{2}\right) + 1 \right) \hat{a}_{\Lambda,\mathbf{p}}, \quad L_2(\mathbf{p}) = \sqrt{\frac{-\dot{K}_{\Lambda,\mathbf{p}}}{2K_{\Lambda,\mathbf{p}}}} \left(\coth\left(\frac{\beta\omega_{\mathbf{p}}}{2}\right) - 1 \right) \hat{a}_{\Lambda,\mathbf{p}}^\dagger$$
$$\hat{a}_{\Lambda,\mathbf{p}} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\omega_{\mathbf{p}}}{K_{\Lambda,\mathbf{p}}}} \hat{\phi}_{\mathbf{p}} + i \sqrt{\frac{K_{\Lambda,\mathbf{p}}}{\omega_{\mathbf{p}}}} \hat{\pi}_{\mathbf{p}} \right)$$

- It becomes the Fokker-Planck equation on the phase space by Wigner transformation without \hbar expansion.

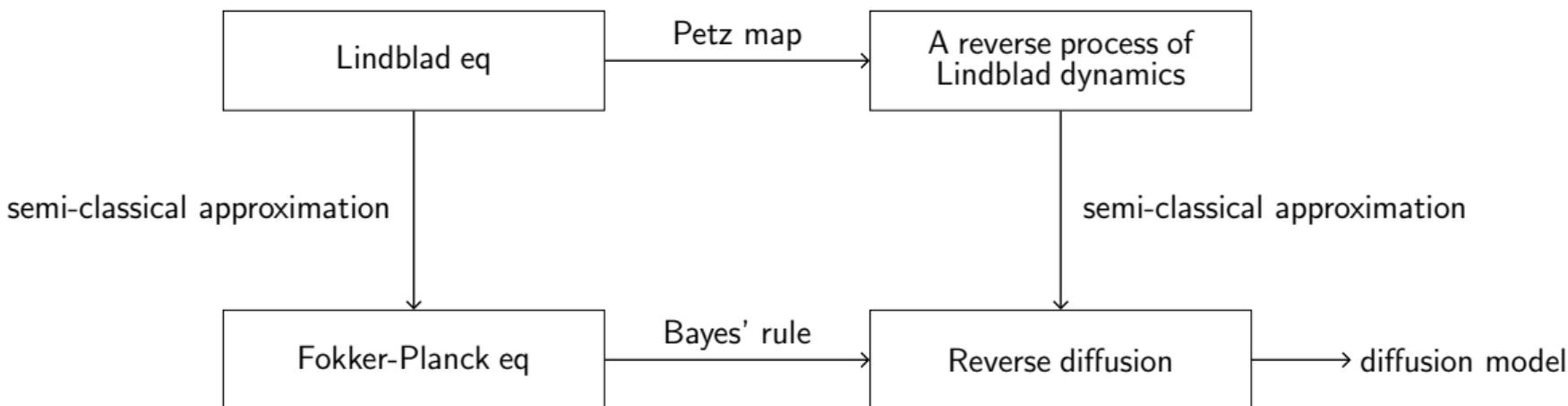
⇒ We can analyze the inverse of the renormalization group in terms of the diffusion model by using the previous result.

6. Conclusion

Conclusion

Conclusion

Using the semi-classical approximation based on the Wigner transform and \hbar expansion, we showed the relationship between the reverse process of the Lindblad dynamics via Petz map and the reverse diffusion process via Bayes' rule.



Future prospects

- Numerical Verification

- ▶ \hbar dependence
- ▶ Using the ERG eq for density matrix

$$\hat{H} \propto (\hat{a}^\dagger)^2 - (\hat{a})^2, \quad \hat{L}_1 \propto \hat{a}, \quad \hat{L}_2 \propto \hat{a}^\dagger$$

Note: ERG eq for density matrix becomes a Fokker-Planck type equation without \hbar expansion.

- Analysis of the inverse of the renormalization group based on the diffusion model.
- Construct a quantum version of the diffusion model based on Petz map (cf. [Liu et al., 2025, Hu et al., 2025]).

References I

Anderson, B. D. (1982).
Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–326.

Bachtis, D., Aarts, G., Di Renzo, F., and Lucini, B. (2022).
Inverse Renormalization Group in Quantum Field Theory.
Phys. Rev. Lett., 128(8):081603.

Barnum, H. and Knill, E. (2002).
Reversing quantum dynamics with near-optimal quantum and classical fidelity.
J. Math. Phys., 43(5):2097.

Chen, C.-F., Penington, G., and Salton, G. (2020).
Entanglement Wedge Reconstruction using the Petz Map.
JHEP, 01:168.

de Boer, J., Verlinde, E. P., and Verlinde, H. L. (2000).
On the holographic renormalization group.
JHEP, 08:003.

Hu, F., Liu, G., Zhang, Y., and Gao, X. (2025).
Local Diffusion Models and Phases of Data Distributions.

References II

- Kuwahara, T., Nasu, R., Tanaka, G., and Tsuchiya, A. (2024).
Quantum Error Correction Realized by the Renormalization Group in Scalar Field Theories.
PTEP, 2024(8):083B01.
- Kwon, H. and Kim, M. (2019).
Fluctuation theorems for a quantum channel.
Physical Review X, 9(3):031029.
- Kwon, H., Mukherjee, R., and Kim, M. S. (2022).
Reversing Lindblad Dynamics via Continuous Petz Recovery Map.
Phys. Rev. Lett., 128(2):020403.
- Liu, X., Zhuang, J., Hou, W., and You, Y.-Z. (2025).
Measurement-Based Quantum Diffusion Models.
- Nozaki, M., Ryu, S., and Takayanagi, T. (2012).
Holographic Geometry of Entanglement Renormalization in Quantum Field Theories.
JHEP, 10:193.
- Penington, G., Shenker, S. H., Stanford, D., and Yang, Z. (2022).
Replica wormholes and the black hole interior.
JHEP, 03:205.

References III

Petz, D. (1988).

SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS.

Quart. J. Math. Oxford Ser., 39(1):97–108.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020).

Score-based generative modeling through stochastic differential equations.

arXiv preprint arXiv:2011.13456.

Swingle, B. (2012).

Entanglement Renormalization and Holography.

Phys. Rev. D, 86:065007.

Backup slides

Reverse process of the Lindblad dynamics[Kwon and Kim, 2019, Kwon et al., 2022]

- Lindblad equation:

$$\frac{\partial \hat{\rho}_t}{\partial t} = \mathcal{L}(\hat{\rho}_t) = -\frac{i}{\hbar} \left[\hat{H}_t, \hat{\rho}_t \right] + \sum_k \left(\hat{L}_{k,t} \hat{\rho}_t \hat{L}_{k,t}^\dagger - \frac{1}{2} \left\{ \hat{L}_{k,t}^\dagger \hat{L}_{k,t}, \hat{\rho}_t \right\} \right)$$

- Infinitesimal time evolution:

$$\hat{\rho}_{t+\Delta t} = \mathcal{T}_{\Delta t}(\hat{\rho}_t) = (1 + \Delta t \mathcal{L})(\hat{\rho}_t)$$

- $\hat{\gamma}_t$: a quantum state which follow the Lindblad eq.
- Petz map for $\mathcal{T}_{\Delta t}$:

$$\mathcal{P}_{\mathcal{T}_{\Delta t}, \hat{\gamma}_t}(\cdot) = \hat{\gamma}_t^{1/2} (1 + \Delta t \mathcal{L})^\dagger \left(\hat{\gamma}_{t+\Delta t}^{-1/2}(\cdot) \hat{\gamma}_{t+\Delta t}^{-1/2} \right) \hat{\gamma}_t^{1/2}$$

Reverse process of the Lindblad dynamics(Cont'd)

- Expanding it around t and truncate the terms which order is higher than $\mathcal{O}(\Delta t^2)$:

$$-\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}_t, \hat{\rho}] + \sum_k \left(\hat{\tilde{L}}_{k,t} \hat{\rho} \hat{\tilde{L}}_{k,t}^\dagger - \frac{1}{2} \{ \hat{\tilde{L}}_{k,t}^\dagger \hat{\tilde{L}}_{k,t}, \hat{\rho} \} \right)$$

where we have set $\hat{G}_t = \hat{\gamma}_t^{1/2}$, $\dot{\hat{G}}_t = d\hat{G}_t/dt$ and

$$\hat{H}_t = -\frac{1}{2} \left(\hat{G}_t \hat{H}_t \hat{G}_t + i\hbar \dot{\hat{G}}_t \hat{G}_t^{-1} + \frac{i\hbar}{2} \sum_k \hat{G}_t \hat{L}_{k,t}^\dagger \hat{L}_{k,t} \hat{G}_t^{-1} \right) + h.c.$$

$$\hat{\tilde{L}}_{k,t} = \hat{G}_t \hat{L}_{k,t}^\dagger \hat{G}_t^{-1}$$

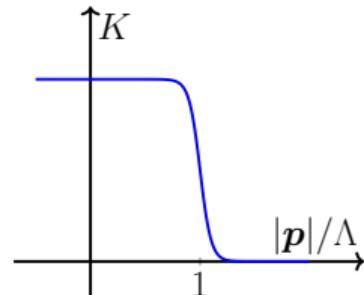
- We have got a reverse process for Lindblad dynamics.

ERG eq for density matrix: setup 1

- Finite temperature scalar field theory

$$S_\Lambda = \frac{1}{2} \int_{-\beta/2}^{\beta/2} dt \int_{\mathbf{p}} K_{\Lambda, \mathbf{p}}^{-1} \left(\frac{\partial \phi(t, \mathbf{p})}{\partial t} \frac{\partial \phi(t, -\mathbf{p})}{\partial t} + \omega_{\mathbf{p}}^2 \phi(t, \mathbf{p}) \phi(t, -\mathbf{p}) \right) + S_{int, \Lambda}$$

- Λ : effective energy scale
- $\omega_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$
- $K_{\Lambda, \mathbf{p}} = K(|\mathbf{p}|/\Lambda)$: cutoff function.
- partition function



$$Z_\Lambda = \int \mathcal{D}\phi (-\beta/2 \leq t \leq \beta/2) \delta[\phi(+\beta/2) - \phi(-\beta/2)] e^{-S_\Lambda}$$

ERG eq for density matrix: setup 2

- density matrix

$$\rho_\Lambda[\varphi^+, \varphi^-] = \frac{1}{Z_\Lambda} \int \mathcal{D}\phi (-\beta/2 < t < \beta/2) e^{-S_\Lambda} |_{\phi(\pm\beta/2) = \varphi^\pm}$$

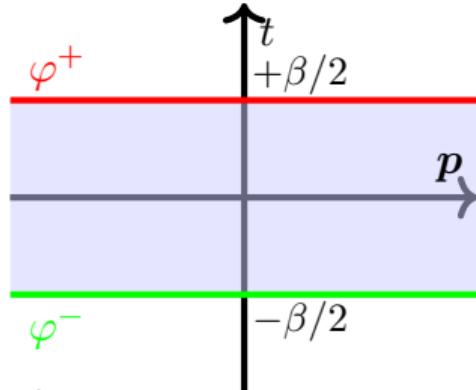
- requirement:

$$① -\Lambda \frac{dZ_\Lambda}{d\Lambda} = A_\Lambda Z_\Lambda \quad (A_\Lambda : \text{a quantity which is independent to fields})$$

$$② -\Lambda \frac{\partial e^{-S_{int,\Lambda}}}{\partial \Lambda} \Big|_{\varphi^+ = \varphi^- = \varphi} = -\Lambda \frac{\partial e^{-S_{int,\Lambda}}}{\partial \Lambda} \Big|_{\varphi^+ = \varphi^- = \varphi}$$

$$③ -\Lambda \frac{\partial e^{-S_{int,\Lambda}}}{\partial \Lambda} \Big|_{\varphi^+ = \varphi^- = \varphi} = -\frac{1}{2} \int_{\mathbf{p}} \frac{\dot{K}_{\Lambda,\mathbf{p}}}{2\omega_{\mathbf{p}}} \coth\left(\frac{\beta\omega_{\mathbf{p}}}{2}\right) \frac{\delta^2 e^{-S_{int,\Lambda}}}{\delta\varphi_{\mathbf{p}}\delta\varphi_{-\mathbf{p}}} \Big|_{\varphi^+ = \varphi^- = \varphi} - \frac{1}{2} \int_{-\beta/2}^{\beta/2} dt ds \int_{\mathbf{p}} \dot{K}_{\Lambda,\mathbf{p}} \Delta(t, s) \frac{\delta^2 e^{-S_{int,\Lambda}}}{\delta\phi_q(t,\mathbf{p})\delta\phi_q(s,-\mathbf{p})} \Big|_{\varphi^+ = \varphi^- = \varphi}$$

(cf. Polchinski eq)



ERG eq for density matrix: result

$$\begin{aligned}
& -\Lambda \frac{\partial}{\partial \Lambda} \rho_{\Lambda}[\varphi^+, \varphi^-] \\
&= \int_{\mathbf{p}} \left[-\frac{1}{2} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{2\omega_{\mathbf{p}}} \coth \left(\frac{\beta \omega_{\mathbf{p}}}{2} \right) \left(\frac{\delta}{\delta \varphi^+} + \frac{\delta}{\delta \varphi^-} \right)^2 - \frac{1}{2} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{K_{\Lambda, \mathbf{p}}} \left(\frac{\delta}{\delta \varphi^+} + \frac{\delta}{\delta \varphi^-} \right) (\varphi^+ + \varphi^-) \right. \\
&\quad \left. - \frac{\chi}{4} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{K_{\Lambda, \mathbf{p}}} (\varphi^+ - \varphi^-) \left(\frac{\delta}{\delta \varphi^+} - \frac{\delta}{\delta \varphi^-} \right) + \frac{1-\chi}{4} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{K_{\Lambda, \mathbf{p}}^2} \omega_{\mathbf{p}} \coth \left(\frac{\beta \omega_{\mathbf{p}}}{2} \right) (\varphi^+ - \varphi^-)^2 \right] \rho[\varphi^+, \varphi^-]
\end{aligned}$$

$$\begin{aligned}
-\Lambda \frac{\partial e^{-S_{int, \Lambda}}}{\partial \Lambda} &= -\frac{1}{2} \int_{-\beta/2}^{\beta/2} dt ds \int_{\mathbf{p}} \dot{K}_{\Lambda, \mathbf{p}} \Delta(t, s) \frac{\delta^2 e^{-S_{int, \Lambda}}}{\delta \phi_q(t, \mathbf{p}) \delta \phi_q(s, -\mathbf{p})} \\
&\quad + \frac{1}{2} \int_{\mathbf{p}} \left[-\frac{\dot{K}_{\Lambda, \mathbf{p}}}{2\omega_{\mathbf{p}}} \coth \left(\frac{\beta \omega_{\mathbf{p}}}{2} \right) \left(\frac{\delta}{\delta \varphi^+} + \frac{\delta}{\delta \varphi^-} \right)^2 - \frac{\chi}{2} \frac{\dot{K}_{\Lambda, \mathbf{p}}}{K_{\Lambda, \mathbf{p}}} (\varphi^+ - \varphi^-) \left(\frac{\delta}{\delta \varphi^-} - \frac{\delta}{\delta \varphi^+} \right) \right] e^{-S_{int, \Lambda}}
\end{aligned}$$

- $\chi \rightarrow$ a parameter which depends on RG scheme.

ERG as a quantum operation

- General evolution of a quantum state \Rightarrow trace-preserving completely positive (TPCP) map
- The renormalization group procedure constructs semi-group: $R_{\Lambda_3, \Lambda_2} \circ R_{\Lambda_2, \Lambda_1} = R_{\Lambda_3, \Lambda_1}$
- TPCP map forming a semi-group \Leftrightarrow Lindblad equation

$$\frac{\partial \rho}{\partial t} = -i[X, \rho] + \sum_m \left(L_m \rho L_m^\dagger - \frac{1}{2} \{ L_m^\dagger L_m, \rho \} \right)$$

- Q. Are there cases where the ERG equation for the density matrix becomes the Lindblad equation?

ERG as a quantum operation(Cont'd)

- A. Yes, there are.
- The range of χ is determined by $\beta\omega_p$.
- $\chi = 0$ is the special case that is allowed for any $\beta\omega_p$.
 - ▶ Unitary part of RG (“Hamiltonian”)

$$X_\Lambda = -\frac{1}{4} \int_{\mathbf{p}} \frac{-\dot{K}_{\Lambda,\mathbf{p}}}{K_{\Lambda,\mathbf{p}}} \left(\hat{\pi}_{-\mathbf{p}} \hat{\phi}_{\mathbf{p}} + \hat{\phi}_{\mathbf{p}} \hat{\pi}_{-\mathbf{p}} \right) = -\frac{i}{4} \int_{\mathbf{p}} \left(\hat{a}_{\Lambda,\mathbf{p}}^\dagger \hat{a}_{\Lambda,-\mathbf{p}}^\dagger - \hat{a}_{\Lambda,\mathbf{p}} \hat{a}_{\Lambda,-\mathbf{p}} \right)$$

→disentangler! (cf. [Kuwahara et al., 2024])

- ▶ Non-unitary part (“jump operator”)

$$L_1(\mathbf{p}) = \sqrt{\frac{-\dot{K}_{\Lambda,\mathbf{p}}}{2K_{\Lambda,\mathbf{p}}}} \left(\coth \left(\frac{\beta\omega_{\mathbf{p}}}{2} \right) + 1 \right) \hat{a}_{\Lambda,\mathbf{p}}^{(0)}, \quad L_2(\mathbf{p}) = \sqrt{\frac{-\dot{K}_{\Lambda,\mathbf{p}}}{2K_{\Lambda,\mathbf{p}}}} \left(\coth \left(\frac{\beta\omega_{\mathbf{p}}}{2} \right) - 1 \right) \hat{a}_{\Lambda,\mathbf{p}}^{(0)\dagger}$$
$$\hat{a}_{\Lambda,\mathbf{p}}^{(0)} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\omega_{\mathbf{p}}}{K_{\Lambda,\mathbf{p}}}} \hat{\phi}_{\mathbf{p}} + i \sqrt{\frac{K_{\Lambda,\mathbf{p}}}{\omega_{\mathbf{p}}}} \hat{\pi}_{\mathbf{p}} \right)$$

(Score based)diffusion model: learning

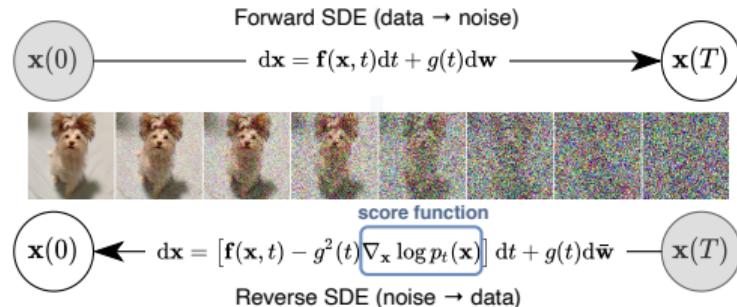


Figure: Conceptual diagram. adapted from [Song et al., 2020]

- Learning process

- $P_{emp,0}(x)$: Empirical distribution constructed from data that reflects the statistical features of the data.
- Diffusing $P_{emp,0}(x)$ yields Gaussian noise at time T : $P_{emp,t}(x)$
- Learn a neural network $s_{\theta,t}^i$ that approximates $s_{\theta,t}^i \sim \frac{1}{P_{emp,t}} \sum_j \frac{\partial(D^{ij} P_{emp,t})}{\partial x^j}$.

(Score based)diffusion model: generating process

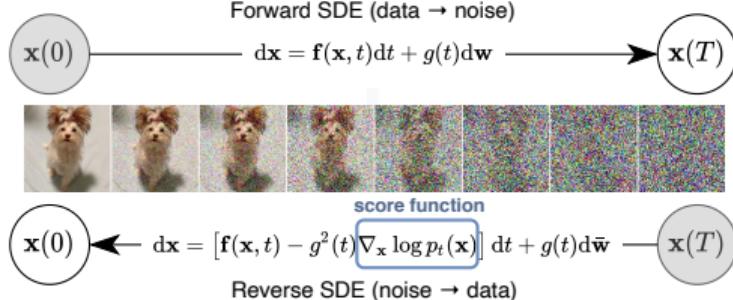


Figure: Conceptual diagram. adapted from [Song et al., 2020]

Generating process

- 1 Prepare Gaussian noise $q_T(x)$, which we take as an “initial” distribution for reverse diffusion.
- 2 “Evolve” $t : T \rightarrow 0$ by using the reverse diffusion equation whose drift correction is approximated by a neural network:

$$-\frac{\partial q_t(x)}{\partial t} = \sum_i \frac{\partial}{\partial x_t^i} [\bar{f}_{\theta,t}^i(x_t) q(x_t, t)] + \frac{1}{2} \sum_{ij} \frac{\partial^2}{\partial x_t^i \partial x_t^j} [D^{ij}(x_t, t) p(x_t, t)]$$

where $\bar{f}_{\theta,t}^i(x_t) = f_t^i(x_t) - s_{\theta,t}^i(x_t)$

- 3 We get a new sample from $q_0(x)$.