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1.Background



Backgroundl: Petz map and Bayes' rule
@ Petz map[Petz, 1988]
Pas () =4 PANAR) T2 ()A(6) )51

» A: TPCP map(A': adjoint with respect to the Hilbert-Schmidt inner product)
> 4: reference state (density matrix)

» By definition, P4 4 0 A(Y) = 4.
= Petz map is a “good” reverse process for quantum dynamics.
@ Petz map is nowadays used in
» Quantum error correction (cf. [Barnum and Knill, 2002])
» Black hole information paradox (cf.[Penington et al., 2022])
» Bulk reconstruction in the AdS/CFT correspondence (cf. [Chen et al., 2020])
= It is important to understand the Petz map better.

@ Petz map is a quantum analog of Bayes' rule.
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Schematic correspondence between Petz map and Bayes' rule

@ Bayes' rule

P(xs, s|ze, t) P24, 1)
P(zs,s)

P(xy, t|zs, s) = (s > 1)

— transition probability that traces time backward

l’t, / P th,t‘l‘s, (:Us, )

= P(xy,t)"/? [/ P(xs, s|z,t) (P(xs,s)_1/2Q(ms,s)P(azs,s)_l/Qﬂ P(xy, t)Y/?
o Note: P(xs,s) = [, P(xs, |z, t)P(wt,t)
@ Petz map
Paslp) =5 2AT(AGF) 2 (0)AR) A2

— We see that the Petz map is a quantum analog of Bayes' rule.
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Backgrounds 2: A reverse process for quantum and classical processes
@ In this talk, we focus on the Markov process.
@ Quantum Markov process (semigroup TPCP) < Lindblad equation, a master equation for
open quantum system

el o F Lyisy 200
5 = [Hta%] + Z ( at%LL,t -3 {LL,tLa,t,%}>

> A reverse process for the Lindblad dynamlcs based on the Petz map was constructed in
[Kwon and Kim, 2019, Kwon et al., 2022].

@ Classical Markov process < Fokker-Planck equation

OP(xy,t 0 i 1 >

5 0 19z

[DZ] (.I‘t, t)P(.fUt, t)]

> A reverse process of the Fokker-Planck dynamics based on Bayes' rule is known as reverse
diffusion [Anderson, 1982].

» This provides a mathematical foundation for diffusion models [Song et al., 2020], which have
recently gained attention in the context of image-generating Al.

= Are there any relationships between quantum and classical reverse processess?
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The goal of this talk.

@ In this talk, we show that there is a concrete correspondence between the reverse process
of the Lindblad equation and the reverse diffusion process, by using a semi-classical
approximation based on the Wigner transform and an A expansion.
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2.Reverse process of the Lindblad dynamics (review)
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Reverse process of the Lindblad dynamics [Kwon and Kim, 2019, Kwon et al., 2022]
o Lindblad equation:

a’Yt

o a ey o0
5 [Hta%] + Z < at’YtLL,t -3 {LLtLa,ta'Yt})

ﬂ Petz map which uses 4, as reference state.

@ A reverse process of the Lindblad dynamics
(9p 2 1 2 2 .
T [Hu } Z < atpLL,t ) {LL,tLa,t,P}>

where

Gy = ’7,:1/27 Gy = dGy/dt
1( ~ ~ 4 W A oA ih oAt~ oAl
= ) (GthGt + 1hG G, T4 D) Za: GtLL,tLa,th 1) + h.c.,
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3.Reverse diffusion (review)
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Reverse diffusion[Anderson, 1982]
o Fokker — Planck eq:

OP( OP(z4,1) 1 0?
xt Z oz JM i, t) Pz, )] + 5 Z PP [D” (z¢, 1) P(x4, 1))
10T

ﬂ Bayes' rule: Q(x¢,t) = fxs P(xy,t|zs, 5)Q(xs, s f Q(xs, s W(S >t)

@ Reverse diffusion :
8@ .'I?t, 1 82 i
Z 8x :Uty (Jf'ta )] +5 Z axiaxt [D](xt t)Q(xht)]

where  fi(zy,t) = fi(It’t)p(;h)Z di [D”(lfﬂ )P(l‘f,,t)]

—the drift term adjusts the distribution to the initial distribution P(z,0).

(cf. diffusion model— approximate the diffusion correction term by neural networks.)
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4.Fokker—Planck eq from Lindblad eq
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Wigner transformation

@ Wigner transformation: A transformation between operators in the Hilbert space and
functions on the phase space.
> Z‘P~o'

O(Q,P):/dN <Q+—(o

where Q—M,Uqu—%

> .
2

o Wigner function: Wigner transform of the density operator.

(Q,P) :/dNa<Q+‘2T )

> PropertieS'

N
= (quasi) probability on phase space.
. A d¥QdN P
<o> - Tr(Oﬁ) :/(;T?WVO(Q,P)W(’”(QP)
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Moyal product

@ Wigner transform of the product of operators:

~»~ Wigner
—_—

fa f(Q,P)xg(Q, P)

Here

f(Q,P)g(Q', P')

» P ih ol o
F(Q.P)xg(Q, P) = exp ;(anap’anaP)

B ih h? of g of 9g

where {, }  is the Poisson bracket.

Q'=Q
P'=pP

+0(r%),
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Lindblad eq—Fokker-Planck eq
o We assume I:a,t = h_l/Ql?a,t.

@ Apply the Wigner transformation to the Lindblad equation and expand it up to the first
order in h.
= we obtain the Fokker-Planck type equation as follows:

8W(’Y) o 1 62 v
3 (ko) + 15 o)

@ Here, X* = (Q, P) is a position on the phase space and

OH o0 N\ orx
(X, t) = wa [3)(2 + Z (Im (ﬁa,t aX’j) - §Re {fa,t, 8X"t} >1 ; (1)
« p

v

y y Doy 00,
G (X, 1) =hY Y wh ﬂRe<aX§ axbt> : ()

Ap

where w*” is a sympletic form.
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4. Reverse diffusion from a reverse process for Lindblad dynamics
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A reverse process of Lindblad eq— reverse diffusion

@ The reverse process of the Lindblad dynamics is also a Lindblad equation, so we can apply
the result for the forward process:

8w(P) 0 ~ () 1 82 v (p)
(o) 3 e (G 0w

P.a The one obtaind by replacing the H; and ¢, appearing in f and Gr
R in the forward process with I:It and lth

e H, and Ea,t are still contains Moyal product— Expand them up to the first order in A.
o Diffusion matrix: Gp = Gg + O(hz)
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A reverse process of Lindblad eq— reverse diffusion: correction for drift

R (e N R
k
~O(12)

Wigner&h expansion i 3
gnerkch expansion, _ py 22}; (zh{wk,tszW}p GW) +O(h2)

Wigner&h expansion *

b =1}, -GG — ihGw {Gyh G}, + O (1)
@ On the zeroth-order term of A,

11 ow! . 11 ow
S Gy Gyl ) — -5 :
2 Wt(v) oOXHM P 2 Wt(“/) oOXH

{Mk,t %, Gw}p Gy —

—The structure of the correction term for the drift term appearing in the reverse
diffusion.
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A reverse process of Lindblad eq—reverse diffusion: result

ow 0 ( 1 0? " )
o1 Z%Xu (/ex. t>Wp)+§ZW (e xow”)

Z 3Xu’ (GHVVV(V)>

where ft = fF—

W(V

{

We obtain the reverse diffusion equation from the reverse process of the Lindblad
equation.
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5. Application to the renormalization group (on going)
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A inverse of the renormalization group flow

@ Motivation:

» Predicting high-energy theory from low-energy data

> A relationship between AdS/CFT and RG—Understanding the Emergence of Bulk Geometry
[de Boer et al., 2000, Swingle, 2012, Nozaki et al., 2012]

» application to critical slowing down[Bachtis et al., 2022]

e Exact renormalization group equation for density matrix (our work)
0
— A= + o~
aaPAleT e
1Kpp Bwp\ [ 6 § \> 1Kap( 6 b L
= _— - h _— _ RS _ = 2
/p[ 2 2y ( 2 J\op7 "5 2 Kap \OpF | Dpm (o7 +e7)

IKA7 Bw N2 _
ZK{g\:w,ocoth (2”> (T —¢7) ]m[@*#p ]
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The feature of ERG eq for density matrix

@ The ERG eq for the density matrix is equivalent to the Lindblad eq, which has the
following Hamiltonian and jump operators:

» “Hamiltonian”:

_KA D . ~ AL ’L AT AT R ) )
). _ 3 __t i 4 )
Knp (7‘(’ pPp + OpT p) 1 /p (aA,p A p ApliA_p

» Jump operators:
—KA Bw “ —KA Bw
L = L th [ —2 1 L = L th|{ — ) -1
1(p) \/2KA,p (co ( B )+ )&A,pv 2(p) \/2KA,p co 5 aA,p
~ 1 KA DAp -~
Anp = —= +1 ’
P V2 ( KA,p ¢p \ wp p)

@ It becomes the Fokker-Planck equation on the phase space by Wigner transformation
without A expansion.

1
Xp=—7

4 Jp

=-We can analyze the inverse of the renormalization group in terms of the diffusion model

by using the previous result.
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6. Conclusion



Conclusion

Conclusion

Using the semi-classical approximation based on the Wigner transform and A expansion, we
showed the relationship between the reverse process of the Lindblad dynamics via Petz map
and the reverse diffusion process via Bayes' rule.
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semi-classical approximation

Fokker-Planck eq

Bayes' rule

A reverse process of
Lindblad dynamics

semi-classical approximation

Reverse diffusion —— diffusion model
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Future prospects

@ Numerical Verification

» h dependence
» Using the ERG eq for density matrix

Hx (ah? = (a)?, Lyoxa, Lyoxal

Note: ERG eq for density matrix becomes a Fokker-Planck type equation without &
expansion.
@ Analysis of the inverse of the renormalization group based on the diffusion model.

@ Construct a quantum version of the diffusion model based on Petz map
(cf. [Liu et al., 2025, Hu et al., 2025]).
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Reverse process of the Lindblad dynamics[kwon and Kim, 2019, Kwon et al., 2022]

e Lindblad equation:
% _ L(pe) = L [I:It ﬁt} + 3 LiapLf, - : {ﬁ L ﬁt}
at h ) ) k.t 2 k.t 0

@ Infinitesimal time evolution:

preat = Tae(pr) = (1 + AtL)(pr)

@ #;: a quantum state which follow the Lindblad eq.

@ Petz map for Tas:

Prava () =320+ AL) (34050 48) 5472
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Reverse process of the Lindblad dynamics(Cont'd)

@ Expanding it around ¢ and truncate the terms which order is higher than (’)(At2):
_0p z
o [Ht, } +Z Lk t,OL > {thLkuP}
where we have set Gy = 6/3/2, ét = dét/dt and
= 1 AN A LA A—1 Zh A AT e A—1
Hy = —5 | GGy + GG + 5 Y Gilg LGt | + hee.
k
ik’t = GAtIAJL’tGA;l

@ We have got a reverse process for Lindblad dynamics.
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ERG eq for density matrix: setup 1

@ Finite temperature scalar field theory

_ 1o _1 (0¢(t,p) 06(t,—p) | o
SA - 5 /—5/2 dt/pKA,p< ot ot =+ wp¢(tap)¢(t7 _p)> + Sint,A

o A: effective energy scale TK
° wp = /p2 + m2 —
o Kpp= K(|p|/A): cutoff function.

@ partition function |p|/A
- )

Zp = / DY(—B/2 < t < B/D5[B(+5/2) — d(—B/2)]e
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ERG eq for density matrix: setup 2

J\t
ot +B/2
@ density matrix
p\
_ 1 N 4
pale™ 7] = N /D¢(—5/2 <t < f)2)e ThoEs/M=¢E
A
: —B/2
@ requirement: ¥ B/
(1] —A% = ApZa (Ap : a quantity which is independent to fields)
Q A@e Sint.A e :_Aae Mtl(;[{@ =p"=p
pT=p==¢
Aae zntA|<p+ o —p
o - oA
526*SinaA| 52—

mt,A|
ot=p"=¢

064 (t,p)0¢q(s,—P)

K Bw C—— 8/2 .
-1 » 2:} 2 coth ( ”) 5%5@“’; e—=¢ 1 (" 5o dtds fp K pAlt,s)
(cf. Polchinski eq)
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ERG eq for density matrix: result

B) .
—AaprA[w o]

1 Kpp Bup\ ([ 6 5§\ 1Kap( 0 b _
= ———Fcoth| —|[—+— ] — === +
/p [ 2 2wp ot ( 2 )\&or "o 2 Knp \0p" TS (" +¢7)

XKA,p + _ 6 6 1 _XKA,p ﬁwp n .2 n 3
. _ _ n(2¥ B
4 KA,p ((p ¥ ) <5S0+ (;()07 + 4 K/2\7p Wp cot D) (gp © ) p[so ) ]

Qe Sint.A 1 /’6/2 / . 52— Sint,A
A= dtds | Kp pA(t,s
oA P R R PN r o ey

1 Kap Buwp 5 8\’ xKap, o+ [0 5 s
_ _ ) th _ > _ o int,A
+ 2/1, l 2wp 0 < 2 dpt + dp~ 2 Kpap (SD v ) dp= o~ €

@ x —a parameter which depends on RG scheme.
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ERG as a quantum operation

General evolution of a quantum state = trace-preserving completely positive (TPCP) map

The renormalization group procedure constructs semi-group: Ra; A, © Ra,.A, = Bag A,

TPCP map forming a semi-group < Lindblad equation

a1 =0+ 2 (Bt = 3t r})

@ Q. Are there cases where the ERG equation for the density matrix becomes the Lindblad
equation?
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ERG as a quantum operation(Cont'd)

@ A. Yes, there are.

@ The range of x is determined by Suwy.
@ x = 0 is the special case that is allowed for any Buwy,.
» Unitary part of RG (“Hamiltonian™)

1 —KA ’ A" @ QA pa
Xa= _4/;; Kap ( Tpdp + ¢p7r—1’) a _4/;, (akpaj\,_p - a"’pa/"_p)

—disentanger! (cf. [Kuwahara et al., 2024])
» Non-unitary part (“jump operator”)

K N - A
biie) = \/QKAAP( ot (ﬁ2 ) " 1) Wy Lalr) = \/QKAM (COth (621)) - 1) iy
P D
K
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(Score based)diffusion model: learning
Forward SDE (data — noise)
.7 dx = f(x,t)dt + g(t)dw ——— | : :
. o score function
= 00)— 0T o)+ o0 @

Reverse SDE (noise — data)

Figure: Conceptual diagram. adapted from [Song et al., 2020]

@ Learning process

Q P.,po(x): Empirical distribution constructed from data that reflects the statistical features
of the data.
@ Diffusing Peynp,o(x) yields Gaussian noise at time T Peyyp ¢ ()

7 1 7 1 8(DijPemp,t)
© Learn a neural network s, that approximates sj , ~ Porp i Zj a7 .
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(Score based)diffusion model: generating process

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw 4)@
.g :

) score function
@ i [£6) - 5 o] 8 + (00 @

Reverse SDE (noise — data)

4’

Figure: Conceptual diagram. adapted from [Song et al., 2020]

@ Generating process
@ Prepare Gaussian noise gr(x), which we take as an “initial” distribution for reverse diffusion.
@ “Evolve’t : T — 0 by using the reverse diffusion equation whose drift correction is
approximated by a neural network:

8q 1 82 g
t 8 (ztat):l + 3 Z ax%amt [Dj(xtvt)p(xtvt):l

whre fg,t(wt) = fl(z) — Sé,t(xt)

© We get a new sample from go(z).
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