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Background

- Matrix models are expected to give a nonperturbative formulation of
superstring theory.

» The type IIB matrix model: [Ishibashi, Kawai, Kitazawa, Tsuchiya (1997)]

s = — e (24, 4,][4% AP] — 2 pre[A
=- 2z r|7[4a,4p]lA% A7) = ZYT*[Aq , Y]

A, (a=1,..,10), Y : N X N Hermitian matrices

- Spacetime emerges from the degrees of freedom of matrices.

- This model 1s expected to include gravity.

N

Curved spacetime should be described in the type IIB matrix model.




Background

- The covariant derivative interpretation of matrix models:
[Hanada, Kawai, Kimura (2006)]
A = V)]

- This enables to describe curved spaces 1n matrix models.
- The Einstein eq. 1s obtained from EOM of the type IIB matrix model.

* The size of the matrices A,y = iV(y) 1s infinite.

J

- Regularization is needed to compute quantum effects.
- It 1s necessary to make the size of the matrices finite to apply the
covariant derivative interpretation to numerical simulations.




Research overview

* We regularize the matrices A,y = iV(,) to finite-size matrices.

a manifold M infinite-size matrices finite-size matrices
P11 DPin
D A=V < |}~
I 0 Pn1 = DPNN
our study

covariant derivative interpretation

- M: a closed connected 2n-dimensional Kahler manifold
- We use the Berezin-Toeplitz (BT) quantization for the regularization.

cf. 2-dimensional case : [Hattori, Mizuno, Tsuchiya (2024)]
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Covariant derivative interpretation

* The covariant derivative interpretation: 4,y = iVy)
Vi) (a=1,..,2n) |Hanada, Kawai, Kimura (2006)]

[V(a)cp(x, 9 = Ry’ (g HV0(x, g)]

Q) V(e acts on a regular rep. field ¢(x, g) (x EM, g€ Spin(Zn)).
—s For h € Spin(2n), ho(x, 9) = ¢(x,h 1g)

@ V(g is V, multiplied by R,,"(g™"). (Vb== ey (au + %Qﬁdocd))
— the vector rep. matrix of Spin(2n)
jl> The index (a) of V() does not transform under Spin(2n).

jl> V(e can be regarded as matrices.




BT quantization

- The BT quantization i1s a method for regularizing a field to a finite-
size matrix.

¢ : a field on a Kahler manifold M

(=

N

(a section of a homomorphism bundle)

— a bundle whose fiber is a vector space of linear maps: V - 1/’

projecting onto the spaces of zero modes of the Dirac op. D & D’

— By the Atiyah-Singer index theorem,
these spaces are finite-dimensional.

T(V'V) (¢) : a finite-size (= dimKerD' X dimKerD) matrix

- p: the topological charge of the gauge field in D & D’

p—)OO

jl> the matrix size of T(V'V)(¢) - oo




BT quantization

. T(V'V) (¢)’s behavior in the large p limit: [Adachi, Ishiki, Kanno (2023)]

[ lim [ )T (9) TV )| =0
- lim |ihp? |T(H), TV N(@)| = TV I((F, 91| = 0
\__P7% J
Here,
1
" hp X ;
- f € C(M)

. [T(f),T(V’,V) (¢)] = T(V"Vr)(f)T(V',V) (B) — r(v'V) (OTV(F)
{f, ¢} =W¥®0,f)(Vyp), W: Poisson tensor
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Regularization of covariant derivatives

* We will regularize the matrices iV, to finite-size matrices.

* P (o) : the matrix regularization of iV g

D P4 acts on T(¢), matrix regularization of a regular rep. field ¢.
@ PyT(p) = T(iV(qy¢) in the large p limit.
@ P (4 is Hermitian for finite p.

1
P@T (@) = = T(d X *)[T(X, T(@)] + 5 1y [T(d X ), T(XH]T ()

- X4x)(A=1,..,D):

- embedding coordinate functions of 2n-dim Kahler manifold M into
D-dim Euclidean space R”

) (abXA)(acXA) = Opc




Regularization of covariant derivatives

1
PyT (@) = -1, T(0yX*)[T(X4), T(p)] + Eﬁﬁl[T(a(a)XA),T(XA)]T(QD)

We will show that P,y provides the matrix regularization of iV ).

3 steps

(D Obtain T(¢), matrix regularization of a regular rep. field ¢

@ Obtain T(X4), matrix regularization of the embedding coordinate
functions X4

® Show that P, T(¢) = T(iV(4y¢) in the large p limit.




Regularization of covariant derivatives

* T(p): matrix regularization of a regular rep. field ¢(x, g)

By the Peter-Weyl theorem,

* i / 7D (¢ ) \
o(x,g) = Z <pf8)(x) Jd: Ri{)(9)
J\ Y, d,
rirr. Y
fleld in rep.r basis T (r,1) (Qb )
- d,: the dimension of rep.r T((p) —

ng;;(g): the rep. matrix of r* T(r 1 ( )

- Under Spln(Zn) d,.r <
the index i of (pl( b transforms as rep.r, T (r'1) ( )

while (j) does not. - /




Regularization of covariant derivatives

* T(p): matrix regularization of a regular rep. field ¢(x, g)

,/ T (1) (ébgg) \

By the Peter-Weyl theorem,
(x9)= ). ¢f§})<xw_ Rf(,;<g>

dr ~< .
! fleld in rep.r ba81s | T(r,l) (gbé:l)r))
- Under Spln(Zn) T(‘P) = [ (r'1) (,,(r’))
T %
the index i of gol( j transforms as rep.r, (1)
while (j) does not. dyr )

- Consider rep.r whose Casimir 1s less than E.
- Take the limit in which Z - c0o & p = \
while keeping = < p. cutoff - =




Regularization of covariant derivatives

- T(X*): matrix regularization of the embedding coordinate functions X*

1
PyT (@) = —hx T(9X?)[T(X4), T(p)] + 5hgl[T(c?(a)XA),T(XA)]T(w)
=TX)T(p) = T(@)TD (X

o )

T(X4) =




Regularization of covariant derivatives

* Proof that P(yT(¢) =T (iV(a)cp) in the large p limit.

PayT (@) = —h; T(9X*)[T(X4), T(p)] + %flgl[T(a(a)XA),T(XA)]T(<P)

\ )
Y

=T(0yX*) TG{X4, 9}) + 0(1/p) 0(1/p)
= T(d@X*) T (iWH(3.X*)(Va9)) + O(1/p)

=T (i(a(a)XA)WCd(OcX A)(qu))) +0(1/p)
=Ry (g™
= T(iV9) + 0(1/p)

j‘> P (@) glves matrix regularization of iV,.




Example: S>

- X4(z,2) (A = 1,2,3): embedding coordinate functions of S? into R3

/ T(S‘%’S‘%) (X4

T(X4) =

0

\

- s: Integer or half integer
- Xt =X 4 iXZ
c TGS (x1) =

- TGS (x3) =

p+2s+1

],

p+2s+1

T(S,S) (XA)

Je, J+ =1 i),

rls+2

1 S+;) (XA)

\

0

— /
g

Xlw

- 1 (i=1,2,3) : (p + 25)-dim rep. of the su(2) generator




Example: S>

PyT (@) = ihy ' T(d X )[TX"), T(@)] F % hp [T (0 X ), TXD|T (9)
= TXT(p) — T(@)TOO (X4

Py =[Py, P

* In the large p limat,
2P, 2P ) = 2(2Pm)),  [2P@), 2Pw] = £2P

jl> Z:P(i) and 2?(3) form 511(2) algebra.

cf. [2iViyy, 20V | = 2(=20,2), [-20,_, 2iV(yy| = £2iV(4




Summary and future directions

 Summary

* We have regularized iV, on a Kahler manifold M to finite-size
matrices P,y by the BT quantization.

1
PayT (@) = =1y T(yX4)[T(X4), T(p)] + 5hgl[T((?(a)XA),T(XA)]T(w)

jl> This enables to describe curved spaces by finite-size matrices.

 Future directions

- Calculation of 1-loop effective action (the mass of higher-spin fields)

- Applying the covariant derivative interpretation to the results of
numerical simulations to extract the geometry from matrix models
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