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Background

・Matrix models are expected to give a nonperturbative formulation of 
iiisuperstring theory. 

・The type IIB matrix model: 

𝑆 = −
1

𝑔2
Tr

1

4
𝐴𝑎 , 𝐴𝑏 𝐴𝑎 , 𝐴𝑏 −

1

2
ത𝜓Γ𝑎 𝐴𝑎 , 𝜓

𝐴𝑎 𝑎 = 1, … , 10 ,  𝜓 : 𝑁 × 𝑁 Hermitian matrices

[Ishibashi, Kawai, Kitazawa, Tsuchiya (1997)]

・Spacetime emerges from the degrees of freedom of matrices. 

Curved spacetime should be described in the type IIB matrix model. 

・This model is expected to include gravity. 



Background

・The covariant derivative interpretation of matrix models: 

𝐴 𝑎 = 𝑖∇ 𝑎

[Hanada, Kawai, Kimura (2006)]

・The size of the matrices 𝐴 𝑎  = 𝑖∇ 𝑎  is infinite. 

・Regularization is needed to compute quantum effects. 

・It is necessary to make the size of the matrices finite to apply the 

iiicovariant derivative interpretation to numerical simulations. 

・This enables to describe curved spaces in matrix models.

・The Einstein eq. is obtained from EOM of the type IIB matrix model.  



Research overview

・We regularize the matrices 𝐴 𝑎  = 𝑖∇ 𝑎  to finite-size matrices.  

a manifold 𝑀 infinite-size matrices finite-size matrices

𝐴 𝑎 = 𝑖∇ 𝑎

𝑝11 ⋯ 𝑝1𝑁

⋮ ⋱ ⋮
𝑝𝑁1 ⋯ 𝑝𝑁𝑁↑

our study

・We use the Berezin-Toeplitz (BT) quantization for the regularization. 

・𝑀: a closed connected 2𝑛-dimensional Kahler manifold

cf. 2-dimensional case : [Hattori, Mizuno, Tsuchiya (2024)]

covariant derivative interpretation
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Covariant derivative interpretation

・The covariant derivative interpretation: 𝐴 𝑎  = 𝑖∇ 𝑎

∇ 𝑎 𝜑 𝑥, 𝑔 ≔ 𝑅 𝑎
       𝑏 𝑔−1 ∇𝑏𝜑 𝑥, 𝑔

[Hanada, Kawai, Kimura (2006)]

① ∇ 𝑎 acts on a regular rep. field 𝜑 𝑥, 𝑔 𝑥 ∈ 𝑀,  𝑔 ∈ Spin 2𝑛 .

⟶ For ℎ ∈ Spin 2𝑛 , ෠ℎ𝜑 𝑥, 𝑔 = 𝜑 𝑥, ℎ−1𝑔

・∇ 𝑎  (𝑎 = 1, … , 2𝑛)

∇𝑏≔ 𝑒𝑏
𝜇

𝜕𝜇 +
1

2
Ω𝜇

𝑐𝑑𝒪𝑐𝑑② ∇ 𝑎 is ∇𝑏 multiplied by 𝑅 𝑎
       𝑏 𝑔−1 .

⟶ the vector rep. matrix of Spin 2𝑛

The index 𝑎 of ∇ 𝑎 does not transform under Spin 2𝑛 . 

∇ 𝑎 can be regarded as matrices. 



BT quantization

・The BT quantization is a method for regularizing a field to a finite-
iiisize matrix. 

𝑇 𝑉′,𝑉 (𝜙) : a finite-size (= dimKer𝐷′ × dimKer𝐷) matrix

・𝑝: the topological charge of the gauge field in 𝐷 & 𝐷′

𝑝 → ∞ ⟶ the matrix size of 𝑇 𝑉′,𝑉 𝜙 → ∞

projecting onto the spaces of zero modes of the Dirac op. 𝐷 & 𝐷′

→ By the Atiyah-Singer index theorem, 

 these spaces are finite-dimensional. 

𝜙 : a field on a Kahler manifold 𝑀

→ a bundle whose fiber is a vector space of linear maps: 𝑉 → 𝑉′
（a section of a homomorphism bundle）



BT quantization

・𝑇 𝑉′,𝑉 𝜙 ’s behavior in the large 𝑝 limit: [Adachi, Ishiki, Kanno (2023)]

・{𝑓, 𝜙} ≔ 𝑊𝑎𝑏 𝜕𝑎𝑓 ∇𝑏𝜙 , 𝑊𝑎𝑏: Poisson tensor

Here,

・ℏ𝑝 ∝
1

𝑝

・ 𝑇 𝑓 , 𝑇 𝑉′,𝑉 𝜙 ≔ 𝑇 𝑉′,𝑉′
𝑓 𝑇 𝑉′,𝑉 𝜙 − 𝑇 𝑉′,𝑉 𝜙 𝑇 𝑉,𝑉 𝑓

・𝑓 ∈ 𝐶∞ 𝑀

・ lim
𝑝→∞

𝑖ℏ𝑝
−1 𝑇 𝑓 , 𝑇 𝑉′,𝑉 𝜙 − 𝑇 𝑉′,𝑉 {𝑓, 𝜙} = 0

・ lim
𝑝→∞

𝑇 𝑉′′,𝑉′
𝜙′ 𝑇 𝑉′,𝑉 𝜙 − 𝑇 𝑉′′,𝑉 𝜙′𝜙 = 0
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Regularization of covariant derivatives

・We will regularize the matrices 𝑖∇ 𝑎  to finite-size matrices. 

② 𝒫 𝑎 𝑇 𝜑 = 𝑇 𝑖∇ 𝑎 𝜑  in the large 𝑝 limit.  

① 𝒫 𝑎 acts on 𝑇 𝜑 , matrix regularization of a regular rep. field 𝜑.

③ 𝒫 𝑎 is Hermitian for finite 𝑝.

・𝒫 𝑎  : the matrix regularization of 𝑖∇ 𝑎

𝒫 𝑎 𝑇 𝜑 ≔ −ℏ𝑝
−1𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑋𝐴 , 𝑇 𝜑 +

1

2
ℏ𝑝

−1 𝑇 𝜕 𝑎 𝑋𝐴 , 𝑇 𝑋𝐴 𝑇 𝜑

・ 𝑋𝐴 𝑥 𝐴 = 1, … , 𝐷 :

・embedding coordinate functions of 2𝑛-dim Kahler manifold 𝑀 into

iii𝐷-dim Euclidean space 𝑅𝐷 

・ 𝜕𝑏𝑋𝐴 𝜕𝑐𝑋𝐴 = 𝛿𝑏𝑐



Regularization of covariant derivatives

𝒫 𝑎 𝑇 𝜑 ≔ −ℏ𝑝
−1𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑋𝐴 , 𝑇 𝜑 +

1

2
ℏ𝑝

−1 𝑇 𝜕 𝑎 𝑋𝐴 , 𝑇 𝑋𝐴 𝑇 𝜑

① Obtain 𝑇 𝜑 , matrix regularization of a regular rep. field 𝜑

② Obtain 𝑇 𝑋𝐴 , matrix regularization of the embedding coordinate 

iiiifunctions 𝑋𝐴

③ Show that 𝒫 𝑎 𝑇 𝜑 = 𝑇 𝑖∇ 𝑎 𝜑  in the large 𝑝 limit. 

3 steps

We will show that 𝒫 𝑎  provides the matrix regularization of 𝑖∇ 𝑎 . 



Regularization of covariant derivatives

・𝑇(𝜑): matrix regularization of a regular rep. field 𝜑 𝑥, 𝑔

By the Peter-Weyl theorem,

𝜑 𝑥, 𝑔 = ෍

𝑟: 𝑖𝑟𝑟.

෤𝜑𝑖 𝑗
⟨𝑟⟩

𝑥 𝑑𝑟 𝑅𝑖 𝑗
⟨𝑟∗⟩

𝑔

basisfield in rep.𝑟

・Under Spin 2𝑛 ,

the index 𝑖 of ෤𝜑𝑖 𝑗
⟨𝑟⟩

 transforms as rep.𝑟, 

while (𝑗) does not.

・𝑑𝑟: the dimension of rep.𝑟

・𝑅𝑖 𝑗
⟨𝑟∗⟩

𝑔 : the rep. matrix of 𝑟∗
𝑇 𝜑 =

⋮

𝑇 𝑟,1 ෤𝜑 1
𝑟

⋮

𝑇 𝑟,1 ෤𝜑 𝑑𝑟

𝑟

𝑇 𝑟′,1 ෤𝜑
1

𝑟′

⋮

𝑇 𝑟′,1 ෤𝜑
𝑑

𝑟′

𝑟′

⋮

𝑑𝑟

𝑑𝑟′



Regularization of covariant derivatives

・𝑇(𝜑): matrix regularization of a regular rep. field 𝜑 𝑥, 𝑔

By the Peter-Weyl theorem,

𝜑 𝑥, 𝑔 = ෍

𝑟: 𝑖𝑟𝑟.

෤𝜑𝑖 𝑗
⟨𝑟⟩

𝑥 𝑑𝑟 𝑅𝑖 𝑗
⟨𝑟∗⟩

𝑔

basisfield in rep.𝑟

・Consider rep.𝑟 whose Casimir is less than Ξ. 

・Take the limit in which Ξ → ∞ & 𝑝 → ∞ 

while keeping Ξ ≪ 𝑝. cutoff : Ξ

・Under Spin 2𝑛 ,

the index 𝑖 of ෤𝜑𝑖 𝑗
⟨𝑟⟩

 transforms as rep.𝑟, 

while (𝑗) does not.

𝑇 𝜑 =

⋮

𝑇 𝑟,1 ෤𝜑 1
𝑟

⋮

𝑇 𝑟,1 ෤𝜑 𝑑𝑟

𝑟

𝑇 𝑟′,1 ෤𝜑
1

𝑟′

⋮

𝑇 𝑟′,1 ෤𝜑
𝑑

𝑟′

𝑟′

⋮

𝑑𝑟

𝑑𝑟′



Regularization of covariant derivatives

・𝑇(𝑋𝐴): matrix regularization of the embedding coordinate functions 𝑋𝐴

𝑇 𝑋𝐴 =

⋱
0
0
0
0
0
0
0

0
000

0
0
0
0
0
0

0
0
⋱
0
0
0
0
0

0
0
0

000
0
0
0
0

0
0
0
0

000
0
0
0

0
0
0
0
0
⋱
0
0

0
0
0
0
0
0

000
0

0
0
0
0
0
0
0
⋱

𝑑𝑟

0

0𝑇(𝑟,𝑟) 𝑋𝐴

𝑇(𝑟,𝑟) 𝑋𝐴

𝑇(𝑟′,𝑟′) 𝑋𝐴

𝑑𝑟′

𝑇(𝑟′,𝑟′) 𝑋𝐴

𝒫 𝑎 𝑇 𝜑 ≔ −ℏ𝑝
−1𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑋𝐴 , 𝑇 𝜑 +

1

2
ℏ𝑝

−1 𝑇 𝜕 𝑎 𝑋𝐴 , 𝑇 𝑋𝐴 𝑇 𝜑

≔ 𝑇 𝑋𝐴 𝑇 𝜑 − 𝑇 𝜑 𝑇(1,1)(𝑋𝐴)



Regularization of covariant derivatives

・Proof that 𝒫 𝑎 𝑇 𝜑 = 𝑇 𝑖∇ 𝑎 𝜑  in the large 𝑝 limit. 

𝑂(1/𝑝)

= 𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑖𝑊𝑐𝑑 𝜕𝑐𝑋𝐴 ∇𝑑𝜑 + 𝑂(1/𝑝)

𝒫 𝑎 𝑇 𝜑 ≔ −ℏ𝑝
−1𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑋𝐴 , 𝑇 𝜑 +

1

2
ℏ𝑝

−1 𝑇 𝜕 𝑎 𝑋𝐴 , 𝑇 𝑋𝐴 𝑇 𝜑

= 𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑖{𝑋𝐴, 𝜑} + 𝑂(1/𝑝)

= 𝑇 𝑖 𝜕 𝑎 𝑋𝐴 𝑊𝑐𝑑 𝜕𝑐𝑋𝐴 ∇𝑑𝜑 + 𝑂(1/𝑝)

= 𝑅 𝑎
       𝑑 𝑔−1

= 𝑇 𝑖∇ 𝑎 𝜑 + 𝑂(1/𝑝)

𝒫 𝑎 gives matrix regularization of 𝑖∇ 𝑎 .



Example: 𝑺𝟐

・𝑋𝐴 𝑧, ҧ𝑧 𝐴 = 1, 2, 3 : embedding coordinate functions of 𝑆2 into 𝑅3

𝑇 𝑋𝐴 =

⋱ 1 1 1 1

1 𝑇
𝑠−

1
2

, 𝑠−
1
2 (𝑋𝐴) 1 1 1

1 1 𝑇 𝑠,𝑠 (𝑋𝐴) 1 1

1 1 1 𝑇
𝑠+

1
2 , 𝑠+

1
2 (𝑋𝐴) 1

1 1 1 1 ⋱

0

0

・𝑠: integer or half integer

・𝑋± ≔ 𝑋1 ± 𝑖𝑋2

・𝑇 𝑠,𝑠 𝑋± =
2

𝑝+2𝑠+1
𝐽± , 𝐽± ≔ 𝐽1 ± 𝑖 𝐽2

・𝑇 𝑠,𝑠 𝑋3 =
2

𝑝+2𝑠+1
𝐽3

・𝐽𝑖 𝑖 = 1, 2, 3  : 𝑝 + 2𝑠 -dim rep. of the 𝔰𝔲 2  generator
𝑋1

𝑋2

𝑋3

(𝑧, ҧ𝑧)

(𝑋1, 𝑋2, 𝑋3)



Example: 𝑺𝟐

𝒫 ± 𝑇 𝜑 ≔ ±𝑖ℏ𝑝
−1𝑇 𝜕 ± 𝑋𝐴 𝑇 𝑋𝐴 , 𝑇 𝜑 ∓

𝑖

2
ℏ𝑝

−1 𝑇 𝜕 ± 𝑋𝐴 , 𝑇 𝑋𝐴 𝑇 𝜑

≔ 𝑇 𝑋𝐴 𝑇 𝜑 − 𝑇 𝜑 𝑇(0,0)(𝑋𝐴)

・𝒫 3 ≔ 𝒫 + , 𝒫 −

・In the large 𝑝 limit,

2𝒫 + ,  2𝒫 − = 2 2𝒫 3 , 2𝒫 3 ,  2𝒫 ± = ±2𝒫 ±

cf. 2𝑖∇ + ,  2𝑖∇ − = 2 −2𝒪+− , −2𝒪+− ,  2𝑖∇ ± = ±2𝑖∇ ±

2𝒫 ±  and 2𝒫 3  form 𝔰𝔲 2  algebra. 



Summary and future directions

・Summary

・We have regularized 𝑖∇ 𝑎 on a Kahler manifold 𝑀 to finite-size 

iiiiiimatrices 𝒫 𝑎 by the BT quantization.

・Future directions

・Calculation of 1-loop effective action (the mass of higher-spin fields)

・Applying the covariant derivative interpretation to the results of 
iiiiiinumerical simulations to extract the geometry from matrix models

𝒫 𝑎 𝑇 𝜑 ≔ −ℏ𝑝
−1𝑇 𝜕 𝑎 𝑋𝐴 𝑇 𝑋𝐴 , 𝑇 𝜑 +

1

2
ℏ𝑝

−1 𝑇 𝜕 𝑎 𝑋𝐴 , 𝑇 𝑋𝐴 𝑇 𝜑

This enables to describe curved spaces by finite-size matrices.
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