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1. Itroduction

e Sonoda (2015) defined the most general renormalization group transformation and
showed that it reproduces Polchinski (1984), Ball et al. (1995), and Morris (1998).

 We explicitly construct the finite exact renormalization group transformation R, ;
as a functional-differential operator acting on the Boltzmann factor.

e We consider a d-dimensional Euclidean field theory for a real scalar field ¢.



2.1 About the notation

e Inner product for functionals f and g:

(f,9) = / di f(z)g(z)

e Foran operator A with kernel A(z, y),

(1, 49) = [ d'e [ d'yf@)A@)gt), (Af.9) = (£, A7)
e For an operator A and the functional derivative,
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2.2 Setup

Cutoff propagators C'x and C j’\ have the same momentum dependence and differ only by
the cutoff functions K and k:

p| p|
) HE)
(Their kernels are C (z,y) = [ (gjf)’d Cr(p)e (==Y and similarly for C'\ ; inverses are

defined by C, (p)C’Kl(p) = 1 etc))

Cutoff functions:

K(s)=1(s€|0,1]), K(s) - 0(s— o), K non-decreasing, positive-definite,
k(s)=0(s€0,1]), k(s) >0(s>1), kpositive-definite.



2.3 the exact RG transformation 2, 4

Renormalization group: a family of transformations R, »» mapping an action Sy with cutoff
A to an action S; at another scale, i.e. a map on theory space S. Here ¢ is the
transformation parameter:

Riy: — Spl¢] — =S¢
e Finite ERG can be written as a similarity transformation of the scale transformation
(implicit in Sonoda (2013)).
e [tsinfinitesimal generator is the flow equation (e.g. Polchinski equation).

If there exists a fixed point $* := {S € S| Rie > = e}, thenthe A — oo limit can
be computed and one can construct the field theory rigorously. This is our motivation.



3. Assumption and what is derived

e The true Assumption is the scaling relation for normal-ordered correlation
functions.

e From that Assumption, one derives the following scaling identity for the normal-
ordered generating functional (with respect to C /’\)3

eWt[J] _ eftidT(DTJ,%)ewt/[J], (t > 4! > O) (31)
e Scale operators:
(D:J)(xz) = ( A —d—:c“i J(x),(Df f)(z) = | A —I—x“i f(z) (3.2
g - ' OxH AT - ' OxH '

e Everything that follows (existence of R; 4, its explicit operator form, and the generator
() is a consequence.



4 1 finite ERG acts on the Boltzmann factor

From (3.1), the finite exact renormalization group transformation acting on the Boltzmann
factor itself is obtained:

e—St[¢] — Rt,t/e_st’[¢], Rt,t’ : e_St’[¢] — e_St[¢] (4]_)

Once this scaling structure is available, the A — oo limit becomes straightforward to
evaluate within this framework.



4.2 What we found: explicit operator form of R;

Define the coarse-graining operator RCA, the scale transformation D 4/, by

1

Rgi — e—%(%,q%)’ RCK — 67(%’011\%), Dt,t’ — eftidT(%’KDzK_lgb) (4,2)

Cutoff operator IC and its inverse IC 1 (as integral kernels):

K(z,y) = / (Ziz)’ dK(‘%')eip'(wy),lCl(a:,y)E / (ij)’ - eKiZ(T(;;) (4.3)

Then
Rt,t’ — RCA Dt,t’ R&i (44)

This representation is more general than in previous studies.



4.3 Interpretation of R ¢/

o RCA Is the coarse-graining operator given as a heat operator (differential Weierstrass
transform).

e |tsinverse Rg,,l gives the normal ordering with respect to C'}, .
A

e This provides an algebraic way to organize “coarse-graining + rescaling” as a similarity
transformation[Kupiainen, 1986].
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4.4 generator and the flow equation

Define the generator of an infinitesimal ERG transformation:

¢
Gt — ﬂRt—l—e,t y Rt,t’ — exp{/ dr GT}, (45)
Oe e=0 t
and one obtains
G, = IC_lDlCi C’iJrgb + ¢ (46)
t — t 5¢ ’ A 5¢ 1R .

where ¢; is a t-dependent constant term coming from the Jacobian of the scale
transformation (it multiplies the Boltzmann factor by an overall factor and can be absorbed
into the normalization of the partition function).
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5.1 Proof sketch: the main route

—~—

1. Define the normal-ordered generating functional e V1],

2.RestricttoJ = K C’qub to convert the J-space scaling into a configuration-space
scale transformation Dy 4.

—~

3. Compare two representations of eV [KCx '¢]

to extract the operator acting on the
Boltzmann factor, i.e. define R 4.

4. Differentiate R+ ate = 0 to obtain G.
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5.2 Step 1: define e/l

Define the normal-ordered generating functional by
__ 1 -
el = — /qu (R(_j,le(‘]’K 1@) e Sl W= /queStM (5.1)
W A
° Ra,l is interpreted as a functional derivative with respect to the integration variable ¢.
A

J,K 1¢)

e |tactsonlyon el inside the parentheses.
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5.3 Step 2:restrictto J = ICC’qub
Substituting J = ICC’chb into (3.1), one can write

= 1 = 1 t
eWilKC ¢l Dy v eWrlkCy ¢l Diy = exp{/ dr (%, /CDZ/Cqu) } (5.2)
t’

This is the configuration-space scale transformation induced by the J-space scaling.
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5.4 Step 3:return to the Boltzmann factor and define
Rt,t’
From (5.1) withJ = K C’qub (integration variable ¢’):
SVIKC, 4] _ % / Do’ (Rgie(qs,cglqs'))e—st[qﬁ’] (5.3)
Comparing the t and t’ expressions through (5.2), one is led to define
Ry =ReDipR, (5.4)

so that e —Stl®l = Rt,tre_st’ ¢! follows.

The renormalization group transformation is often regarded as a semigroup, but in this
definition an inverse exists, hence it becomes a group.
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5.5 Step 4: derive G ;

Compute R, ¢+ and expand:

5p’

Rt—|—e,t

)
Rt—i—e,t =1 + € [(’ClDt,C — CA
Thus
0
G = e

5
8¢

e=0

- qb) — ét] + O(€?).

(5.5)

(5.6)
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6. Summary

e Previous research:

> scaling identity for e"V1”/] derive ERG transformation e =%!¢l = R, e =5¢I¢],
Sonoda (2015).

e \WWhat we construct:

o explicit operator representation as a similarity transformation,

Riy =Rc:DiwRe
9 A ? CA

o infinitesimal generator reproduces the known flow equation,

) )
L —1 /
G, = (K DtK_chb’CA_éqb +¢)
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Future plans

o At a fixed point, define the normal-ordered generating functional by

eW* V] = <: e/ K '9) ol > o Then the fixed-point Boltzmann factor can be

reconstructed by the inverse Weierstrass transform:
oS0 _ 3 (F0h) KO

e Sonoda (2019) constructed a gauge-invariant Gradient Flow ERG (GFERG). By

redefining the field and differential operators, GFERG can be written in a similar form.
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