Lattice QCD in HPC

Hideo Matsufuru (KEK)

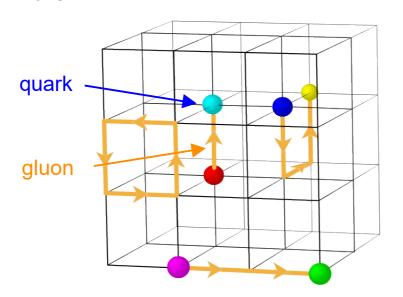
KEK-CSCS Joint Workshop, KEK, Japan, 29 October 2025

Contents

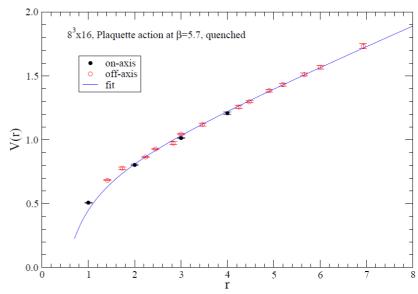
- Lattice QCD
 - What is QCD and What is lattice QCD?
- Lattice QCD and High Performance Computing
 - Massively parallel, GPU
 - Result on Fugaku
- Lattice QCD and Data Grid
 - ILDG
 - JLDG

Summary

- Lattice QCD: computational elementary particle physics
 - → only systematic approach to explore nonperturbative nature of QCD
- Lattice requires large computational resources
 - → Need of High Performance Computing
- Gauge configurations are expensive and valuable data
 - → Need of data grids: ILDG, JLDG


Lattice QCD simulations

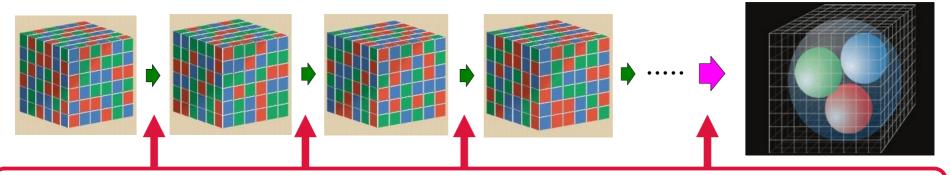
QCD (Quantum Chromodynamics)


- Fundamental theory of the "strong interaction" among quarks and gluons
- Difficult to solve due to strong coupling at long distance → perturbation is not applicable

Lattice QCD simulations

- Lattice QCD: fermion (quark) and gauge (gluon)
 fields on 4D Euclidean lattice (discretized spacetime)
- Monte Carlo algorithm → physical quantities
- Only general/quantitative approach to calculate QCD

Standard Model of Elementary Particles C charm top gluon higgs d S b down strange bottom photon Z boson electron muon <0.8 eV/c²



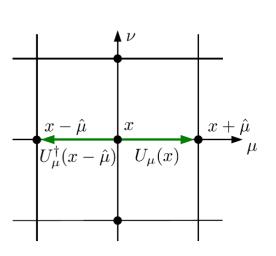
muon

electron

Lattice QCD simulations

Monte Carlo algorithm → "gauge configurations"

At each step of Monte Carlo generation and measurement, a linear equation must be solved for a large sparse matrix by iterative solver

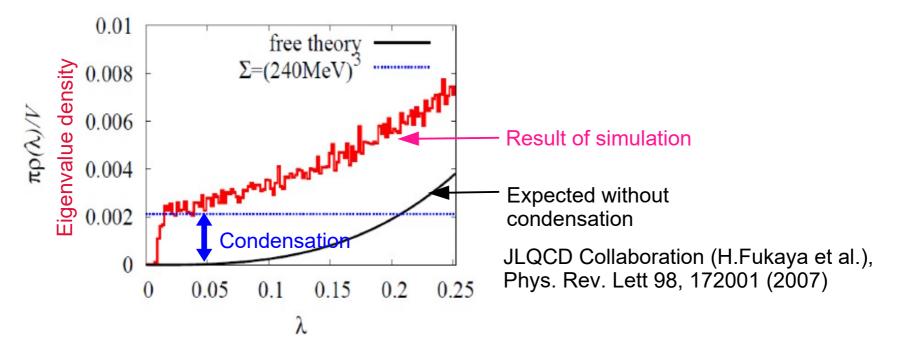

Fermion matrix of rank: 3 (color) x 4 (spinor) x #site \rightarrow O(10⁸)

Bottleneck of lattice QCD simulations

Example of fermion matrix: Wilson fermion

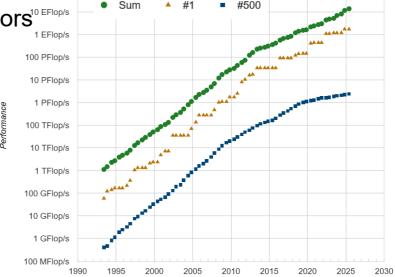
$$D_{x,y} = \delta_{x,y} - \kappa \sum_{\mu} \{ (1 - \gamma_{\mu}) U_{\mu}(x) \delta_{x+\hat{\mu},y} + (1 + \gamma_{\mu}) U_{\mu}(x - \hat{\mu}) \delta_{x-\hat{\mu},y} \}$$

- $U_{\mu}(x)$: 3x3 complex matrix (gauge field)
- γ_{μ} : 4x4 matrix (permutation of components)
- κ : hopping parameter (related to quark mass)
- Coupling with nearest neighbor sites: 9-point stencil


Lattice QCD simulations

Application of lattice QCD

- Precision calculation of hadronic process → verification of standard model
- Nature of QCD: finite temperature/density phase diagram
- Exploring candidate models beyond standard model


Example result: nature of QCD vacuum

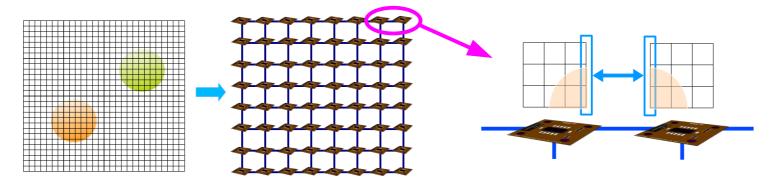
- QCD "vacuum" is not vacant, but quark-antiquark pairs condensate
- "Chiral symmetry" is spontaneously broken → quark acquires effective mass
- 98% of mass of matter (protons and neutrons) comes from this mechanism

Lattice QCD and HPC

- Lattice QCD has been a typical HPC benchmark
 - Vector architecture, massive parallel, SIMD,
 multi-core, many-core, GPU and other accelerators
 - Dedicated machines were developed
 - QCDPAX, CP-PACS (U.Tsukuba)
 - QCDOC (IBM+BNL+...) → Blue Gene
 - Pioneering work on GPU
 - I. Egri et al.,"Lattice QCD as a video game",
 Comput.Phys.Commun. 177 (2007) 631-639

Performance Development

TOP500


Performance tuning

- Distributed memory parallel system: message passing (MPI etc.)
 - → Minimize Communication overhead
- Shared memory multi-core: thread parallelization (OpenMP, etc.)
- Vector architecture: vectorization of long loops
- SIMD processors
- GPU and accelerators: many core threads of O(1K) ~ O(10K)
 - → Offloading bottleneck tasks

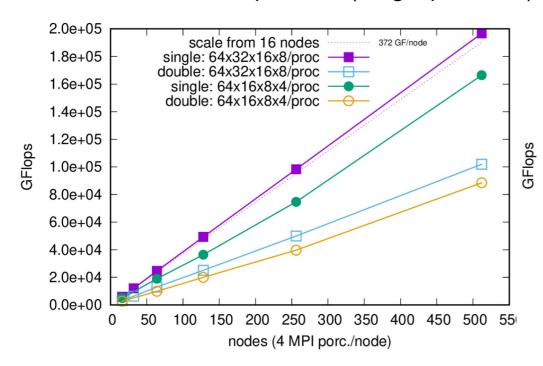
Lattice QCD and HPC

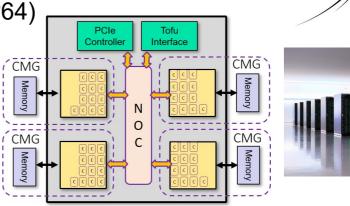
Massively parallel systems

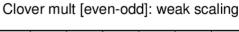
- Balance of computation and communication is important
- Specific topology of interconnect network
- Low-level communication library (instead of MPI) may achieve better performance

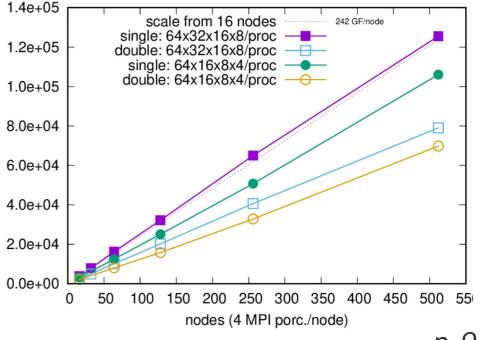
IBM Blue Gene/L @KEK (57.3 TFlops) ima 2006-2011

IBM Blue Gene/Q @KEK (1.258 PFlops) 2012-2017


Fugaku @RIKEN CCS (537 PFlops) 2020~


https://www.r-ccs.riken.jp/en/fugaku/


Intel Paragon @Hiroshima (56 nodes, 4.2 Gflops) 1993--1998


Performance on Fugaku

- Supercomputer Fugaku (RIKEN)
 - Total peak performance: 537 PFlops (FP64)
 - A64FX processor, 48 compute cores
 - 3.34 TFlops/processor, 1024 GB/s
 - Tofu Interconnect D (28 Gbps x 2 x10)
- Performance: weak scaling plot
 - Clover (improved Wilson) fermion
 - Matrix multiplication (Single precision)

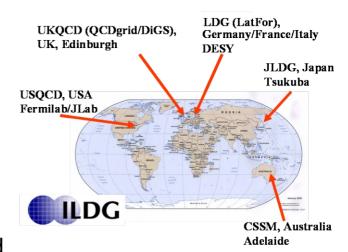
Lattice QCD and HPC

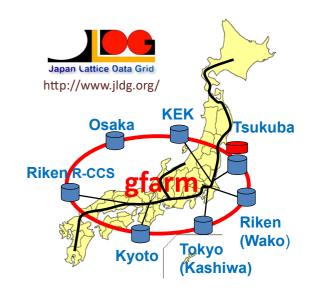
- Accelerators: GPU, PEZY-SC
 - Offloading bottleneck tasks to device
 - Implementation: OpenACC, OpenMP (directives), CUDA, OpenCL, etc (APIs).
 - Minimize data transfer between host and device
 - Many-cores of O(1K)-O(10K) → parallelization to many threads
 - Recent systems adopt GPUs
 - Miyabi at JCAHPC (U. Tokyo+Tsukuba) has started (NVIDIA GV200)
 - Next system at Univ. Tsukuba (AMD GPU)
 - FugakuNEXT (planned 2030~): next Japanese flagship (NVIDIA GPU)
 - Developing/porting fast GPU code is urgent subject

PEZY-SC on Suiren system@KEK

Miyabi @JCAHPC

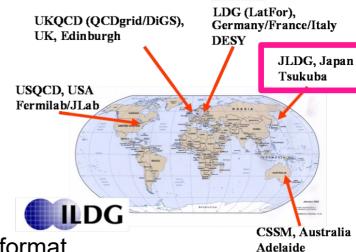
Code development

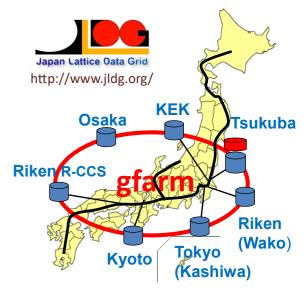

Lattice QCD code Bridge++


- General purpose code set for simulations of lattice gauge theory
- C++, object-oriented design
- Development policy
 - Readable: for beginners
 - Extendable: for testing new ideas
 - Portable: works on many machines
 - Practically enough high performance
 - Project launched in October 2009, first public release in July 2012
 - Latest version: 2.1.0 (13 September 2025)
- How to enable achieve portability and high performance simultaneously?
 - Out solution: implement robust generic code and optimized code for specific architecture separately and enable them to run simultaneously
 - → Bottleneck parts can be replaced with optimized code
 - Optimized code for Fugaku and GPU are aveilable

Data Grids

- Data grids for Computational elementary particle physics
 - Gauge configurations
 - Expensive to generate
 - Various physical quantities can be calculated
 - → Worth to share
- ILDG (International Lattice Data Grid)
 - International activity to share lattce QCD data
- JLDG (Japan Lattice Data Grid)
 - Infrastructure to share data of lattice and related field in Japan
 - Regional grid of ILDG





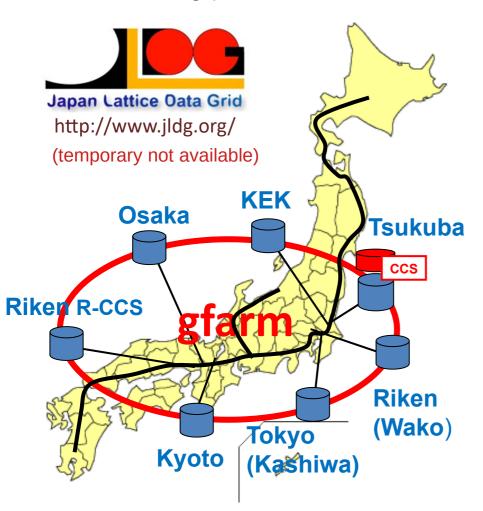
Introduction to ILDG

https://hpc.desy.de/ildg/

- Organized to share lattice QCD data (configurations)
 - Activity started in 2002
- Grid of grids
 - Resources are provided by regional grids
 - JLDG play a role of Japanese regional grid
- Organization
 - Board (representative from regional grids)
 - Metadata Working Group
 - → Spcifying description of metadata (QCDml), file format
 - Middleware Working Group
 - → Spcifying data access interface, authentication
- Activity
 - Recently rebooted as ILDG 2.0
 - Hands-on workshops (2023, 2025)
 - Data sessions in Lattice conference
 - Update of metadata/middleware issues

Data sharing

FAIR principle for scientific data sharing


M. Wilkinson et al., Sci Data 3 (2016) 160018

- Findable : unique and persistent ID, rich metadata, searchable
- Accessible : retrievable by ID, open protocol, persistently accessible metadata
- Interoperable : (meta)data with broadly applicable language
- Reusable: with clear and accessible license missing in QCDml (ver.1.x)
- File format and metadata
 - File format common binary data format
 - In which order the data are arranged
 - Packing software: LIME
 - Metadata → data base: Metadata Catalog
 - Ensemble : actions, parameters, license (ver.2.0), ...
 - Configuration: history, URI (Uniform Resource Identifier), checksum/plaquette, ...
 - How to describe?
 - → XML specified by XML schema : QCDml (QCD markup language)

Japan Lattice Data Grid

Cf. T. Amagasa et al., J. Phys. Conf. Ser. 664 (2015) 042058

- Data Grid for lattice QCD and related science (nuclear/astrophysics)
 - Sharing public data and fast data transfer within collaborations

- Operation officially started in May 2008
- Constructed on VPN HEPnet-J/sc
 - On SINET operated by NII (National Inst. of Informatics)
- Gfarm grid file system
 - User can access as if single file system
 - Automatic replication
- Operated by JLDG team (members from sites and groups)
- Resources (as of Aug 2024)
 - Total storage: 21 PB, 11.3 PB used (87%)
 - Total number of files: >200M
- Regional grid of ILDG

Summary/outlook

Summary

- Lattice QCD: computational elementary particle physics
 - → only systematic approach to explore nonperturbative nature of QCD
- Lattice requires large computational resources
 - → Need of High Performance Computing
- Gauge configurations are expensive and valuable data
 - → Need of data grid: ILDG, JLDG