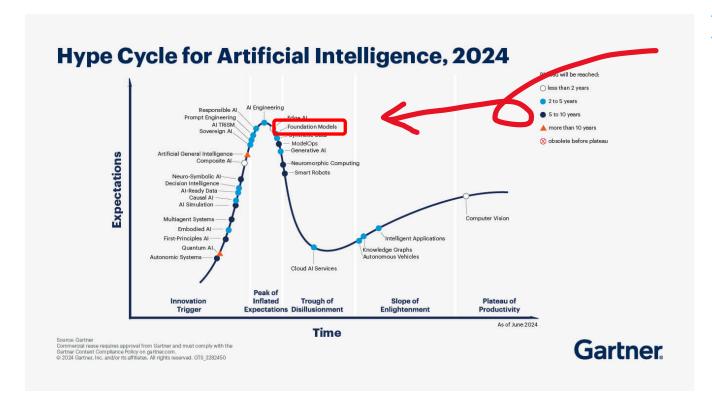
A study of foundation models for event classification in collider physics

Tomoe Kishimoto

Computing Research Center, KEK

tomoe.kishimoto@kek.jp

Introduction



- "Foundation models" is one of the keywords for AI
 - Pre-training using a large amount of "unlabeled" data
 - Fine-tuning for a target application (transfer learning)
- → Q: Is the concept of foundation models beneficial for collider physics?

Gartner.com

Transfer learning

Large amount

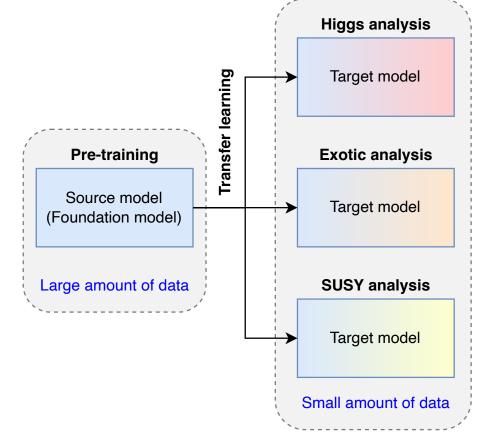
of data/labels

Target task Source task Source data Target data **Transfer learned** knowledge Target model Source model Target labels Source labels

Small amount of data/labels

Use cases in physics analysis

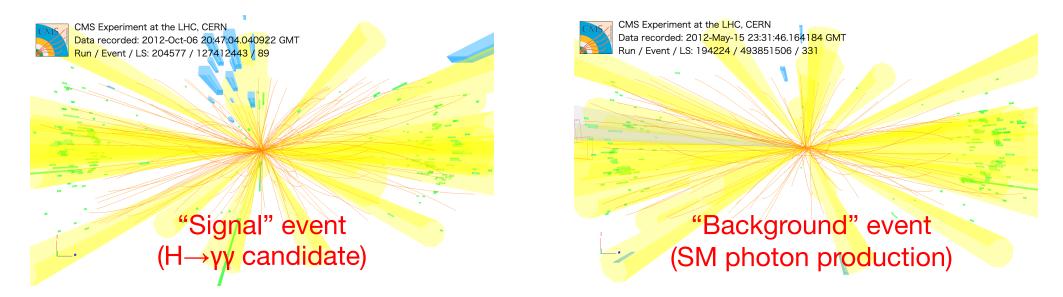
- Multiple analysis channels in collider physics
 - > Higgs, Exotic, SUSY, etc
 - Currently, dedicated DL models are trained from scratch for each channel
 - ← Large amount of training data (MC) required for each channel



→ If transfer learning can be applied across different analysis channels, the computing resources for MC simulations and DL training could be reduced

Event classification

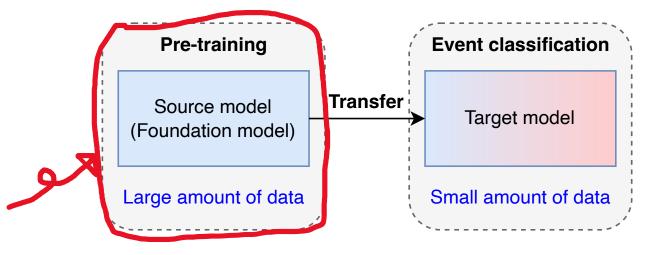
- > The concept is examined using "an event classification" problem
 - > A typical task in HEP, signal event vs. background events



→ Reconstructed particles (objects), such as electrons, muons, and jets, provide the input basic information for the classification

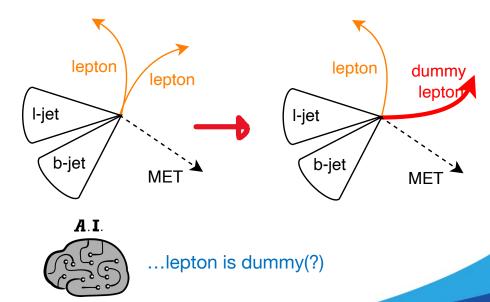
Pre-training strategy

- > The key concept of this study:
 - How to perform pre-training?
- Pre-training strategy:
 - Real collision data (CMS Open Data) are used for pre-training
 - No need to generate a large amount of MC data, and
 - Bias from the arbitrary selection of physics processes is mitigated
 - > Self-supervised learning is employed to handle the unlabeled collision data



Self-supervised learning

- > Labels are automatically generated during the training process
- Self-supervised learning strategy:
 - > One object in an event (lepton, tau, b-jet, light-jet, or MET) is randomly replaced with a dummy object when preparing a mini-batch
 - DL model is trained to predict what type of object was replaced
- → DL model needs to learn relationships among objects, which should be useful knowledge for downstream event classification tasks!

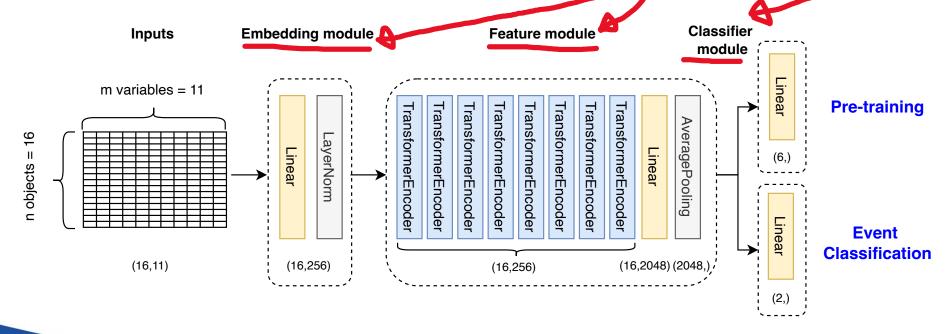


DL model

- > Transformer encoder is employed:
 - > ~11M trainable parameters
 - ➤ Inputs: 4-vector + charge for each object

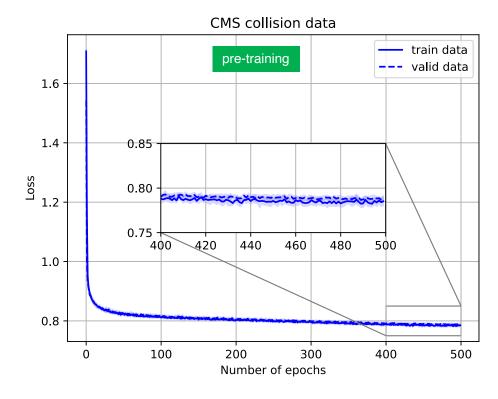
→ Weight parameters of embedding and feature modules are transferred and fine-tuned

→ Classifier module is always trained from scratch, depending on tasks



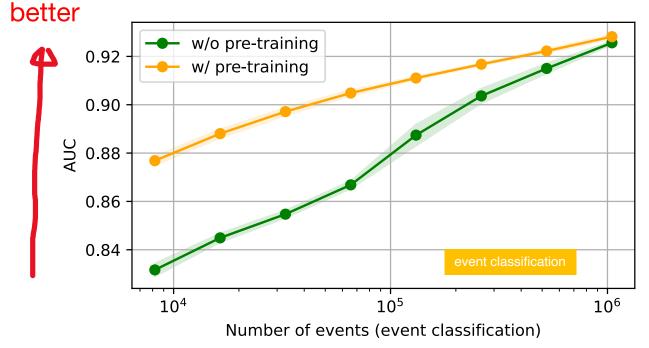
Training details

- ➤ Basically, the same setting between the pretraining and event classification phases:
 - SGD optimizer:
 - ➤ Learning rate: 10⁻²-10⁻⁴ (CosineAnnealingLR)
 - Batch size: 512, Epochs: 500
 - Cross entropy loss:
- > NVIDIA A100: ~20 batches/s
 - > ~13 hours for one training



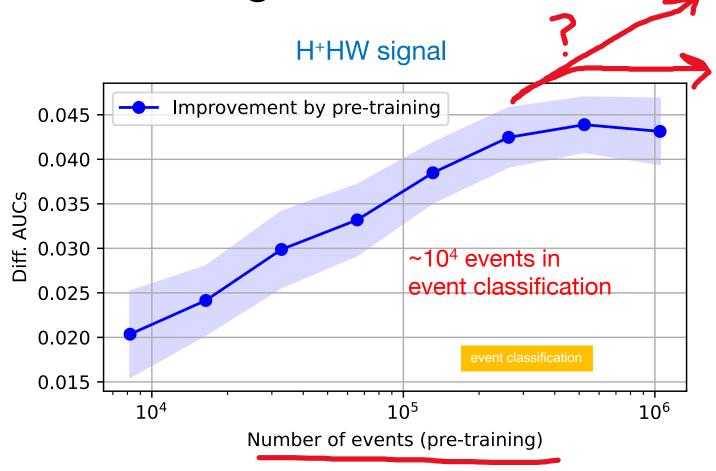
~1M events used

AUC of event classification



- Charged Higgs (H+) is selected as signal events
- Significant improvements by introducing the pre-training
 - ➤ The performance converged when # of events increased to ~10⁶
 - → Expected behavior of transfer learning

Scaling law



- The scaling behavior encourages a pre-training with a larger data
 - Future work: need to check the scaling behavior with larger data and a larger model
 - (One training with 10¹⁰ events will require (A100 x 8) x 700 days)
 - ATLAS Open Data are now also available

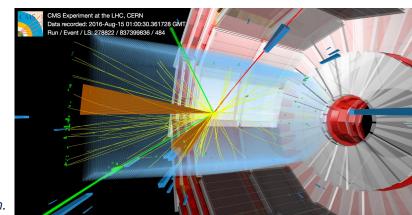
Summary

- Focusing on foundation models (transfer learning) and studying their applications to collider physics
 - Motivated by reduction of computing resources for future experiments
- > Developed a self-supervised learning using real data in pre-training
 - ➤ The pre-trained model provides significant improvements in event classification when the # of events is small
 - > The scaling behavior encourages pre-training with a larger data
- > (But, my interests are moving toward LLM studies...)

Backup

CMS open data

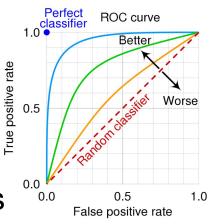
- > LHC-CMS released new open data in 2024
 - > 70 TB of 13 TeV collision data in 2016 and 830 TB of MC simulations
 - ➤ 16.4 fb⁻¹ collision data (the Higgs discovery required 10.4 fb⁻¹)
 - Nano AOD format
 - Possible to analyse by pure ROOT (and RDataFrame) \(\infty\)
 - (Previous open data requires the CMS software...)
- → This study should be reproducible



A candidate event in which a top quark is produced in association with a Z boson.

AUC metric

> Event classification performances are evaluated with AUC metrics

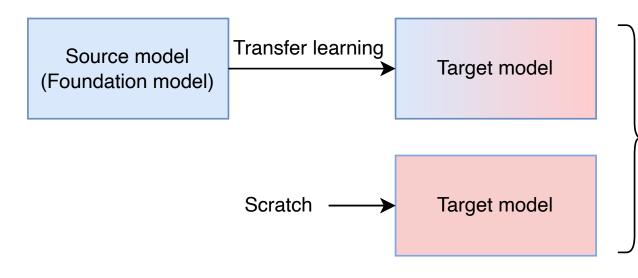


Pre-training phase

(Self-supervised learning)

Event classification phase

(signal vs background)



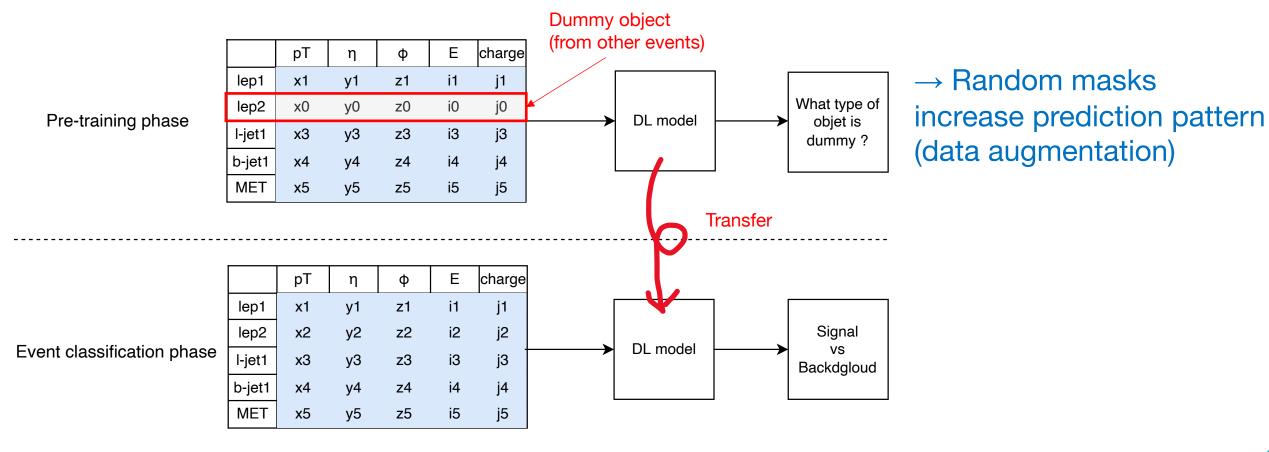
→ AUC values of event classifications are compared with and without a foundation model

Datasets (CMS Opendata)

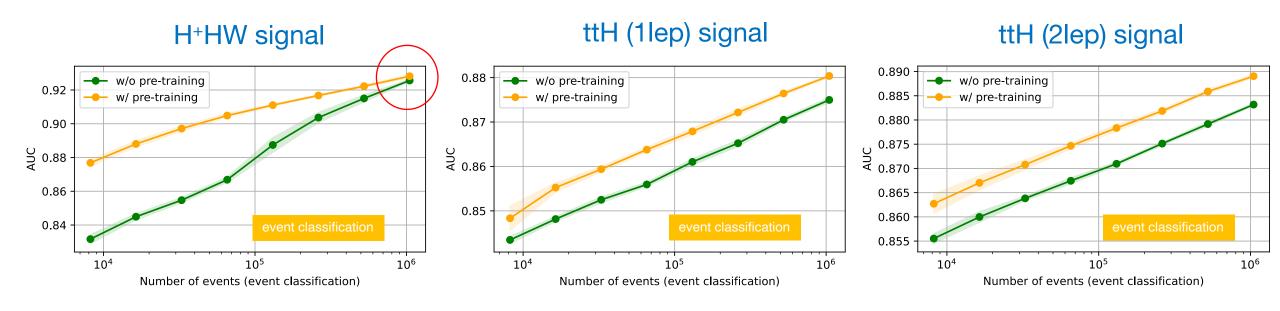
		Selections	# of events	
Pre-training —	Collision data	lepton $\geq 1 + \text{jets} \geq 2 + \text{bjets} \geq 1$	~106	•
Event _ classification	H+tb[<u>ref.</u>] vs ttbar+jets	lepton \geq 1 + jets \geq 4 + bjets \geq 1	~106	
	H+HW[<u>ref.</u>] vs ttbar+jets	$lepton \ge 1 + tau \ge 1 + jets \ge 3 + bjets \ge 1$	~106	
	ttH[<u>ref.</u>] vs ttbar+jets	lepton $\geq 1 + \text{jets} \geq 4 + \text{bjets} \geq 2$	~106	
	ttH[<u>ref.</u>] vs ttbar+jets	lepton $\geq 2 + \text{jets} \geq 2 + \text{bjets} \geq 1$	~106	

- Pre-training is performed using collision data (unlabelled data) based on the foundation model concept
 - > ~10⁷ events are available after the selection, but only ~10⁶ events are used
 - ightharpoonup NVIDIA A100: ~10⁴ events/sec (10⁷ events/10⁴ x 500 epochs = 138 hours)

Pre-training strategy



AUC of event classification



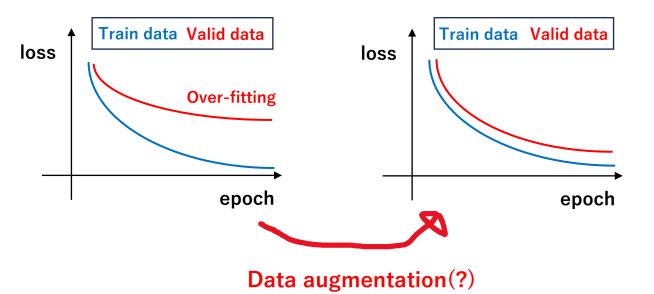
- > The improvements are confirmed for all signal events
 - → The pre-trained model (foundation model) is well generalized

Data augmentation

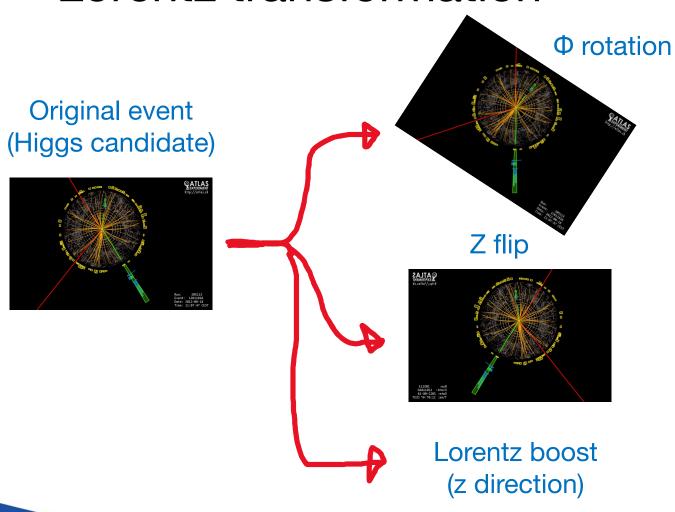
Data augmentation is well established technique in computer vision field

albumentations

→ Easy to increase data with low computing cost, and effective to suppress over-fitting



Lorentz transformation



← This data is still a Higgs candidate, and should occur with the same probability as the original event

These transformations are applied randomly before being fed into the DL model (pretraining phase)

DA (pre-training phase)

460

300

480

pre-training

0.90

28

0.80

100

200

Number of epochs

1.8

1.6

1.4

1.2

8.0

train data (w/o aug.)

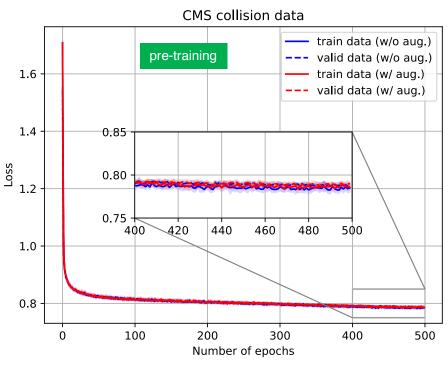
train data (w/ aug.)

--- valid data (w/o aug.)

--- valid data (w/ aug.)

500

400



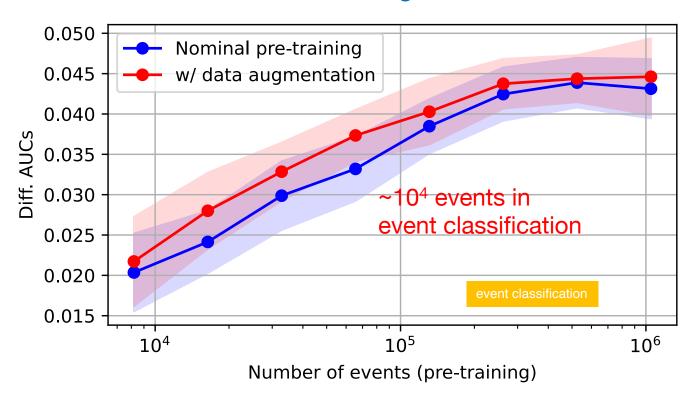
No effect(?)

→ Over-fitting is suppressed by the data augmentation if the number of events is small

500

Improvements for event classification

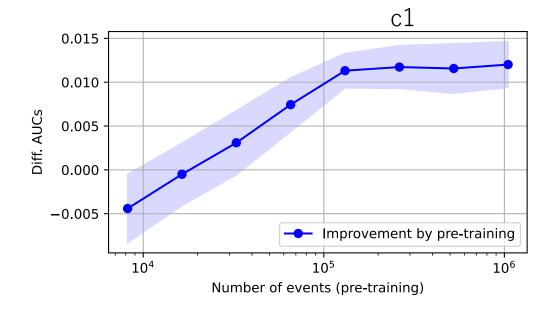
H+HW signal

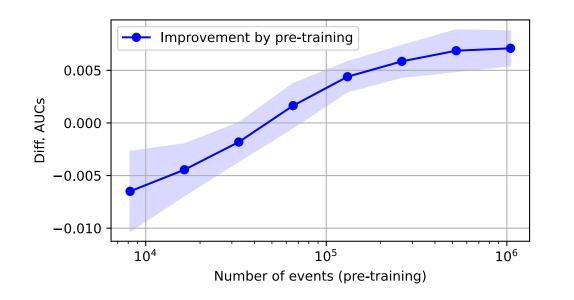


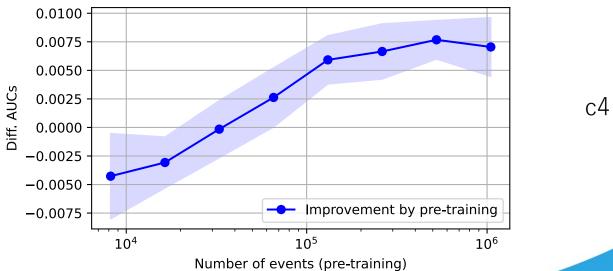
 Improvements for the downstream event classification are not so visible (within the standard deviation)

→ Do you have any other data augmentation ideas?

Scaling law







с3