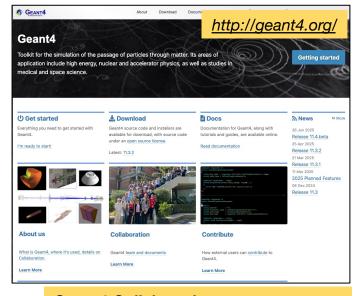


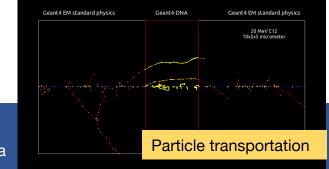
Monte Carlo Applications for Radiological Science

KEK-CSCS Joint Meeting 2025 October 29th, 2025

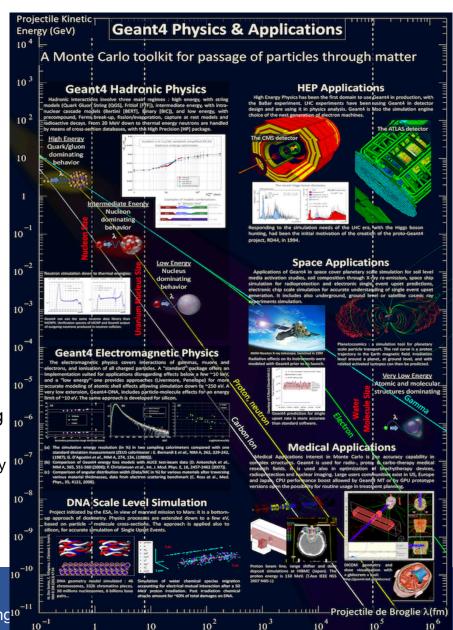

Shogo OKADA

Koichi MURAKAMI, Katsuya AMAKO, and Takashi SASAKI


KEK-CRC, Japan


Geant4

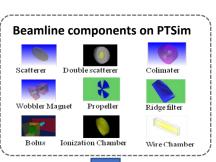
- A radiation simulation toolkit for high energy physics (HEP) using the Monte Carlo method
 - ☐ International collaboration among KEK, CERN, SLAC, ...
 - ☐ Geant4 libraries:
 - Simulating EM and hadronic physics processes with wide energy range (meV ~ PeV)
 - Building complex geometries for HEP experiments
 - Users need to write a main program using Geant4 libraries
 - Detector simulations, backgroud estimations, etc.
- Major simulation code for radiation physics in the world
 - ☐ Spreading out to various research domains
 - ☐ The first paper has been cited <u>+20k</u>
 - S. Agistinelli et at., "Geant4: a simulation toolkit", NIM A, vol. 506, no. 3, pp. 250-303, 2003

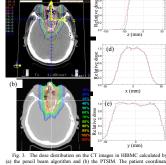

Geant4 Collaboration 24 countries, 38 institues, 129 members

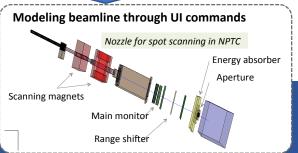
Geant4 Applications

- Transferring simulation technology accumulated through HEP experiments to the other fileds:
 - Nuclear physics
 - Radiation shielding
 - Astrophysics / Spece science
 - Accelerator science
 - Medicine / biology
- The Geant4-Japan group focusing on application study in medicine and biology
 - Extending functionalities of Geant4 for particle therapy and user supports
 - R&D of advanced treatment planning using MC simulations
 - Collaboration research with particle therapy facilities
 - ☐ Taking part in the Geant4-DNA project
 - Microdosimetry simulations

Geant4 in Medicine and PTSim

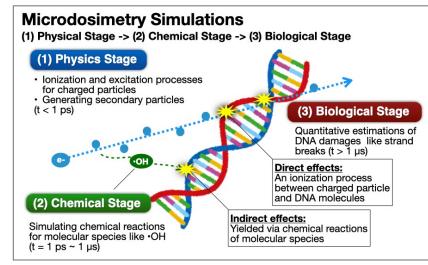

■ Particle therapy


- ☐ Uses energetic protons/carbons to irradiate tumors
 - 26 facilities (19 protons, 6 carbons) in Japan
- Optimizing beam energy, direction, and dose during treatment planning
 - Geant4 is used in QA of treatment planning
 - ☐ Higher accuracy than treatment planning system
 - One day simulation per patient on CPU cluster



- Developed by the Geant4-Japan group
 - JST-CREST project (2003-2010) / Representative: Prof. T. Sasaki (KEK-CRC)
- ☐ Runs dose calculation with simple UI commands
 - Models beam-delivery system and treatment head
 - Reconstructs patient geometry from CT images
- ☐ Widely used for QA in Japanese hospitals
 - Our project has inspired other projects in the world
 - TOPAS / GAMOS

system (right-hand system) was drawn by yellow allows. The dose profiles on the three axes (c) z, (d) x, (e) y, through the isocenter were compared between

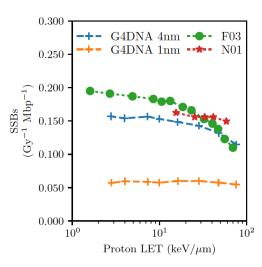


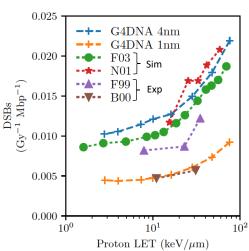
Microdosimetry Simulations

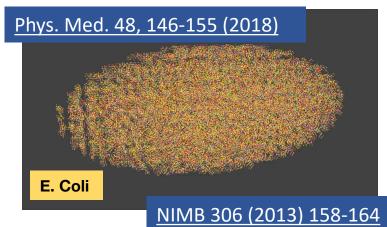
- Understanding radiation phenomenology at a subcellular scale
 - ☐ Simulating physical / chemical interactions
 - Evaluating radiation damages quantitatively
 - e.g., strand breaks, base damages, and repairs

■ The Geant4-DNA Project

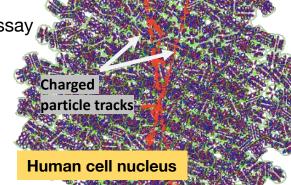
- An extension of Geant4 to DNA physics
 - Led by Bordeaux Univ. LP2i
 - KEK-Geant4 team taking part in the project
- Main objective
 - Estimating effects on human health under chronic radation exposure for astronauts in space missions
 - **...**
- Functinalities
 - EM physics processes for ultra-low energy range (down to meV) and chemical reactions
 - Estimating early radiation damages to DNA after irradiation
 - Handling the cell nucleus geometries which contains DNA double helix structures




Columbu



DNA Damage Estimstions through Geant4-DNA Simulations



■ Geant4-DNA can reproduce experimental data of radiation damage assay

- Microdosimetry simulations spend significantly longer time
 - Tracking vast number of particles and molecules
 - Yielded +10,000 per one initial particle
 - ☐ Taking <u>several days to weeks</u> even on CPU cluster
 - □ Accelerating computing performance is required
- Works in progress:
 - Implementation of repair process
 - ☐ Study for gold nano particle, FLASH RT, etc.

Phys. Med. 32(12) 1510-1520 (2016)

100 µm

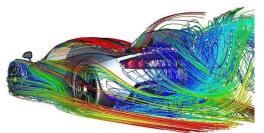
Accelerating Medical & Biological Applications by GPGPU

- Requires much more computing power in medicine and biology
 - Particle therapy
 - Higher accuracy for dose calculations by Geant4 (PTSim)
 - → One day simulation per patient
 - Microdosimetry
 - Tracking much more particles and molecular species to increase spatial resolution for radiation damage estimations
 - → Several days to weeks simulation
- Reduces computation time by ultra-parallel processing on GPU
 - □ Developing MPEXS to make medical and biological simulations more practical

GPGPU

■GPU: Graphical Processing Unit

□Ultra parallel processing devices for graphics


■ GPU: +20,000 cores

■ CPU: Up to 100 cores

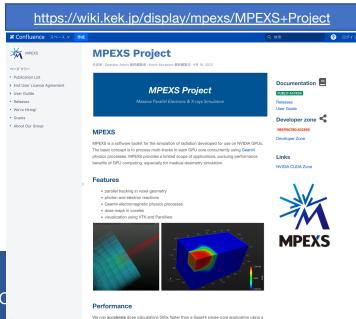
■ GPGPU: General-Purpose computing on GPU

☐ Accelerating scientific calculations in various fields:

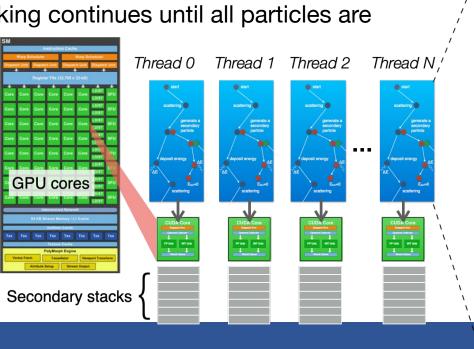
- FFM simulations
- Molecular Dynamics
- Multi-body simulations

■ CUDA

- ☐ Programing framework for GPU computing
- ☐ Like a C/C++ language extension
- ☐ Providing APIs, debuggers, and profilers to support developing GPU applications



MPEXS Project


- A state-of-the-art radiation simulator running on GPU devices
 - ☐ Developed as a dose calculation engine for radiotherapy
- Core algorithm and associated physics data taken from Geant4
 - ☐ Physics process of Geant4 are reengineered and reimplemented in CUDA
 - □ Data structure is redesigned from scratch to suite for GPU processing
 - Not machine translation (e.g., OpenACC)
- **■** Current functionality:
 - EM / hadron / neutron physics processes with energy range below 1 GeV
 - Water-equivalent material
 - □ Voxelized geometry

Parallel Tracking on GPU

- Millions of particles are tracked in parallel across GPU threads
 - ☐ Each track is independent
 - ☐ GPU threads hold kinematic information of particles:
 - Track information: $(\overrightarrow{x}, \overrightarrow{p}, E, k), k \in (\gamma, e^-, e^+)$
 - Secondary stack
 - ☐ Parallel tracking continues until all particles are

processed

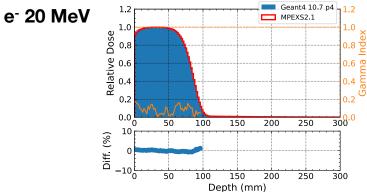
MPEXS Performance

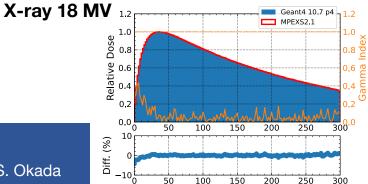
- MPEXS shows agreement with Geant4 simulations within 2%
- Up to 1000 times speedup against Geant4 with a single-core CPU

electron/x-ray beam

10x10cm
irradiation field

Water Phantom


Throughput: number of events processed per milisecond


Primary Particles	Geant4 ver. 10.7 p4	MPEXS	Speedup (MPEXS/G4)
Electron 20 MeV	2.9	2423.7	x832
X-ray 6 MV	6.2	5817.5	x931
X-ray 18 MV	5.6	4600.8	x822

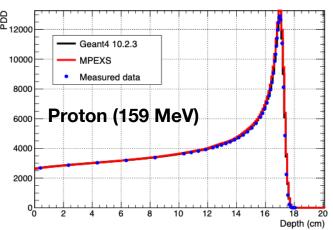
Benchmark hardware:

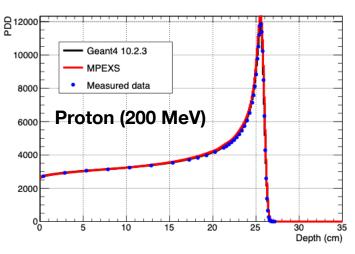
☐ CPU: Intel Xeon Gold 6326 (Ice Lake) ☐ GPU: NVIDIA RTX 6000 Ada Generation

Depth dose curves (Geant4 vs MPEXS)

Depth (mm)

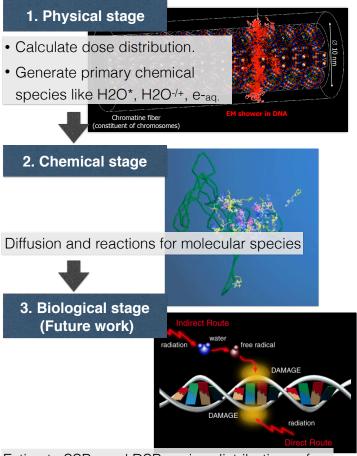
MPEXS Hadron Physics Extension


- Accelerate dose calculations for proton/carbon therapy
- Port Geant4 hadronic processes to CUDA
- Up to <u>230 times</u>* speedup against Geant4 simulations with a single-core CPU
 - ☐ Thread divergency is much larger than EM processes


*Benchmark hardware:

- · CPU: Intel Xeon Gold 6132
- GPU: NVIDIA RTX 3090

Ref.) C. Omachi, et al., "Clinical uses of Geant4 and a new GPU Monte Carlo simulation system in proton therapy", PTCOG 57th Annual Conference, Cincinnati, US, 2018 May

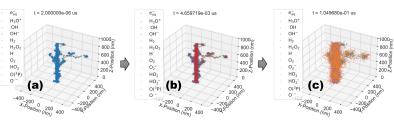


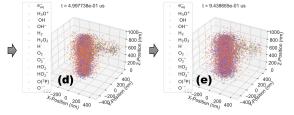
MPEXS-DNA: Microdosimetry Simulation on GPU

- MPEXS Extension to DNA Physics
 - ☐ Collaborative study with the Geant4-DNA project
- Based on Geant4-DNA 10.7 Patch-4
 - EM Physics with lower energy range
 - Down to meV
 - Calculate local energy loss and generate primary molecules (H₂O*, H₂O+/-)
 - ☐ Radiolysis of water molecules
 - Diffusion and chemical reactions for molecular species like •OH radicals
 - ☐ The biological stage not yet implemented

Estimate SSBs and DSBs using distributions of energy loss and molecular species inside the cell nucleus.

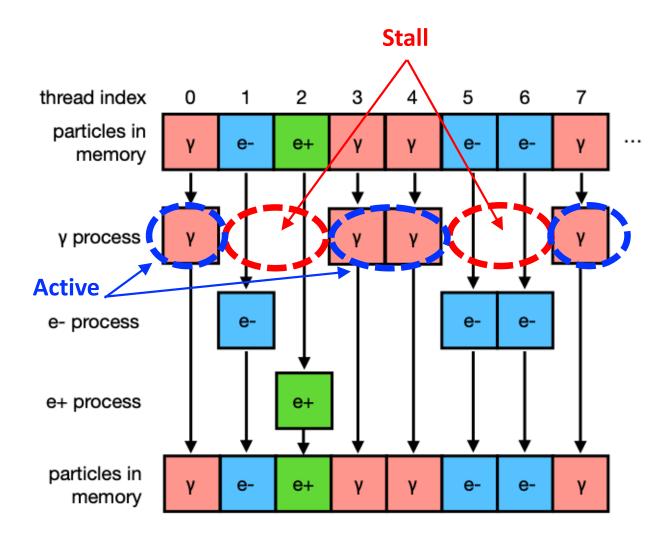
MPEXS-DNA Performance


- Water radiolysis under 750 keV electron irradiations
 - ☐ Reproducing measured data reasonably well
 - MPEXS2-DNA is much faster than Geant4-DNA
 - A single GPU has the equivalent computing performance of 7,600 CPU cores



- ☐ CPU: Intel Xeon Gold 6326 (Ice Lake)
- ☐ GPU: NVIDIA RTX 6000 Ada Generation

	Geant4-DNA 10.7.4	MPEXS-DNA
Throughput (#histories / min.)	5.69	43564.97
Speedup Factor (MPEXS / Geant4)	-	x7,656



References:

- [1] S.Okada et al., *Medical Physics*, 2019, doi: 10.1002/mp.13370
- [2] S.Okada et al., *Scientific Reports*, 2025, doi: 10.1038/s41598-025-00875-w
- [3] S.Okada et al., *Medical Physics*, 2025, doi: 10.1002/mp.70071

Summary

- Geant4 has been applied to medicine and biology, transferring simulation technologies from HEP experiments
 - ☐ Collaboration with particle therapy facilities for developing a Monte Carlo-based platform (PTSim) for QA of treatment planning
 - ☐ Participation in the Geant4-DNA project to reveal radiation-induced phenomenology
- Developed a GPU-based Monte Carlo simulator, MPEXS
 - ☐ Achieving thousands-fold speedup while maintaining good accuracy
 - ☐ Ongoing improvements for faster and more functional radiation simulations in medicine and biology

- Parallel processing of different particls leads to thread divergence
 - ☐ Thread efficiency: ~50%