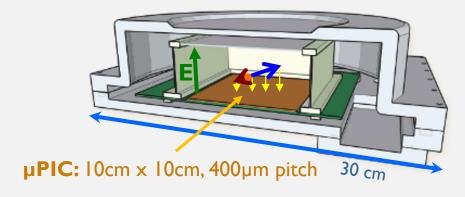
STATUS OF THE µNID NEUTRON IMAGING DETECTOR AT THE J-PARC MLF

Joe Parker

CROSS Neutron Science and Technology Center, Tokai, Japan RADEN/BL22 Instrument Group

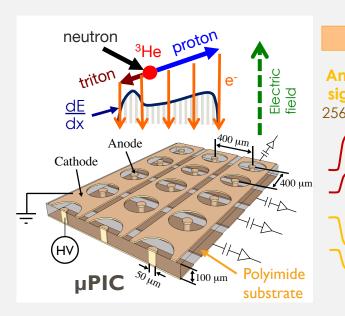
µNID DETECTOR DEVELOPMENT MEMBERS

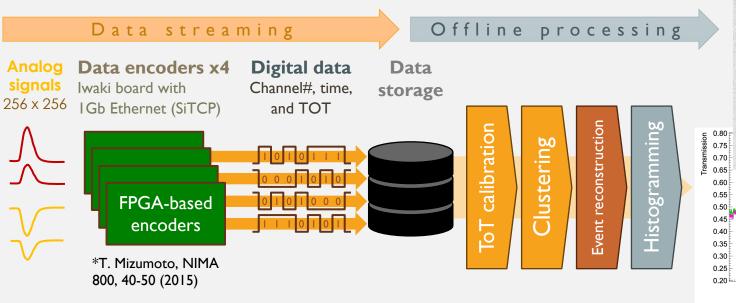
CROSS	<u>Joe Parker</u> (µNID lead dev.)	
	Hirotoshi Hayashida	Yoshihiro Matsumoto
JAEA	Takenao Shinohara	Tetsuya Kai
	Kenichi Oikawa	Masahide Harada
	Yusuke Tsuchikawa	Kosuke Hiroi
	Yuhua Su	
Hokkaido University	Yoshiaki Kiyanagi	
Kyoto University	Toru Tanimori	Atsushi Takada


Neutron transmission image

Neutron transmission

vs ToF


μNID: μPIC-BASED NEUTRON IMAGING DETECTOR


TPC in aluminum pressure vessel

- μTPC optimized for pulsed neutron imaging (event-based)
- Neutron conversion with ³He gas or ¹⁰B thin film
- Triggerless, streaming data acquisition for high rate
- Specialized algorithms for clustering and event reconstruction
 - → accurate position/time, strong BG rejection

µNID data acquisition and data processing

µNID PERFORMANCE

Two versions: µNID and BµNID

(Detector systems mfd. by BeeBeans Technologies)

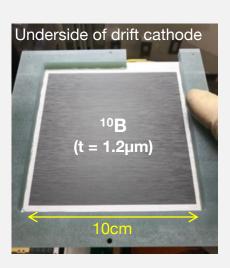
μNID

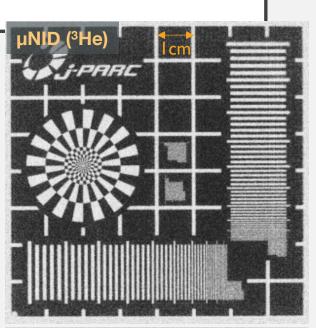
○ ³He gas converter (26% efficiency)

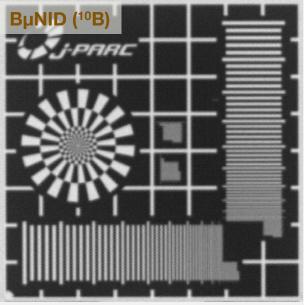
100µm spatial resolution / 4.6 Mcps count rate

BμNID (Boron-μNID)

○ ¹⁰B thin-film converter (~5% efficiency)

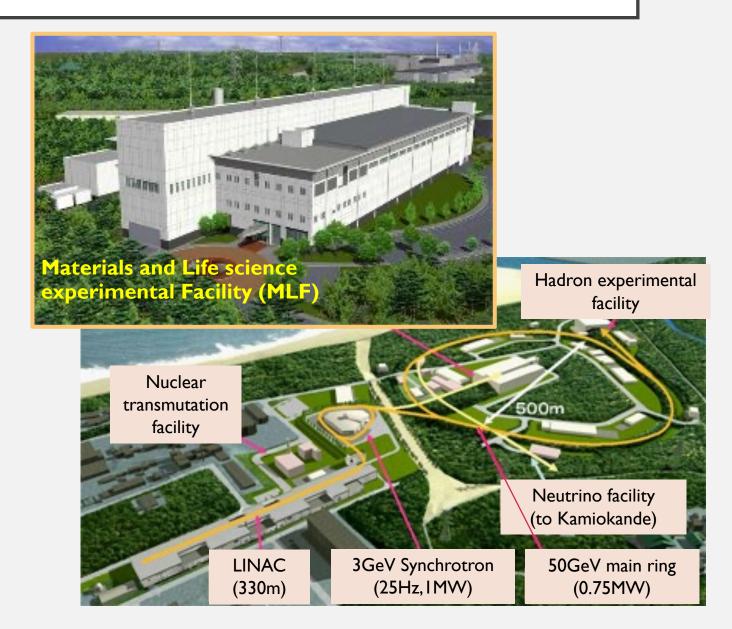

300µm spatial resolution / 10 Mcps count rate


Prioritize efficiency/ spatial resolution


Prioritize count rate/ measurement statistics

	μ NID (³He)	BμNID (¹⁰ B)
Active area	$10 \times 10 \text{ cm}^2$	
Filling gas	CF ₄ :iC ₄ H ₁₀ : ³ He (45:5:50)@2 atm	CF ₄ :iC ₄ H ₁₀ (90:10)@1.6 atm
Spatial resolution*	0.1 mm	0.3 mm
Time resolution	250 ns	~10 ns
Efficiency @25.3meV	26%	~5%
Effective count rate**	4.6 Mcps (0.044 Mcps/cm ²)	10 Mcps (0.101 Mcps/cm ²)

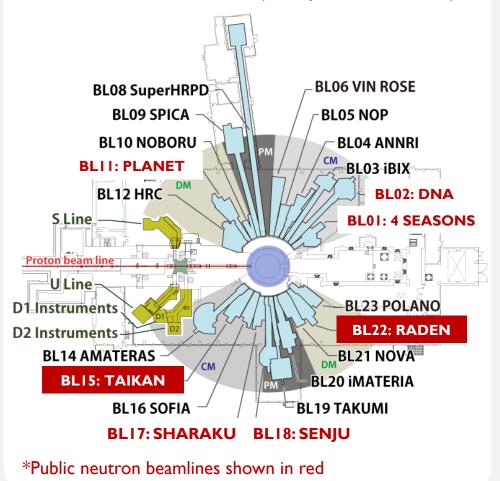
^{*} Line-width at which line-pair contrast falls to 10%

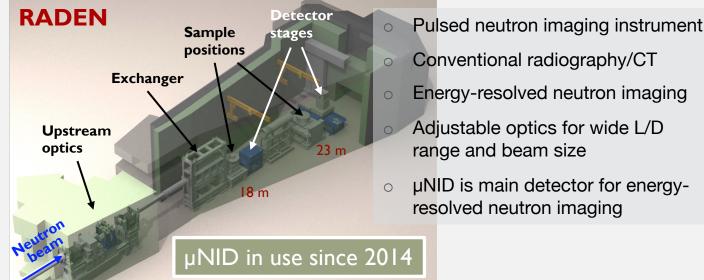


^{**} Measured global neutron rate at count loss of 1%

µNID AT THE J-PARC MLF

JAPAN PROTON ACCELERATOR RESEARCH COMPLEX (J-PARC)

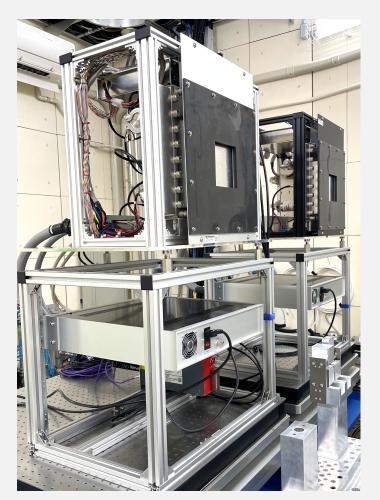

- Located in Tokai-mura, Ibaraki-prefecture
- Operated jointly by JAEA and KEK
- MLF neutron facility
 - Pulsed spallation neutron source (liquid mercury)
 - I MW, 25 Hz operation (currently 700kW due to target trouble)
 - 21 neutron instruments
 - Includes 7 public beamlines operated by JAEA
 - User selection and support for public beamlines provided by CROSS

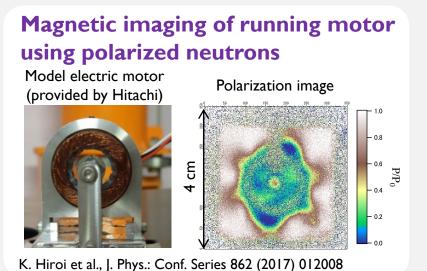


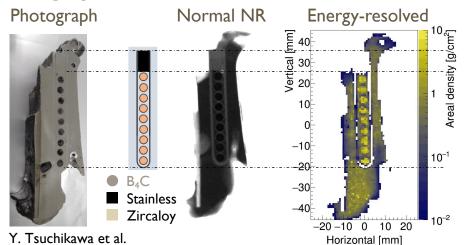
µNID AT THE MLF

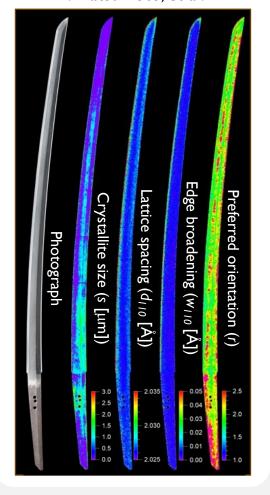
Overhead view of the MLF

- Pulsed spallation neutron source (energy via ToF)
- 21 neutron instruments (w/ 7 public beamlines)



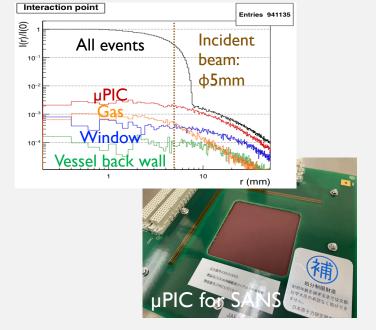

- Small- and wide-angle neutron scattering instrument (wide Q range)
- Polarized neutrons (optional)
- Banks of ³He tubes for wide angular coverage
- μNID as forward SANS detector (for very small-angle scattering)


ENERGY-RESOLVED NEUTRON IMAGING AT BL22 RADEN

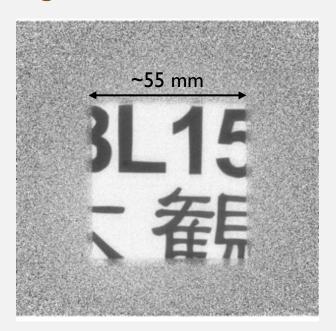

μNID (foreground) and BμNID (background) at RADEN

Boron areal density in simulated reactor melt using epithermal neutrons

Crystallographic study of a Japanese sword using Bragg-edge imaging Y. Matsumoto, et al.



µNID COMMISSIONING AT BLI5 TAIKAN



- μNID as forward SANS detector
- \circ Optimized vessel and μPIC for reduced scattering / improved dynamic range
- Installed in BLI5 last December

GEANT4 simulation of neutron scattering in µNID

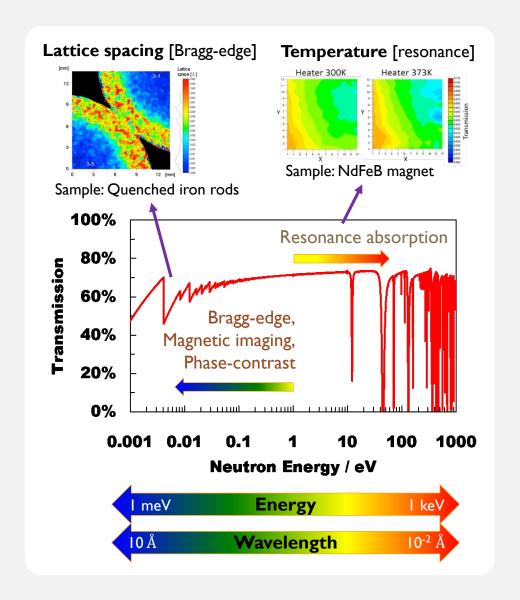
Image from first on-beam test

Remaining commissioning items

- Finish integration into TAIKAN experiment control system
- Automate data processing

Detector improvements

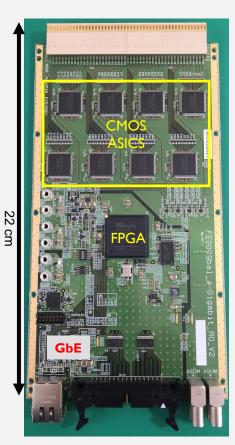
o Improve efficiency with new drift cage


RECENT ACTIVITIES

- Front-end readout electronics upgrade
- Vessel optimization for small-pitch µPIC
- Boron converter development
- Round robin measurement with ISIS

µNID DEVELOPMENT FOCUS FOR RADEN

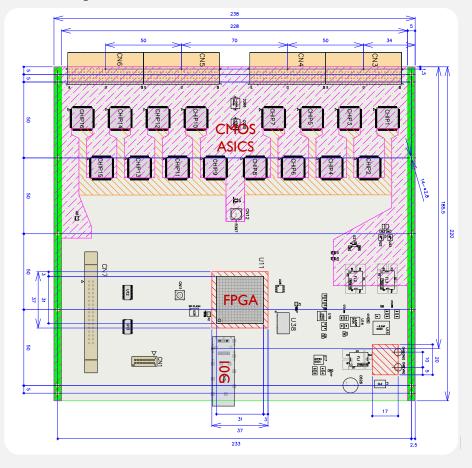
Energy-resolved neutron imaging → **measure** macroscopic distribution of microscopic quantities


- User experiments are moving toward in situ, in operando measurements (heating, bending/stretching, battery charging/discharging, etc.)
 - Requires good process time resolution (short measurement times)
 - Typical measurement times are several hours to acquire sufficient statistics
 - Combine improvements in rate performance with sparse data analysis techniques
- 2) Improvement of spatial resolution towards smaller or more intricate samples (cultural artefacts, fuel cells, etc.)

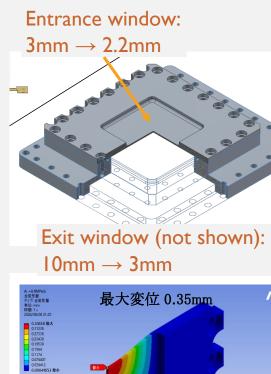
FRONT-END ELECTRONICS UPGRADE

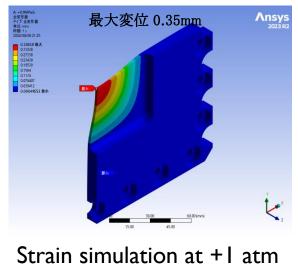
- Upgrade to IOG to accommodate future network infrastructre upgrades and data rate increases
- Utilize larger FPGA to carry out some preprocessing and speed up offline data processing

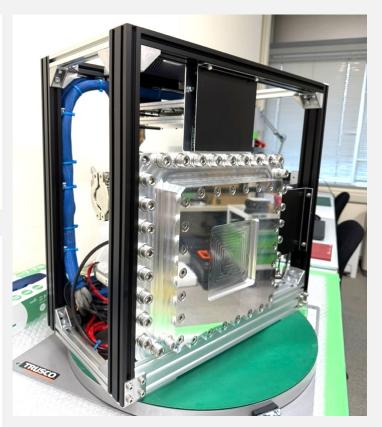
Current µNID readout board 3rd gen



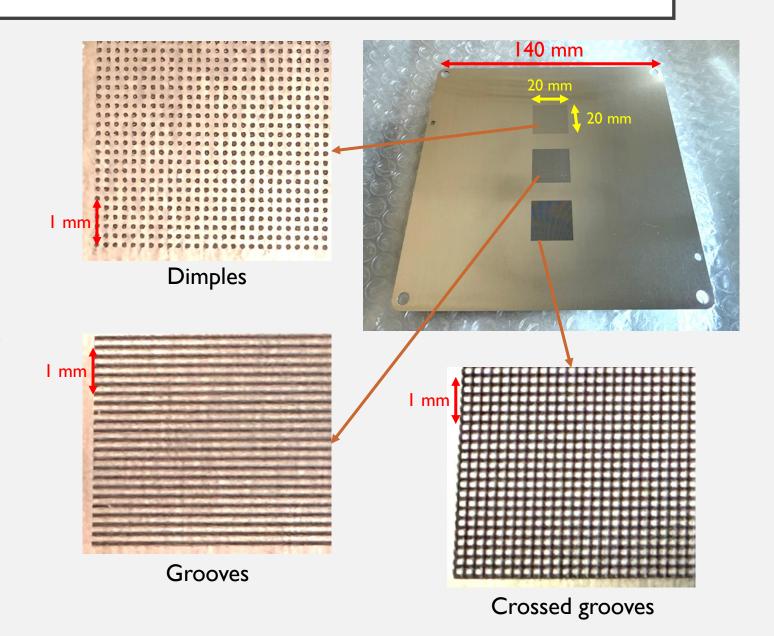
- Custom ASICS (8 x 16 ch)
- Spartan6 FPGA
- Gigabit Ethernet data transfer
- 4 modules per detector
- ~10 years old


- Same custom ASICS (16 x 16 ch)
- Kintex7 FPGA
- o 10G data transfer
- o 2 modules per detector
- First test board to be completed by March (from BBT)

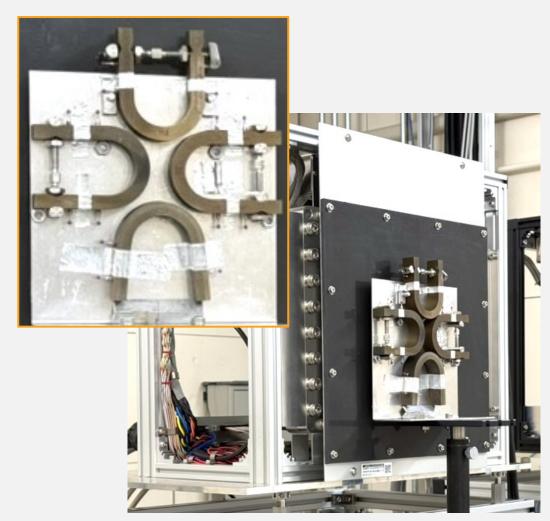

New µNID readout board


New pressure vessel for Small-pitch µPIC

- Small-pitch μPIC (215μm pitch) provides improved spatial resolution (currently 39% for BμNID, 19% for μNID)
- Objective: reduce thicknesses of entrance and exit windows for reduced scattering
- Design check and manufacture by Metal Techology Co., Ltd. (MTC)
 - Use A5083-O for entrance window, reduced from 3mm to 2.2mm
 - Exit window reduced from 10mm to
 3mm
 - Detachable window allows future upgrades
- New vessel is awaiting testing (probably next fiscal year)



New vessel assembled and ready for testing


BORON CONVERTER DEVELOPMENT OF IMPROVED EFFICIENCY

- 5% efficiency for current ¹⁰B converter
- Objective: improve efficiency of ¹⁰B converter using micropatterning to increase surface area
- Manufactured through Metal Techology
 Co., Ltd. (MTC)
 - Laser manufacturing
 - Dimples: φ100μm x 30μm depth x
 200μm pitch
 - Grooves and crossed grooves:
 $100\mu m \times 30\mu m$ depth x $200\mu m$ pitch
- Preparing for boron deposition (natural boron at first stage)
- Will test next fiscal year

ROUND ROBIN MEASUREMENT WITH ISIS

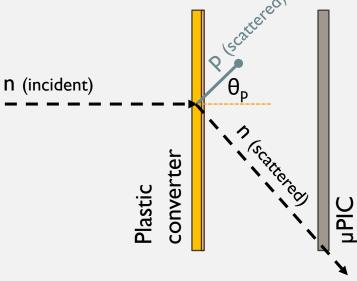
- Bragg-edge round robin samples developed at IMAT instrument of ISIS, UK (bent steel bars under tension/compression)
- Compare Bragg-edge spectra and strain analysis at different energy-resolved neutron imaging instruments
- Samples measured previously at ISIS and PSI (Switzerland), will also measure at VENUS (SNS, USA)
- IMAT instrument scientist (Ranggi Ramadan) participated
 - Interested in μNID for IMAT
 - \circ Used both μ NID and B μ NID for measurements
 - \circ May take μ NID to ISIS next year (if beamtime is available)

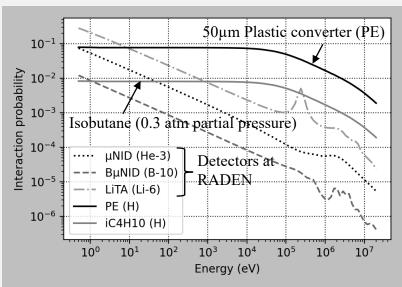
Bragg-edge round robin samples mounted in front of μNID at RADEN

SUMMARY

- \circ The μ NID is a μ PIC-based detector designed for event-based neutron imaging
- \circ The μ NID is in use at the RADEN (energy-resolved neutron imaging) and TAIKAN (neutron scattering) instruments within the MLF
- O Development toward improved rate performance and spatial resolution is ongoing
 - Upgrading encoder board to use 10G data transfer and Kintex 7 FPGA
 - Optimizing pressure vessel for improved spatial resolution with small-pitch µPIC
 - Designing new ¹⁰B converter for improved efficiency
- \circ Adoption of the μNID being considered at IMAT instrument, ISIS, UK (some interest also shown by VENUS at SNS, USA)
 - Performed Bragg-edge round robin measurement at RADEN with IMAT instrument scientist
 - O May take μNID to IMAT next year for test

NEXT YEAR: µNID FOR FAST NEUTRON IMAGING (TEST)


Thermal / cold / epithermal neutrons (E < ~100 eV)


- + Well-established
- Poor penetration for large samples
- Limited isotope mapping

Fast neutrons

 $(E > \sim 100 \text{ eV})$

- + High penetration
- + Isotope mapping
- Low detection efficiency
- Poor image quality
- Utilizing fast neutrons allows imaging of larger samples, more complete isotope mapping via neutron resonance absorption
- Difficulties include poor detection efficiency and degradation of image quality due to scattering in the sample
- A plastic converter (n-p scattering) can improve efficiency for fast neutrons by several orders compared to ³He, ¹⁰B, ⁶Li
- Kinematics can be used to reject scattered neutron background
- > Plan to perform proof-of-principal testing next fiscal year

THANK YOU FOR YOUR ATTENTION!