

Testing tree level TeV scale seesaw scenarios in μ TRISTAN

Tuesday, 3 March 2026 15:25 (30 minutes)

We investigate TeV scale seesaw scenarios at $\mu^+ e^-$ and $\mu^+ \mu^+$ colliders in the μ TRISTAN experiment. In minimal type-I seesaw scenario we consider two generations of Standard Model (SM) singlet heavy Majorana type Right Handed Neutrinos (RHNs) which couples with SM gauge bosons through light-heavy neutrino mixing. We discuss the prospects of probing heavy neutrinos via the processes such as $\mu^+ e^- \rightarrow \nu N_i \rightarrow e^+ jj\nu$ or $\mu^- jj\nu$ for $\sqrt{s} = 346\text{-GeV}$ and 1 ab^{-1} luminosity. Studying these process, we estimate limits on the light-heavy neutrino mixing angles as a function of heavy neutrino mass, which could be two orders of magnitude stronger than electroweak precision data. Further, we study the effect of doubly charged scalar boson (H^{++}) from the type-II seesaw scenario in $\mu^+ \mu^+$ collision at $\sqrt{s} = 2 \text{ TeV}$. In this case we consider $\mu^+ \mu^+ \rightarrow \ell_i^+ \ell_j^+$ and $\mu^+ \mu^+ \rightarrow H^{++} Z/\gamma$ processes followed by the same sign dilepton decay of H^{++} . We find that events involving $e^+ e^+$ among these final states can probe the neutrino mass ordering in μ TRISTAN experiment at 5σ significance. In addition to that we study the production of positively charged triplet fermion in μ TRISTAN following $\mu^+ \mu^+ \rightarrow \mu^+ \Sigma^+$ process where Σ^+ decays into $\mu^+ jj$ mode through Z boson exchange. Considering a triplet at 1 TeV and studying SM backgrounds we estimate the discovery potential of $\mu^+ \mu^+ jj$ signal at μ TRISTAN with respect to projected luminosity.

Presenter: DAS, Arindam