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KEK Linac加速器

長さ600mの電子・陽電子線形加速器

電子ビームを3つのリングへ入射 (PF,PF-AR,KEKB-HER)

陽電子ビームを1つのリングへ入射 (KEKB-LER)

ビームダンプ(BD)へ入射
Linac加速器構成要素
RFモニター：約60台
ステアリング電磁石：約115台
ビーム位置モニター(BPM)：約100台
50台の加速器ユニットで構成(各ユニットにクライストロン 1台)

ビームダンプ実験

SuperKEKB

1. イントロダクション



・ビームバックグラウンドの抑制

・低BG

・ビームの入射効率を上げる

・高統計

機械学習を用いて、加速器制御の性能を向上させて、
ビーム透過率向上・ビームロス低減を実現したい

①ビーム透過率の向上 ②ビームロスの低減

素粒子実験（SuperKEKB/BelleII実験・ビームダンプ実験)の性能を向上するために、
KEK Linac加速器には以下の点が求められる
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1. イントロダクション



これまで我々は、

1. 機械学習で加速器のモデルを構築し、

2. XAIを適用することで、加速器チューニング性能向上に重要なパラメータを推定した
XAI(説明可能AI, EXplainable AI)：
機械学習による出力やモデル全体の振る舞いを説明する技術
本研究では、SHAPを使用した

機械学習
モデル

加速器パラメータ
(RF・環境・電磁石)

ビーム透過率・ビームロス

XAI

入力 出力
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1. イントロダクション

XAIから推定されたビーム透過率向上に重要なパラメータ(ビームダンプ実験)

加速管 RF位相平均(B-sector, 5unit)
SLED RF位相平均(B-sector, 5unit)
クライストロン RF 位相平均(B-sector, 5unit)

クライストロン RF振幅平均(5-sector, 2unit)

K. Uemura (OMU) et.al.
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XAIで重要と予想されたパラメータと重要ではないと予想されたパラメータについ
て、加速器のテストビームを用いて実際にパラメータを変化させた
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→XAIで予想したパラメータが実際に重要であることが分かった

1. イントロダクション



テストビームによる試験結果

B-sector, 5unit RF位相
• XAIにより、B-sector RF位相がビーム透過率、

ビームロスの両方に大きく寄与することが分かった

• テストビームで、RF位相を変化させた

• ビーム透過率・ビームロスがどちらも変化した
(予想通り)

• ビーム透過率はほぼ同じ(1％↓)
ビームロスはペデスタル付近まで下げることが
できるパラメータ値を探すことができた
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1. イントロダクション



グラフニューラルネットワーク
（Graph Neural Network, GNN）
を用いた機械学習手法を開発した

学習用データ
評価用データ

学習回数

誤
差

学習曲線(入力2000以上)

・大型加速器は構成要素が膨大量(O(1000)～O(10000))である
・大型加速器実験に適用させるためには、2000以上のパラメータを取り扱いたい

大型加速器への適用

パラメータ数が膨大な機械学習では、
過学習の抑制が重要

過学習している
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1. イントロダクション



・グラフデータを扱う
・グラフはノードとエッジからなる
・グラフ中の「要素」に対して

共通なWeightsを求める
→パラメータ数が少なくなることに相当

・全パラメータ間の相関を直接見ている

最適化するパラメータが少ないので、GNNで過学習抑制が期待できる 

GNNを用いた機械学習

全結合型(MLP) グラフニューラルネットワーク(GNN)

出力

入力

出力

入力

機械学習
モデル
(MLP)
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1. イントロダクション

機械学習モデル
(GNN)
機械学習
モデル
(GNN)



使用したデータ

加速器
パラメータ

RFパラメータ   (RF振幅・RF波長など)        ：682個, 648個
環境パラメータ  (環境温度・冷却水温等) ：822個, 819個
電磁石パラメータ (電磁石励磁電流読み値)   ：563個, 661個
BPMパラメータ (ビーム位置モニター)       ：194個, 192個

作成したグラフデータを用いて、過学習なく、
機械学習でビーム透過率・ビームロスの予測ができるかを検証した

SKB BD

GNNにより ビーム透過率 ≡ 加速器上流と下流のBPMでの電荷比
 ビームロス

 の予想をした

・SuperKEKB(SKB)入射用電子ビームデータ
・ビームダンプ(BD)電子ビームデータ    

(2024/06/01 ～2024/06/31)
(2023/11/01 ～2024/01/31)
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2.グラフデータの作成

合計 2261個,  2320個



加速器データ(約2000パラメータ)を取り扱うGNNを構築した

その他データ
グラフデータに含まれないデータ(外気温・偏向電磁石など)
は後で結合する

MLP層
(全結合層)

GCNConv
(グラフ畳み込み層)

ビーム透過率
or

ビームロス

加速器データ
(グラフデータ)

入力 出力

加速器データ
(その他データ)

weight パラメータ数:13632(SKB), 4864(BD)

ノード間で平均し、その他データを結合
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3.GNNの導入

・構築したGNNを使って予測を行った
・比較のため、MLPでも予測を行った



MLPを用いた機械学習で、ビーム透過率・ビームロスを予測した

学習回数

誤
差

SKBビーム透過率学習曲線

学習回数

誤
差

BDビーム透過率学習曲線

学習回数

誤
差

BDビームロス学習曲線

datedate date
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BDビーム透過率予測 BDビームロス予測SKBビーム透過率予測

学習用データ
評価用データ

MLPで予想した値 実際の値

誤差： 0.0117 誤差： 0.0075 誤差： 0.0578
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4.MLPでの予測



GNNを用いた機械学習で、ビーム透過率・ビームロスを予測した

学習回数

誤
差

SKBビーム透過率学習曲線

学習回数

誤
差

BDビーム透過率学習曲線

学習回数

誤
差

BDビームロス学習曲線

datedate date
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ム
透
過
率

ビ
ー
ム
透
過
率

ビ
ー
ム
ロ
ス

BDビーム透過率予測 BDビームロス予測SKBビーム透過率予測

学習用データ
評価用データ

GNNで予想した値 実際の値

誤差： 0.0144 誤差： 0.0077 誤差： 0.0439
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5.GNNでの予測



GNNを用いた機械学習で、ビーム透過率・ビームロスを予測した

学習回数

誤
差

SKBビーム透過率学習曲線

学習回数

誤
差

BDビーム透過率学習曲線

学習回数

誤
差

BDビームロス学習曲線

datedate date

ビ
ー
ム
透
過
率

ビ
ー
ム
透
過
率

ビ
ー
ム
ロ
ス

BDビーム透過率予測 BDビームロス予測SKBビーム透過率予測

学習用データ
評価用データ

GNNで予想した値 実際の値

誤差： 0.0144 誤差： 0.0077 誤差： 0.0439
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5.GNNでの予測

GNNを使って、2000パラメータの入力に対して、
過学習なく、ビーム透過率・ビームロスを

予測することができた

GNNを使って、2000パラメータの入力に対して、
過学習なく、ビーム透過率・ビームロスを
予測するモデルを作成することができた

作成したモデルにXAIを適用し、重要なパラメータを推測する



XAIによる重要なパラメータの予測結果

XAIによる重要なパラメータの予測結果

SKB入射ビーム(電子)(Belle2実験)

・ビーム透過率



6.重要なパラメータの位置と種類(SKBビーム透過率/Belle2実験)

構築したMLPとGNNでそれぞれ重要と推測されたパラメーターの位置と種類を示す

順位 パラメータ種類 場所

1 BPM(x) 1-sector, 7unit

2 BPM(x) 1-sector, 5unit 

3 BPM(x) A-sector, 1unit

BPM(x) 1-sector, 7unit
BPM(x) 1-sector, 5unit 

BPM(x) R-sector, 1unit
BPM(x) R-sector, 3unit

・SKBビーム透過率重要パラメータ

MLPでの重要なパラメータ GNNでの重要なパラメータ

順位 パラメータ種類 場所

1 BPM(x) R-sector, 1unit

2 BPM(x) A-sector, 1unit 

3 BPM(x) R-sector, 3unit

BPM(x) A-sector, 1unit BPM(x) A-sector, 1unit 
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構築したMLPとGNNでそれぞれ重要と推測されたパラメーターの位置と種類を示す

順位 パラメータ種類 場所

1 ビーム位置モニターx軸 1-sector

2 ビーム位置モニターx軸 1-sector 

3 ビーム位置モニターx軸 A-sector

・SKBビーム透過率重要パラメータ

MLPでの重要なパラメータ GNNでの重要なパラメータ

順位 パラメータ種類 場所

1 ビーム位置モニターx軸 R-sector

2 ビーム位置モニターx軸 A-sector 

3 ビーム位置モニターx軸 R-sector

MLPでは、
A-sectorと1-sectorのビーム位置が重要であると予想された

GNNでは、
A-sectorとR-sectorのビーム位置が重要であると予想された
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6.重要なパラメータの位置と種類(SKBビーム透過率/Belle2実験)

BPM(x) 1-sector, 7unit
BPM(x) 1-sector, 5unit 

BPM(x) R-sector, 1unit
BPM(x) R-sector, 3unit

BPM(x) A-sector, 1unit BPM(x) A-sector, 1unit 



XAIによる重要なパラメータの予測結果

XAIによる重要なパラメータの予測結果

BD入射ビーム(EBES実験)

・ビーム透過率
・ビームロス



構築したMLPとGNNでそれぞれ重要と推測されたパラメーターの位置と種類を示す

順位 パラメータ種類 場所

1 BPM(y) 1-sector, 5unit

2 BPM(y) A-sector, Tunit

3 BPM(x) A-sector, 2unit

BPM(y) 1-sector, 5unitBPM(x) R-sector, 2unit
BPM(x) R-sector, 4unit

・BDビーム透過率重要パラメータ

MLPでの重要なパラメータ GNNでの重要なパラメータ

順位 パラメータ種類 場所

1 BPM(y) A-sector, Tunit

2 BPM(x) R-sector, 2unit

3 BPM(x) R-sector, 4unit

BPM(y) A-sector, Tunit
BPM(x) A-sector, 2unit

BPM(y) A-sector, Tunit
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7.重要なパラメータの位置と種類(BDビーム透過率/EBES実験)



7.重要なパラメータの位置と種類(BDビーム透過率/EBES実験)

構築したMLPとGNNでそれぞれ重要と推測されたパラメーターの位置と種類を示す

順位 パラメータ種類 場所

1 ビーム位置モニターy軸 1-sector

2 ビーム位置モニターy軸 A-sector 

3 ビーム位置モニターx軸 A-sector

・BDビーム透過率重要パラメータ

MLPでの重要なパラメータ GNNでの重要なパラメータ

順位 パラメータ種類 場所

1 ビーム位置モニターy軸 A-sector

2 ビーム位置モニターx軸 R-sector 

3 ビーム位置モニターx軸 R-sector

MLPでは、
A-sectorと1-sectorのビーム位置が重要であると予想された

GNNでは、
A-sectorとR-sectorのビーム位置が重要であると予想された
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BPM(y) 1-sector, 5unitBPM(x) R-sector, 2unit
BPM(x) R-sector, 4unit

BPM(y) A-sector, Tunit
BPM(x) A-sector, 2unit

BPM(y) A-sector, Tunit



8.重要なパラメータの位置と種類(BDビームロス/EBSE実験)

構築したMLPとGNNでそれぞれ重要と推測されたパラメーターの位置と種類を示す

順位 パラメータ種類 場所

1 BPM(x) 6-sector, 1unit

2 BPM(y) 6-sector, 1unit

3 BPM(x) 6-sector, 1unit

・BDビームロス重要パラメータ

MLPでの重要なパラメータ GNNでの重要なパラメータ

順位 パラメータ種類 場所

1 BPM(x) 6-sector, 1unit

2 BPM(y) 6-sector, 1unit

3 BPM(x) 6-sector, 1unit

BPM(x) 6-sector, 1unit
BPM(y) 6-sector, 1unit
BPM(x) 6-sector, 1unit

BPM(x) 6-sector, 1unit
BPM(y) 6-sector, 1unit
BPM(x) 6-sector, 1unit
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構築したMLPとGNNでそれぞれ重要と推測されたパラメーターの位置と種類を示す

順位 パラメータ種類 場所

1 ビーム位置モニターx軸 6-sector

2 ビーム位置モニターy軸 6-sector 

3 ビーム位置モニターx軸 6-sector

・BDビームロス重要パラメータ

MLPでの重要なパラメータ GNNでの重要なパラメータ

順位 パラメータ種類 場所

1 ビーム位置モニターx軸 6-sector

2 ビーム位置モニターy軸 6-sector 

3 ビーム位置モニターx軸 6-sector

MLPとGNNで共通して、
6-sectorのビーム位置が重要であると予想された
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8.重要なパラメータの位置と種類(BDビームロス/EBSE実験)

BPM(x) 6-sector, 1unit
BPM(y) 6-sector, 1unit
BPM(x) 6-sector, 1unit

BPM(x) 6-sector, 1unit
BPM(y) 6-sector, 1unit
BPM(x) 6-sector, 1unit



１．多パラメータ(2000以上)の入力に適用させるため、GNNを用いた機械学習手法
を開発した

・ビーム透過率・ビームロスを予測することができた

２．構築したGNNに対して、XAIを適用し重要なパラメータを求めた

・ビーム透過率：A, R, 1-sector(上流部)のパラメータが重要であると予想された

・ビームロス：6-sector(最下流部)のパラメータが重要であると予想された

大規模加速器への機械学習適用を行うために、
GNNを用いた機械学習手法を構築し、

重要なパラメータを予想した
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9.まとめ



今後、
• MLPとGNNの予測結果の違いについて詳しく調べる
• GNNでさらに大きなパラメータ数でも予測可能か検証する

大規模加速器への機械学習適用を行うために、
GNNを用いた機械学習手法を構築し、

重要なパラメータを予想した
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10.今後

本研究で確立した手法を用いて大規模加速器への機械学習適用を進める
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