
J-PARC MRにおける横方向ビーム不安性抑制
に向けた機械学習の応用の準備

小林愛音 
高エネルギー加速器研究機構 (KEK/J-PARC)

2025.12.8-9 加速器・ビーム物理の機械学習ワークショップ2025
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大強度陽子加速器施設J-PARC

Main ring (MR)： 
FX (ニュートリノ実験へ) 1.3 MW 
SX(ハドロン実験施設へ) > 100 kW 
での安定供給を目指し進化中
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横方向ビーム不安定性

不安定性がもたらすビームロスは、機器の放射化、損傷につながる 
→ 大強度運転では避けなくてはならない！
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加速器構成要素によるウェイク場に
よりビームが振動し不安定になる

RCS MR

2バンチ×4回
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ビームの振動を検出し、変動に対してキックを与えて戻す

MR における主な横方向インピーダンス源は、ビームパイプ壁の抵抗性および FX キッカー電
磁石によるものであり、物理的な改善が困難である 

このため通常運転ではクロマティシティ調整とイントラバンチフィードバック(IBFB)によって
不安定性を抑制している

バンチは長いので（最大60m（=200ns）程度） 
細かくスライスしてキック量を変える

MRにおける横方向ビーム不安定性の対策

しかし、IBFBの設定値はビーム条件が変わる度に設定の見直しが必要であり、その時間が取ら
れること（最大2~3時間）と設定の妥当性の判断が熟練者の経験に依存している 

→ 運転の即応性や再現性の確保という点で課題



ML応用は加速器分野で急速に拡大 

しかし 大強度陽子加速器では 1ショットのビームロスが大きく、試行錯誤が困難 

ビーム不安定性はビームロスを引き起こす 

本研究の方針 

• 既存の運転ログを用いたオフライン学習が現実的な第一歩 
• MRにおける横方向ビーム不安定性抑制のためIBFB調整の最適化に ML を適用

機械学習の適用の課題
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目標 

• 熟練者依存の調整作業を迅速・客観的に最適化 
• 最適値の導出によるビームロス低減 
• 調整時間の短縮 → 必要ショット数減 → さらにビームロス削減



IBFB調整画面の例（iGp12h by Dimtel, inc.）

• X・Y合わせて約170パラメーター 
• 実際に頻繁に調整するのは一部のみ 
• ゲイン0のパラメーターは実質オフ 
• 基本は一度設定すると長期間不変 
• クロックやタイミングなど 

• 設定変更は時刻とともに自動記録

今回は最低限の情報 
• IBFBの変更記録(FIR設定値) 
• ショット毎のビームパワー、バンチ数 

を活用して最適化を試み、 
その有効性を評価した
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FIRの設定
• ω：ベータトロン振動数


• Δφ：Phase 

• Ts：サンプリング間隔


• Ntap：Tap数


• Gain

FIRフィルター係数
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実際のビームの測定値に合わせてωを設定

TsとNtapは固定

係数

振幅特性 位相特性

フィルター生成画面の例

FIRとGainをX, Yそれぞれ毎、 
時間帯毎(入射→加速→取り出し) 
調整

基本これらを調整



1. 入射された後から加速途中まではGain > 0 で、設定可能な値をFIRフィルターの

Phase, Gain（0~1), Shift gain (Gainの冪乗)


    のみ（XとYにそれぞれ対して計6変数）

2.  それ以外の時間帯はGain = 0（つまりフィードバックが働かない）

3. ビームパワーをバンチ数で正規化したものを最大化するように学習した
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今回の簡易的調整方法

現実には以下のような考慮が必要だが今回は無視した

• 時間変化に対するそれぞれの変数の設定

• バンチ数の違いによるビーム不安定性の振る舞いの違い

• 過去の記録も日毎に条件が異なるのでそれを表現できる入力変数の必要性



決定木（Decision Tree） 
• 入力パラメータ（Gain、Phase、SG など）を 
「if～なら右」「それ以外なら左」と 条件で分類していく木の形のモデル 

• 人間のルール判断に近く、結果がどう決まったかが「枝」として見える 
長所：わかりやすい 

短所：1本の木だけだと偏った判断をしやすい（過学習）

ランダムフォレスト（Random Forest） 
• 「森」という名前の通り、たくさんの決定木をランダムに作り、全員で多数決を取る方法 
• データの一部をランダム抽出 → 1本の決定木を作る 
→ これを何百本も繰り返す 
→ 平均を取ることで安定した予測が得られる 

良い理由 

• 「多数決」なので、1本の木のクセに引きずられない 
• ノイズが多い加速器データでも、安定して高い精度を出しやすい 
• 特徴量の重要度（Feature Importance）も得られ、 
→ どのパラメータがビームパワーに効いているか評価できる

今回は「調整パラメータ → ビームパワー」の関係を安定して学習し、 
その後の最適化の基盤として利用するのに適していると考え採用した
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今回のテスト内容
データを取得（EPICS archived） 
↓ 
前処理 

↓ 
ランダムフォレストで回帰学習 

学習曲線 
特徴量重要度 
予測 vs 実測 

↓ 
ベイズ最適化 

ガウス過程で最適パラメーター探索 

↓ 
最適パラメーターの出力

ショット情報に対応させる、並列構造のデータを整形

ビームパワーをバンチ数で正規化

学習データセットを作る

Gain_X, Phase_X, SG_X, Gain_Y, Phase_Y, SG_Y,…

target = 正規化ビームパワー

100本の決定木

過学習を防ぎながら非線形依存性を学習

今回最適化させたいパラメーター：

Gain_X, Phase_X, SG_X, Gain_Y, Phase_Y, 
SG_Y

制約：

Gain>0のものだけ最適化
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(2023.12~2024.12の10日分の調整データを使用した)



①ランダムフォレスト学習変化の概観
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高精度予測は難しいが、ベイズ最適化で調整
方向を探索するには十分な情報を提供できる

R²（縦軸）：モデルの説明力 

1＝完全一致、0＝平均値と同等、0未満＝平均より悪い 

青：Training R² 

ほぼ0 → Gain・Phase・SG だけでは複雑なビーム挙動
を完全に説明できない 

オレンジ：Validation R² 

データ量が増えるとやや改善 

モデルは 「傾向」 をつかむことはできている

入力変数が少ないので参考程度 

SG_Y の影響が小さい点は実運転の知
見と一致しており（Xから調整すること
も多いのでその影響も）、モデルが実
際の特徴を捉えていることを示す

②特徴量重要度　

ランダムフォレストの学習結果
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③ホールドアウト検証での予測 vs 真値
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③予測 vs 真値では R² = -0.029 となった 

これは線形的な説明力が弱いことを示すが、運転ログはノイズ・外乱の多いデータである 

限られた変数でも最適化に必要な「傾向」は学習できている点から、本研究の目的である BO
（ベイズ最適化）の試験的な入力モデルとしては十分と判断した 

④Iteration とともに predicted normalized power が上昇し、探索が妥当に機能している
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④ベイズ最適化の予測値履歴
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ガウス過程最適化の探索ステップ数実際の測定データ（True data）から計算された、

バンチ数で正規化したビームパワー



test9_baysian_opt_2_ok.py

=== Comparison Summary === 
                   Optimal  Latest 
Gain_X                 1.5    0.45 
Phase_X            149.574       0 
SG_X                     2       4 
Gain_Y             1.48962    0.35 
Phase_Y               -180     160 
SG_Y                     4       1 
PredictedPower_8b  867.746      

=== Comparison Summary === 
                   Optimal  Latest 
Gain_X             1.20818     0.3 
Phase_X            70.9559     -21 
SG_X                     2       4 
Gain_Y             1.43887     0.2 
Phase_Y            62.9627     135 
SG_Y                     4       1 
PredictedPower_8b  867.746      

2025/3/72025/3/4

Latestは正しい値を取得している

Optimalはリーズナブルな範囲内の値で正しく日毎に異なる結果にはなったが

これが最適なのかは現時点では不明

shot #1870875, 836.62 kWshot #1869376, 832.88 kW
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学習に含んでいない別日の調整データ（50~100ショットくらい/日）を読み込み

過去の学習結果をもとに最適値を導出した（Optimal）

実際にこの値でどうなるかは試せないが、実際にその日の最適とされた値（Latest）と比較

学習結果の検証



本研究では、普段の調整作業に対応する最低限のパラメータに絞って簡易的な最適化を行った 

しかし、実際には以下のように多数の調整パラメータおよびビーム状態に関する情報が存在： 

• クロマティシティや RF 系の設定 
• 時期や日毎の加速器の設定による違い 
• インピーダンス状態の変化 
また、バンチ数の違いによりインピーダンス効果が根本的に異なるため、単純なバンチ数正規
化では捉えきれない物理効果も多い 

J-PARCは大強度化目指して日々進化しているので、前回の設定がそのまま通用するわけでも
ない

今回の課題
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（始めたばかりでまだまだだが準備は整った）



以下の改善を進める予定である： 

1.学習に使用するパラメータ範囲・データ範囲を拡大する 

2.ビーム状態（ロス分布、電流、ビームプロファイル等）を取り入れた多変量学習 

→そのために、EPICS archiveされていない変数は整備する必要がある 

3.モデルの高度化（Gradient Boosting, Neural Networks 等） 

• 日々変わる調整方法を反映した学習ができるように検討する 
4.実用化への検討 

最終的には、機械学習を活用してフィードバック調整の即応性と再現性を向上させ、安定した
大強度運転の実現を目指す 

（CAEを使ってビームロス分布を用いてより精度を高める方法と、関連して異常検知を目指し
た機械学習を用いたビーム診断も進めている：PASJ2025）
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今後の展望


