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大強度陽子加速器施設 (J-PARC)
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• 3つの加速器 (400 MeV linac、3 GeV RCS、30 GeV Main Ring)と 3つの実験施設 (物質生命科学実
験施設 (MLF)、ハドロン、ニュートリノ)。大強度ビームで大量の二次粒子を発生

• RCSビームはMRとMLFに導かれる
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物質生命科学実験施設: MLF
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Mid-intensity beam line
For general use
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Very unique Ultra-Slow 
Muon Beam

S-Line 

Accommodate many
μSR experiments

Muon Facility MUSE @ MLF
H-Line 

MLFには、核破砕中性子とミュオン源が設置されている。
• 中性子: 20以上のビームライン
• ミュオン: 4つ
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RCSは 2024年に 1 MWビームの安定供給を達成

Beam power history at MLF

～10 months interruption 
due to the earthquake ～1 month interruption 

due to the fire in MLF
Interruption due to 
troubles of Hg-target

Earthquake

Accident at 
Hadron Facility

1 MW eq. pulse

500 kW

1 MW eq. beam

as of May. 22, 2024
9

700 kW

830 kW
950 kW

1 MW stable operation achieved

 The World's Most Powerful Pulsed Neutron Source at J-PARC MLF Achieved 
Target Performance (press released on May 31)

• "continuous operation with a proton beam power equivalent to 1000 kW" starting from April 8, 2024 
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Rapid Cycling Synchrotron (RCS)

RF cavities

Injection section

Extraction section

L-3BT

3-NBT

3-50BT

From 

Linac

To MR

To MLF

1st stripping foil

Longitudinal 

primary collimator

Secondary collimators

Kickers

Transverse primary collimator

circumference 348.333 m
energy 0.400–3 GeV

beam intensity 8.3 × 1013 ppp
output beam power 1 MW

accelerating frequency 1.227–1.671 MHz
harmonic number 2

maximum rf voltage 440 kV
repetition rate 25 Hz
No. of cavities 12

Q-value of rf cavity 2

2 つの重要な要素:

High γt ラティス

• 加速中、縦方向ロスの原因となる γt トランジションがない

• スリッページファクタが小さくシンクロトロン振動が遅い

金属磁性体 (Magnetic Alloy、MA)空胴の採用

• フェライト空胴の 2 倍電圧が出る
• 広帯域 (Q = 2)、無同調で加速周波数変化に対応
• 2 倍高調波重畳が可能
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広帯域空胴の利点
Q = 2 response: Simulated distribution:

Single harmonic: Dual harmonic:

空胴に基本波と 2 倍高調波を重畳した電圧を発生させるデュアルハーモニック運転でバンチ
整形を行い、空間電荷効果を緩和できる。

• 大強度ビーム加速に必須
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如何にしてこのような電圧パターンを得ることができるのだろうか。
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基本波のみの場合

BUNCHES WITH LOCAL ELLIPTIC ENERGY,DISTRIBUTIONS 

A. Hofniann and F. Pedersen*) 

Introduction and Summary 

This distribution fits well with distributions ob­
served in proton synchrotrons and makes several analy­
tical calculations for bunched beams in longitudinal 
phase space possible. For any shape of the focusing 
force the line density becomes proportional to the po­
tential well. Self-forces caused by space-charge and 
indu�tive wAll impedances are thus proportional to the 
external force, making calculation of bucket area reduc­
tion and bunch lengthening easy. The microwave instabi­
lity threshold, as given by the Keil-Schnell criterion 
with local values for current ahd energy spread, is in­
dependent of the·azimuthal position along the bunch, 
and again analytical formulae are possible even for 
strongly non-linear focusing forces. The relative magni­
tude of the self-force and the microwave threshold turn 
out to be closely related, as the self-force is always 
40% of the external force when the microwave threshold 
is reached. The classical longitudinal space-charge 
limit can therefore only be reached within a factor of 
0. 4. Other calculations with this "natural" distribution 
include analytical fonnulae for the rigid dipole mode 
threshold, and creation of flat-topped bunches with re­
duced peak line density resulting in a higher transverse 
space-charge limit. 

Synchrotron equation with an arbitrary waveshape 

The synchrotron equations 

dW 3H e .-
] dt a - 3d, a 2c LV(¢) - Vo 

dq; = OH = hw�n W 
dt aw B2E s 

can be derived from the Hamiltonian 

H = hw�n w2 - � U(Q) 21:FES 2TI 

where U(¢) is the potential 
'" ¢ 

(1) 

( 2) 

( 3) 

U(¢) a I [v(¢) - Vo] d¢ / V(¢)d¢ - Vo(¢ - ¢,) , 

¢, ¢ s ( 4) 

where W = !J.E/!..Do = (E - E )/w 0; r: = 1/y�· - l/y 2 = 
= ·  -(df/f) /(dp/p); ·ev0 is

s
the �nergy gain per turn of the 

synchronous particle; Es, w 0, and ¢is are energy, revolu­
tion frequency, and phase of the synchronous patticle; 
V(¢) is the accelerating waveshape, which has ,zero mean 
and periodicity 2�; h is the harmonic number, U(¢) has 
been chosen so that the Hamiltonian of the synchronous 
particle is zero. There is area conservation in the 
(W,¢) phase plane. 

The local elliptic energy Jl:;LrlbuLion 

The Hamiltonian being a constant of motion, a neces­
sary and sufficient condition for a stationary (=time in­
variant) particle distribution is that the phase-space 
density g(W,¢) can be written as a function of the 
Hamiltonian. If· we choose 

d2 N g(W,¢) a dWd¢ a g(H) a C1 yHb - H (5) 

where Rb is the Hamiltonian of the extreme (= boundary) 
particle, we get as function of energy, 

( 6) 

*) CERN, Geneva, Switzerland. 

where Wb(¢) or Eb(¢) is the bunch boundary in phase 
space. For any value of ¢, the density is an elliptic 
function of energy. The line density: 

A(¢) a 1: a/ g(W,¢)dW a c,[u(¢) - U(h)] . (7) 

has :the same shape as the poten,tial_, Fig. l; U(</12) is 
the potential at one end of the bunch, and-.c2 through, c� 
are constants. 
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Fig. 1 Bunch with elliptic energy distribution 

Space-charge and inductive Wall'effeCts 

At low frequencies (lo'ng bunches) the effective 
coupling impedance inclll.dfng s·p-ace-t:harge forces is most-
ly reacti ve1 

Ze 
n 

goZo) , 
j(woL - 26y2 = JWoLe ( 8) 

where n = w/w0 and �e is th.e effective inductance. The 
space-charge force is thus equivalent to a negative, 
energy-dependent wall inductance. The induced voltage 
:s therefore proportional to the derivative of the local 
current I, which for a bunch extending from ¢1 to ¢2 
,.,-ith Nb particleS per burich is 

(9) 

I(¢) 

基本波のみの場合は、陽子の位相空間分布が Hofmann-Pederesen分布
に従うとして、縦方向エミッタンスとモーメンタムフィリングファク

ターをパラメータとして加速中各時間の最適な電圧が解析的な式で計

算できる。

• 超古い RAMAというコードが知られている
• 古いと言っても空間電荷による電圧減少まで考慮した優れ物
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J-PARC Technical Design Reportより

• RAMAは adiabaticityには無頓着なので、この場合加速後半は使えないですが……。

加速器・ビーム物理の機械学習ワークショップ 2025 田村文彦 深層強化学習による高周波加速電圧パターン生成の試み 11



2倍高調波ありの場合

2 倍高調波ありの場合、解析的な式は使えないので…、

1. 基本波の電圧を RAMA 等で決める
2. 2 倍高調波の割合を設定する
3. 縦方向トラッキングシミュレーションを行い、位相空間分布や
ビームロス等を評価

4. パターン (2 倍高調波割合、位相)を修正し、またシミュレー
ションを回す

と手間と時間をかけて行っている。

RCSの電圧パターンの例:

2倍高調波位相を
-0.5msから 0.5msにかけて
100度スイープする

2倍高調波電圧は3msまで
基本波の70%、5msで
45%、6msでゼロ

より平坦なビームを生成するために 3倍、4倍高調波を加えるとすると、手間と時間は膨大。

深層強化学習で電圧パターンの最適化を行うことができるのではないか、と考えた。

加速器・ビーム物理の機械学習ワークショップ 2025 田村文彦 深層強化学習による高周波加速電圧パターン生成の試み 12



2倍高調波ありの場合

2 倍高調波ありの場合、解析的な式は使えないので…、

1. 基本波の電圧を RAMA 等で決める
2. 2 倍高調波の割合を設定する
3. 縦方向トラッキングシミュレーションを行い、位相空間分布や
ビームロス等を評価

4. パターン (2 倍高調波割合、位相)を修正し、またシミュレー
ションを回す

と手間と時間をかけて行っている。

RCSの電圧パターンの例:

2倍高調波位相を
-0.5msから 0.5msにかけて
100度スイープする

2倍高調波電圧は3msまで
基本波の70%、5msで
45%、6msでゼロ

より平坦なビームを生成するために 3倍、4倍高調波を加えるとすると、手間と時間は膨大。

深層強化学習で電圧パターンの最適化を行うことができるのではないか、と考えた。

加速器・ビーム物理の機械学習ワークショップ 2025 田村文彦 深層強化学習による高周波加速電圧パターン生成の試み 12



1.はじめに

2.電圧パターンの設定

3.深層強化学習の適用

4.実装

5.今後

加速器・ビーム物理の機械学習ワークショップ 2025 田村文彦 深層強化学習による高周波加速電圧パターン生成の試み 13



深層強化学習の適用

行動
（RF電圧）


行動選択（方策）

状態観測部

エージェント
（ロボット）

報酬
状態 S(t+1)

観測 状態 S(t)
t: ビーム周回数

環境
（ビーム運動）


位相空間分布

観測量

バンチ長
バンチ平坦度
ビームロス
RFバケツまでの余裕
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環境: BLonDによる縦方向シミュレーション

BLonDシミュレーションで得られる RCSビームの位相空間分布の例。
BLonDシミュレーションと実測のビーム波形の比較。よく一致する。

BLonDは RCSでのビーム挙動をよく再現できる。
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構想

縦方向シミュレーションを環境として DRLを進めていけば、DRLは最適な行動 (最適な RF
電圧)を出力するようになるのではないか？

• 基本波のみの場合: エミッタンスとフィリングファクターから、RAMAで答え合わせ可能
• 報酬: Mf や Bf 所望の値 +10、ビームロス (dp/p > limit) -10000中途終了、などなど
• 基本波でうまく行ったならばデュアル、トリプルハーモックに拡張できるか？
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実装

まだぜんぜん実装していないのが現状。

• 深層強化学習お勉強中
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今後

ともかく実装しますので、助言よろしくお願いします。
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