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Investigation of Reinforcement Learning Algorithms for Machine Control
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Q_learning (Conservative Q-learning)
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Conservative (Conservative Q-learning)
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cql reg = Q_pred Max - Q data
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PILCO (Probabilistic Inference for Learning COntrol)
Ref.[9-11]
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CQLDENMEDIREE X = [state, action]

kernel = GPy.kern.RBF(input_dim=input_X.shape[1]) Y = [next state - state]
gp_model = GPy.models.GPRegression(input_X, output_Y, kernel)
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COMBO (Conservative Offline Model-Based Policy Optimization)

Ref.[12,]
COMBOTIZ. Neural Network I & b BIETOE = % Fl, ef.[12,13]
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SROT—Y ERADT—F (VR VZER) D SITHZERE,

CQLDEFDHRALE

x = layers.Concatenate()([state, act])

nhext_state = layers.Dense(state_dim)(x)
NN_model = Model(inputs=[state, act], outputs= next_state)
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