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SafeLineBO を用いたビーム調整テストの報告 
Report on Beam Tuning Tests Using SafeLineBO
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ウランビーム強度 [pnA] の変化

運転年
理化学研究所 RIBF は 2006 年より運転を開始し、 
現在では 100 pnA を超えるウランビーム (~345 MeV/u) を供給することで世界の原子核物理学を牽引している 
その供給ビーム強度の増加率は年々鈍化している。 
→ ビームラインの (600 を超えるパラメータの) 手動最適化の限界も一つの要因となっている。 
→ Machine Learning を使った最適化でさらなる領域へ！ 
※ 大強度重イオンビームだと、ビームロス(熱)で律速される場合も。loss を 1% → 0.5% にすると、強度が2倍に！ 

ウ
ラ
ン
ビ
ー
ム
強
度
 [p

nA
]

RI ビームファクトリーの俯瞰図
理研 RIBF と機械学習を用いたビーム輸送最適化
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・多数のパラメータの同時最適化 
・(機械学習としては) 少ない学習データに対応 
・大強度ビームでも使えるビームの指標 
・大強度ビームを “むやみに振り回さない” 安全システム 
・環境の変化などに追随して常時パラメータ最適化するシステム

RIBF における最適化プログラムに求める条件
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・多数のパラメータの同時最適化 
・(機械学習としては) 少ない学習データに対応 
・大強度ビームでも使えるビームの指標 
・大強度ビームを “むやみに振り回さない” 安全システム 
・環境の変化などに追随して常時パラメータ最適化するシステム

RIBF における最適化プログラムに求める条件
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σh: 1.1 mm  
σv: 0.8 mm

ML best
Kr36+ + Be target 
→ Kr34+ で低強度化

ガウス過程回帰を用いた 
ベイズ最適化

荷電変換粒子

T. Nishi et al., Proc. of HIA2025, MSU, USA, TUP09, (2025).



2024年度ビーム物理研究会、若手の会 @量研関西光量子科学研究所, 3月12日 
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4つの四重極の最適化 / 30分 
スポットサイズ ↘ 30% 
通過率 はほぼ同程度

スポットサイズだけでなく、実験者 
のありとあらゆる解析結果を指標に 
ビーム調整が可能となる。

“高強度”一次ビームで荷電変換粒子の測定による光学系最適化
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・多数のパラメータの同時最適化 
・(機械学習としては) 少ない学習データに対応 
・大強度ビームでも使えるビームの指標 
・大強度ビームを “むやみに振り回さない” 安全システム 
・環境の変化などに追随して常時パラメータ最適化するシステム

RIBF における最適化プログラムに求める条件

今日はこの２つをテーマに話す
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・例えばRIBFだとパラメータは数百を超える。 
・ガウス過程回帰をつかったベイズ最適化では、せいぜい 20 パラメータ？ 
　(範囲にもよるが、以前行った最適化は 4 パラメータで 30分) 

多数のパラメータの同時最適化をどうやって実現するか？

解決方法 ①: グループ分けをして少数のパラメータずつ最適化 
                  →通称 “落ち穂拾い” 
　　　 Pros: 何をやっているかがクリア。人がやっていることの自然な延長。 
         Cons: 異なるグループのパラメータを同時最適化できない。 
解決方法 ②: 多次元空間の中から ”賢く” 部分空間を抜き出す 
                  → LineBO 
　　　 Pros: 正しく動けば、多次元最適化を効率よく行うことが可能。 
                   安全関数を用いた手法と組み合わせる→ SafeLineBO 
         Cons: 正しく感度のあるパラメータ(組)を見つけ出すことは可能？？ 
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8自動最適化のテスト@ RILAC / RILACII ~ RRC (昨年一部報告)
多次元最適化問題に対する解としての“落穂拾い”

落穂拾い@RIBF: 
ある程度全てのパラメータを最適化したあと、 
最後に各パラメータを順番に微小に変化させ 
通過率などを上げる調整が残ってないか確認 
する作業 

これならば現状の単純なベイズ最適化でも使える？ 
・パラメータの変更範囲を ~ 20%以内に 
・活用 >> 探索 (局所最適化を目指す) 
・扱いやすい四重極磁石/Str. を主に調整 
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自動最適化のテスト@ RILAC / RILACII ~ RRC

RILAC における 
“落ち穂拾い”
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2024年6月: 新しい核種 (2+He) の常電導加速空洞パートにおける加速試験 
                 → 経験が浅く、まだ手動最適化されていない。ちょうどいい対象。

1 2 3

0 5 10 m

・Super-heavy element synthesis: [119], [120], … 
・Production of useful RIs such as 211At, 99Mo, … 
・Injector for RI Beam Factory

SRILAC (超伝導加速空洞)常伝導加速空洞

最適化する四重極磁石:   
  ~ RFQ 下流から、加速空洞間 / 空洞内の四重極磁石, Steerer 磁石 (43パラメータ) 
　  ※Energy が測定できなかったため、RF の HV / 位相は触らず 
目標: 
  最下流ファラデーカップでの電流値↗ 
獲得関数: 
   Lower Confidence Bound (LCB) / β ~ 0.2 (非常に活用寄り)

RILAC (線形加速器) における自動最適化のテスト (局所最適化)
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1 2 3

0 5 10 m
最適化範囲 

6 params

ファラデーカップ

最適化の過程の画像 
 Posh, v vs Trial 

(今回はなし)

FC current vs Epoch

評価関数 vs Trial 電流値 (相対値) vs Trial 評価関数 vs 電流値

σh, v vs Trial 
(今回はなし)



加速器・ビーム物理の機械学習ワークショップ2025 @ Tokai Mirai Base, 2025 Dec. 9th

12

1 2 3

0 5 10 m

ファラデーカップ

最適化の過程の画像 
 Posh, v vs Trial 

(今回はなし)

FC current vs Epoch

評価関数 vs Trial 電流値 (相対値) vs Trial 評価関数 vs 電流値

σh, v vs Trial 
(今回はなし)

最適化範囲 
8 params
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1 2 3

0 5 10 m

ファラデーカップ

最適化の過程の画像 
 Posh, v vs Trial 

(今回はなし)

FC current vs Epoch

評価関数 vs Trial 電流値 (相対値) vs Trial 評価関数 vs 電流値

σh, v vs Trial 
(今回はなし)

最適化範囲 
8 params
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1 2 3

0 5 10 m

ファラデーカップ

最適化の過程の画像 
 Posh, v vs Trial 

(今回はなし)

FC current vs Epoch

評価関数 vs Trial 電流値 (相対値) vs Trial 評価関数 vs 電流値

σh, v vs Trial 
(今回はなし)

最適化範囲 
6 params
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1 2 3

0 5 10 m

ファラデーカップ

最適化の過程の画像 
 Posh, v vs Trial 

(今回はなし)

FC current vs Epoch

評価関数 vs Trial 電流値 (相対値) vs Trial 評価関数 vs 電流値

σh, v vs Trial 
(今回はなし)

最適化範囲 
5 params
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1 2 3

0 5 10 m

ファラデーカップ

最適化の過程の画像 
 Posh, v vs Trial 

(今回はなし)

FC current vs Epoch

評価関数 vs Trial 電流値 (相対値) vs Trial 評価関数 vs 電流値

σh, v vs Trial 
(今回はなし)

最適化範囲 
12 params
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・総試行時間 ~ 20分 (完全自動化) 
・総iTrial ~190回 
　(~ 30回試行 × 6 パートの最適化) 
・測定値: 0.2 秒ごと3回のFCの測定の平均値 
   ~ 数 enA のバタつき 
・最終的に 956 enA → 976 enA (+2%) 
 
   ※ RF のパラメータを変更せず、また 
　　 ある程度オペレータによる最適化の 
　    後であったことを考えれば悪くない結果　

最適化範囲 
43 params

ファラデーカップ
43 パラメータの 
最適化に成功 (?)
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ファラデーカップ
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So far Best

最適化範囲 
43 params

・総試行時間 ~ 20分 (完全自動化) 
・総iTrial ~190回 
　(~ 30回試行 × 6 パートの最適化) 
・測定値: 0.2 秒ごと3回のFCの測定の平均値 
   ~ 数 enA のバタつき 
・最終的に 956 enA → 976 enA (+2%) 
・最大で 950 → 50 enA以下 まで低下 
 

下流にある超伝導空洞まで 
beam を通す場合、この 
beamloss は許容されない
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自動最適化のテスト@ RILAC / RILACII ~ RRC

RILAC II - RRC 
における “落ち穂拾い”
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20RILACII ~ RRC における”落ち穂拾い”

28 GHz ECR

RILACII

RRC

Faraday Cup @ A02 
今回の指標はこれのみ

イオン源下流からサイクロトロン入射部の全 70 パラメータを最適化 
70 個のパラメータを 10 のパートに分割し、一度に最大10パラメータ調整 
指標はサイクロトロン下流 Faraday Cup のみ

# Quad Steerer Solenoid Dipole All
1 4 4 2 0 10
2 2 4 1 0 7
3 8 0 0 0 8
4 4 4 0 0 8
5 4 3 0 0 7
6 6 1 0 0 7
7 4 4 0 0 8
8 7 2 0 0 9
9 3 5 0 0 8
10 0 5 0 2 5
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Group1

# Quad Steerer Solenoid Dipole All

1 4 4 2 0 10

2 2 4 1 0 7

3 8 0 0 0 8

4 4 4 0 0 8

5 4 3 0 0 7

RILACII ~ RRC における”落ち穂拾い”
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Group2

# Quad Steerer Solenoid Dipole All

1 4 4 2 0 10

2 2 4 1 0 7

3 8 0 0 0 8

4 4 4 0 0 8

5 4 3 0 0 7

RILACII ~ RRC における”落ち穂拾い”
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Group3

# Quad Steerer Solenoid Dipole All

1 4 4 2 0 10

2 2 4 1 0 7

3 8 0 0 0 8

4 4 4 0 0 8

5 4 3 0 0 7

RILACII ~ RRC における”落ち穂拾い”
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Group4

# Quad Steerer Solenoid Dipole All

1 4 4 2 0 10

2 2 4 1 0 7

3 8 0 0 0 8

4 4 4 0 0 8

5 4 3 0 0 7

RILACII ~ RRC における”落ち穂拾い”
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Group5

# Quad Steerer Solenoid Dipole All

1 4 4 2 0 10

2 2 4 1 0 7

3 8 0 0 0 8

4 4 4 0 0 8

5 4 3 0 0 7

RILACII ~ RRC における”落ち穂拾い”
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Beam Profiles (Horizontal)
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・今回は Profile の軸は見ず、あくまで通過率のみ 
　しかし、最適化前後を見ると特に一部で beam の軸が 
　顕著に 0 に近づいていることが分かる。

S61

S64

S71

RILACII

RRC

Faraday Cup @ A02 
今回の指標はこれのみ

S61
S64

S71

20-20

RILACII ~ RRC における”落ち穂拾い”
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RILACII
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Faraday Cup @ A02 
今回の指標はこれのみ
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・今回は Profile の軸は見ず、あくまで通過率のみ 
　しかし、最適化前後を見ると特に一部で beam の軸が 
　顕著に 0 に近づいていることが分かる。 
・なお、垂直方向については顕著な差は見られず。

RILACII ~ RRC における”落ち穂拾い”
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RILACII

RRC

Faraday Cup @ A02 
今回の指標はこれのみ

・測定値: 0.2 秒ごと5回のFCの測定の平均値 
   ~ 数 enA のバタつき 
・70 パラメータ / 335 試行、36分 (1試行 ~ 6.5秒) 
・Faraday Cup で電流値が  
   520 ~ 530 enA → 570 ~ 580 enA (~ 10% ほどの上昇) 
・ただし、最低値は ~ 50 enA (90%ロス！)

試行回数 試行回数

電
流
値
 @

 サ
イ
ク
ロ
ト
ロ
ン
出
口
 

[e
nA

]
RILACII ~ RRC における”落ち穂拾い”
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・測定値: 0.2 秒ごと3回のFCの測定の平均値 
   ~ 数 enA のバタつき 
・70 パラメータ / 335 試行、36分 (1試行 ~ 6.5秒) 
・Faraday Cup で電流値が  
   520 ~ 530 enA → 570 ~ 580 enA (~ 10% ほどの上昇) 
・ただし、最低値は ~ 50 enA (90%ロス！)

電
流
値
 @

 サ
イ
ク
ロ
ト
ロ
ン
出
口
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]

RILACII

RRC

Faraday Cup @ A02 
今回の指標はこれのみ

試行回数 試行回数
RILAC と 
ほぼ同じプログラム 
制御・測定パラメータの名前と 
範囲を変えただけで使える

RILACII ~ RRC における”落ち穂拾い”
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RILACII

RRC

Faraday Cup @ A02 
今回の指標はこれのみ

試行回数 試行回数

RILACII ~ RRC における”落ち穂拾い”

その他実用的な話として 
・UI をちゃんと作る必要がある。 
・途中でセットした電流値が入らない機器がある。 
・他の要因でビームの電流値が変わることがある。 
・パラメータのレンジを適切にしておかないと最適化がすすまない。 
などがあるので、このあたりをクリアする必要あり。
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・例えばRIBFだとパラメータは数百を超える。 
・ガウス過程回帰をつかったベイズ最適化では、せいぜい 20 パラメータ？ 
　(範囲にもよるが、以前行った最適化は 4 パラメータで 30分) 

多数のパラメータの同時最適化をどうやって実現するか？

解決方法 ①: グループ分けをして少数のパラメータずつ最適化 
                  →通称 “落ち穂拾い” 
　　　 Pros: 何をやっているかがクリア。人がやっていることの自然な延長。 
         Cons: 異なるグループのパラメータを同時最適化できない。 
解決方法 ②: 多次元空間の中から ”賢く” 部分空間を抜き出す 
                  → (Safe)LineBO 
　　　 Pros: 正しく動けば、多次元最適化を効率よく行うことが可能。 
                   安全関数を用いた手法と組み合わせる 
         Cons: 正しく感度のあるパラメータ(組)を見つけ出すことは可能？？ 
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自動最適化のテスト@ RILAC / RILACII ~ RRC

AVF - RRC 
における “SafeLineBO”
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max
x∈χ

f(x) (or min f(x)) s . t .
g1(x) ≤ 0

⋮
gl(x) ≤ 0

Approaches in the safe optimization community
Prepare distinct GP models for both the objective and the constraints. 

Evaluate within the safe set only





 

xt = arg max
x∈Sτ

t

UCBf(m̂t, x, δ)

s . t . Sτ
t = {x ∈ χ : max

i∈[l]
UCBgi

(m̂t, x, δ) ≤ − τ}
] Margin

Felix Berkenkamp (2021)

Objective
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“安全関数” もモデル化 
安全関数がある値以上の場所を探索 
測定によって目的関数と同時に安全関数も更新

安全に自動調整を行うシステム:  
Safe optimization using LineBO
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(A) CoordinateLineBO 
　各パラメータの軸に合わせて方向を選択 
　(ex. 磁石ごとに最適化) ※人間の最適化に近い 
(B) Descent (Ascent) LineBO 
　近傍で勾配を計算、最も感度の高い方向に最適化 
(C) RandomLineBO 
　Random に方向を選択

Step 1 Step 2 

Monitor 1D subproblem

J. Kirschner, M. Mutný, N. Hiller, R. Ischebeck, and A. Krause, 36th Int. Conf. 
Mach. Learn. ICML 2019, vol. 2019-June, no. Icml, pp. 5959–5971, 2019.

安全に自動調整を行うシステム:  
Safe optimization using LineBO 
計算コストの増大  
→ Line Baysian Optimizationで探索を効率的にする


モデル上で最も勾配の強い方向の1次元部分空間上の 
ベイズ最適化問題を解く。最適解を見つけた後は、再び近
傍で勾配を計算、最も勾配の強い方向で改めて探索。
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14 GHz ECR

AVF

Faraday Cup @ A01

RIKEN Ring Cyclotron

※ 今年 10 月に行った実験

AVF ~ RRC における SafeLineBO テスト
事前準備: 
   藤井氏が整備してくれた SafeLineBO の 
　プログラムを岩井さんの GPopt に江川氏が実装 
　flag で SafeLineBO が選べるように。 
   ※しかし numpy の ver. が古くて最新の 
      branch と merge できない。。。 
　適切なハイパーパラメータを見積もるため、 
　AVF から RRC 入口までのモンテカルロ 
　シミュレーションを作成。(gicosy + MOCADI) 
  このシミュレーションを基に、江川氏が 
   Optuna を用いてハイパーパラメータを最適化 
   (ベイズ最適化のためのベイズ最適化) 
　 候補 1: β ~ 6.7 

候補 2: β ~ 0.3 

イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。
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イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。

最初の SafeLineBOのテスト (23 パラメータ) 
β = 6.7

信頼区間探索 
ベストの値を試す 
Line 上でガウス過程回帰

色々おかしい。。。。。 
・Line 上探索で、前の best に戻らない。 
・安全閾値を下回っている。

AVF ~ RRC における SafeLineBO テスト

Safe Line BO の Procedure
信頼探索 
　現在の “最適値” A の周りで、安全な範囲内で探索 
　を行って進むべき方向を探す。 
ベストの値を試す 
　ここまででで見つけた最も良い候補点 B を試す 
   (これまでのデータで作ったモデルの最尤値) 
Line 上でガウス過程回帰 
　A と B を結んだ方向でガウス過程回帰 
　このとき、安全関数も計算し、安全な範囲内で探索
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イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。

14 GHz ECR

AVF

Faraday Cup @ A01

RIKEN Ring Cyclotron

※ 今年 10 月に行った実験

その後色々とパラメータを調整 
・信頼区間を狭くする。 
・FCの測定の間隔を空ける 
・βを 2. に。 信頼区間探索 

ベストの値を試す 
Line 上でガウス過程回帰

一応少しは良い解を見つけたrun。ただしやはりおかしい。

AVF ~ RRC における SafeLineBO テスト
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イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。

14 GHz ECR

AVF

Faraday Cup @ A01

RIKEN Ring Cyclotron

※ 今年 10 月に行った実験

本当に電流量が増加していくかを、 
手動でパラメータを変えて検証

param. set

① ② ③ ④

①: default            ②: ML 初期値 (default を少し悪化) 
③: ML best ver. 1 ④: ML best ver. 2

AVF ~ RRC における SafeLineBO テスト



加速器・ビーム物理の機械学習ワークショップ2025 @ Tokai Mirai Base, 2025 Dec. 9th

39

イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。

14 GHz ECR

AVF

Faraday Cup @ A01

RIKEN Ring Cyclotron

※ 今年 10 月に行った実験

本当に電流量が増加していくかを、 
手動でパラメータを変えて検証

param. set

① ② ③ ④

パラメータを変えた後もだらだら変わる！！ 
→ イオン源が不安定？ 

AVF ~ RRC における SafeLineBO テスト
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イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。

14 GHz ECR

AVF

Faraday Cup @ A01

RIKEN Ring Cyclotron

※ 今年 10 月に行った実験

本当に電流量が増加していくかを、 
手動でパラメータを変えて検証

param. set

① ② ③ ④

パラメータを変えた後もだらだら変わる！！ 
→ イオン源が不安定？  システムの応答遅延が原因

AVF ~ RRC における SafeLineBO テスト
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イオン源から RRC 出口の FC まで。単純化のため、 
今回は四重極磁石のみで 24 (23) パラメータ。

AVF

AVF ~ RRC における SafeLineBO テスト

ここに荷電変換膜 
(炭素)

影響の大きなパラメータとして 
積極的に変更される

荷電変換膜である炭素の上流の TQ を 
触ることで、膜上のスポットが変わっていた。 
→ 熱負荷でゆっくりとした応答をしていた可能性が高い 
  （運転員は基本的にここを触らない。） 
 
そのため、目的関数 / 安全関数のモデル化がうまく行かず、 
挙動がおかしかったのではないか。

12C6+

12C4+

最適化の対象については事前に良く検討し、 
普段の調整などを熟知してから行いましょう。

教訓
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42AVF ~ RRC における SafeLineBO テスト
テストの前提条件が一部崩れていた。とはいえ、いくつか知見は得られたので考えてみる。 
(1) SafeLineBO の効果とβ依存性
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β ~ 6.7 β ~ 0.34

安全関数のモデル化が不完全だったものの、ある程度ハイパーパラメータを調整後は 
安全関数の閾値を”ある程度” 維持している。 
βに対する変化も期待通り。
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43AVF ~ RRC における SafeLineBO テスト
テストの前提条件が一部崩れていた。とはいえ、いくつか知見は得られたので考えてみる。 
(1) SafeLineBO の効果とβ依存性

β ~ 6.7 β ~ 0.34

パラメータの変化についてもβの値に対応している。 
それなりに多くのパラメータを同時に動かしている。
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44AVF ~ RRC における SafeLineBO テスト
テストの前提条件が一部崩れていた。とはいえ、いくつか知見は得られたので考えてみる。 
(2) 初期値を低い値から始めた時の SafeLineBO の最適化の不安定性

β ~ 0.34

全く同じ条件でも、最適化が進む場合と進まない場合の落差が激しい。 
→ 信頼探索で、全てのパラメータを触るわけではない。 
　 運要素が大きい？

β ~ 0.34

24 パラメータ 24 パラメータ
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45今後の SafeLineBO の改善点について
1. 信頼区間探索回数について 
　　特に信頼区間探索の点数が少ないと運要素が大きくなる？ 
　　だが、信頼区間探索を増やすと同じ試行回数では LineBO の回数 
　　が減るジレンマ。 
　　→ 江川氏によるシミュレーションでの検証。 
　　    信頼区間探索を 8, 24, 48 で試行。 
　　    やはり信頼区間探索を増やしたほうが結果は安定。

解決案 
(1) 信頼区間探索を parameter * 2 程度にする 
(2) 一度 Coordinate Safe Line BO を行って一通り最適化。 
　  → そのデータを基に信頼区間探索少なめで 
         Acsent Safe Line BO に移る。 
　　　※ 信頼区間探索では過去の全データを基にモデル構築



加速器・ビーム物理の機械学習ワークショップ2025 @ Tokai Mirai Base, 2025 Dec. 9th

46今後の SafeLineBO の改善点について
2. So far best を試すと、過去のデータより結果が低くなりがち 
　例えばデータで 412 enA の結果を見つけていても、最後そのパラメータを適応すると 
　400 enA 程度にしかならないことがある。 
　→ 統計的に上振れしたデータが So far best になりやすいため？？ 
 

FC current [enA]

今回、FC は 0.1 秒ごとの測定 × 5 の平均値を取得 
その結果、統計的なゆらぎは ~ 5 enA 程度。 
→ 2σ で上振れしたデータを取っていれば辻褄が合う。 
解決案 
・10 enA 程度 (2 ~ 3σ) は許容する。 
・測定データの精度を上げる？ 
   測定時間を長くする / intensity を上げる。
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47今後の SafeLineBO の改善点について
3. 安全システムについて (未来の話) 
   パラメータの変化中にビームロスが増加することがあるのでは？

パラメータ セット 1 パラメータ セット 2変更中…

安全閾値
※パラメータ変更中は Line 上にいる保証もない！
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48今後の SafeLineBO の改善点について
3. 安全システムについて (未来の話) 
   パラメータの変化中にビームロスが増加することがあるのでは？

パラメータ セット 1 パラメータ セット 2変更中…

安全閾値

解決方法 1 : 変更中は beam を止める。
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49今後の SafeLineBO の改善点について
3. 安全システムについて (未来の話) 
   パラメータの変化中にビームロスが増加することがあるのでは？

パラメータ セット 1 パラメータ セット 2変更中…

安全閾値

解決方法 1 : 変更中は beam を止める。 
　　　　　　欠点: もし安全関数が間違っていたときに、 
　　　　　　　　  途中で変化に気が付けない。
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50今後の SafeLineBO の改善点について
3. 安全システムについて (未来の話) 
   パラメータの変化中にビームロスが増加することがあるのでは？

パラメータ セット 1 パラメータ セット 2変更中…

安全閾値

解決方法 2 : パラメータの変更のステップを刻み、 
　　　　　　Line 上にいることを担保。 
　　　　　　安全関数が単峰性を持つなら安全。　 
　　　　　　欠点: パラメータの変化に時間がかかる
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51まとめ
・理研RIBF においては、 SPring-8 SACLA において開発された 
　GPR 最適化プログラムを元に研究を進めている。GPR 最適化プログラムは 
　誤差付きの測定値を元にした多次元パラメータの最適化に強みをもつ。 
・多数のパラメータを取り扱う方法として、グループ分けで局所最適化を試す。 
　全70パラメータを複数のパートに分けて自動最適化 
   通過率の 10%向上 / 40 分 に成功。ただし安全性に難あり。 
・SafeLineBO は安全性と多数のパラメータを取り扱う最適化として非常に有力。 
・実機で試したものの、適応するシステムへの理解が不十分でよいテストには 
　ならなかったが、課題はいくつか見つけることが出来た。 
　→今後も現場でのテストを繰り返し、実用性をあげていく予定。 
・physics informed …??
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J. Duris, J. et al. Bayesian Optimization  
of a Free-Electron Laser. Phys. Rev. Lett. 124, 124801 (2020).

Normal GPR

Physics Informed GPR

・・・

シミュレーション

53

事前にシミュレーションを行い、カーネル関数そのものを修正 
→ 物理的な知識がある状態から最適化を始める

b. Physics informed Gaussian Process

変数が増えてもより早く 
解が収束する。

GPR を賢くする

その他課題を解決するためのいくつかの手法
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c. Extremum Seeking Control などによる適応制御
Extremum Seeking Control: 
パラメータを常に微小に変化させて、目標関数の応答から最適化し続ける手法。 
各パラメータの変化を異なる周期で変動させることにより応答を分離する。 
→ ノイズとも分離できるため高精度で最適化が可能。

RIBF のあるビームラインでスリットとバッフルの 
ビームロスを指標として ESC を適応したときのデータ

※ある程度うまくいったものの、非常に短い時間での 
   継続的な値の変化に対応するにはハードウェアの更新も 
   必要と思われる。

H. Fujii et al., Proc. of PASJ 2021 WEOB02

その他課題を解決するためのいくつかの手法

https://www.pasj.jp/web_publish/pasj2021/abstracts/html/WEOB02.htm

