- I'he Vast nght Source

~ Bundmg the world's most powerful Iasers ~

'Th"‘ t ) d e Bt workeh | 2@’2'4' i EUV-FEL WORKSHOP 2026_
|s .gerles star ed since workshop (; ) . 2026.1.28. Aklhabara
Ll 20240 qu Last _ight Source; (Erik Hosler) R
2025 - Tfle Must Light Source; (Y. Honda) Yosuke Honda (KEK)
) ':\-,.,;2026 The Vast Light Source, T TIA |
. 2027: T(The Lost Light Source ?),

* This work Is supported by JST K-program Japan Grant Number JPMJKP24M?2



Target of EUV-FEL

EUV Power [kW]

O

el

O.1

>

] 2
Electricity [M

S
W/(EU

5
V TkW)]

REXTFF




Contents

. Reviewing the Accelerator

- Principle and necessity of FEL
- Principle and necessity of ERL
- Electron beam handling

. Development plan in KEK
. Summary



Contents

- Principle and necessity of FEL



synchrotron radiation light source

- The most established accelerator-based light source

I : Experimental Stations for Hard X-rays
B : Experimental Stations for VUV and Soft X-rays
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Principle of Synchrotron radiation
E4[GeV*]

Radiation energy loss Us [keV- — 88.5 %

IN one-turn:

pm]
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Spectrum

Critical energy
of the radiation spectrum:

Broad spectrum € [keV] — 2917 %

(up to the critical energy)
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Effective power Convesion efficiency of

Flectron beam
Power of to Radiation

tlectron beam Spectrum efficiency
IN mirror bandwidth

Pryv[W] =107 x E[GeV]I[A] xéxé
ST

Magnetic field of Length of Beam current
undulator ~0.5T undulator ~20m ~0.5A

. Possible EUV power: ~30W

— lncoherent radiation is Not enough for EUVL



Coherent radiation

lIncoherent radiation

. Conventional undulator radiation
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Coherent radiation

. Radiation from micro-structured beam
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Free-Electron Laser

KDOBES & DBEFRICE > T,

BLOBFIE. ZOE-LADUBICEHRFLTHERIT
28U, @TOABICKORROBBDRENATERT,

(R120/FL)

PoIJab—9

BFE-L € PoJalL—4:

RRAEBIC L > T
BFE-LONEZ
WITSEIRE

+
@] o "
BLOBRIIIC. BEHERELET, ® o
(NS VT L. A YIE—LY RN T, y

o

HXOREROEATEIIUICEFH S,
fif8hHiofTc. JE—LYRRBAEDFRELEXT,

BLROBFOMHENMRIETELEHE DD,
RVLICRVENEBSNET,

KX EDHEEERICEKD
EFHNRITIZIN

11



Flectron-Radiation interaction in undulator

Period of undulator||Strength of undulator

\ —
/

Radiation wavelength

)\f /
~ (14 ai)

22
/

Beam energy

A=13.5nm

» Beam energy
~1GeV




Universal scaling

P=
~

FEL parameter : 1 (aw Wp )2/3

4 ck,,

- All the machine-dependent physical parameters can be normalized using po.

kw — 27T/)\u <Period of undulator

<magnetic field _ _ .
eAy By Time and distance scaling:

Undulator stength: g, =

2TMC = 2k, pt —ime
2 | _
plasma freq.: (), — € Te <—electron density & = ka pZ —distance in undulator
P mMe€Q
ioti i - Momentum scaling:
Radiation amplitude: e \ |} —electric field ” 19 o
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Equations of motion

. Describe motion of each electron in the phase-space (rest frame of the beam).

position of J-th electron

® : \ ® i = Pj
: o ¢ O d’g !
P ® ‘. momentum of j-th electron
°
o dp- : < :
0, e o ‘Y dZ] = —(Aexp(i0;) + A" exp(—10;))
amplitude of radiation
Bunching factor . N d A | |
b= (exp(—i0)) = - Doexp(~if) gz = (exp(—10)) +10A
=1 Detuning
5 — <’7>0 — Vr

PV
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A (field), p (momentum)

Simulation

z=6.45

particle o
radiation

Development of A
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Analogy of FEL

- Similarity
- Pendulum: Each electron in the beam
- Pendulum motion: motion In phase-space

-Common table: Coherent radiation
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Beam auality matters

-FEL Is a self-organization phenomenon in non-linear dynamics
- Small initial randomness i1s important for the micro-structure formation

narrow energy spread wide enerqgy spread
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FEL T-shirts

- Photo lithography Is
the key technology!




Extraction efficenecy of FEL

- [dentical equation

(|Al~1 at saturation) €0

© means conversion efficiency
from electron beam to radiation

-In the typical case of EUV

l
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Radiation energy
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_| Radiation
§ AT

A

| rad — PO P beam
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3eam energy

J
2 (nevaCQ)

Beam
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- 1OMW of electron beam is necessary for 10kW of EUV

- TOMW = 1GeV x T0mA



Undulator length

saturation length:
A
Lsat ~ _u S 30 m
P

Pulse energy [J]

w/a

///FEL saturation
/, '*
/ |
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A/ exp. growth
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Longitudinal position [m]
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Some more power after saturation

- Undulator tapering dA

Vary undulator gap dz
(gradually reduce magnetic field)

detuning

(exp(—if))| + i5A
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Tapering SASE-FEL GAME . Control detuning for

BONIFACIO — — extracting higher FEL
power
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Accelerating cavity

. Same cavity can work both way
accleration / deceleration

Acceleration .

Deceleration
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Energy Efficiency

Accelerator »
Plug power :./ System

. Conventional FEL scheme
=) =) =D

’/VVVVV\

10 kW EUV

10 kW EUV

- =

Plug power >10 MW
RF power

10 MW i

E- beam

efficiency << 0.0017
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Principle of Energy-Recovery

Acceleration Deceleration

Acceleration/Deceleration
at the same time

/ V'V VV V\
Tyt 0 W,

\VAVAV)VAVAVY/

A
: No RF power required
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ERL layout
10 kW EUV
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Ener

-Recovery Linac (ERL
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ERL Toy
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lous types of ER
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Electricity

s/

RF source
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Cryo load
4 N
\on < 1/R;

Surface resistance of Nb cavity

Heat load,
He evapolation

— .
"._ "yll

Cryo system Ioad

V2
PHeat = N CU—
P (RIQ) Q0

Recent development

of surface treatment of Nb

— /\mid-T bake
- ILC recipe

Acc. Gradient
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RE power

g h power
\QL/ X enhancement

Higher power enhancement N\ AAAAAAARNT
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Necessity of ERL

- Assumption: 1GeV, 10mA class accelerator
10kW EUV output

W Facility B Other elem. RFINJ & RF ML
- [ Cryo static B Cryo dynamic
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Beam density

H ig her p (conversion efficiency)

1 (aw Wy
p—% 4 cky,

Higher ne (electron density)

Me€Q
Shorter (O ¢ (bunch length)

— Bunch compression

)2/3

— N —

O ¢
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Beam dynamics In transport

- Designing the electron beam transport optics is the key.

Bunch length: 50fs

Energy spread >0.003 Energy spread: <0.001
mﬁ%’ FoYaL—4 BFE—L Bunch
& compression
1GeV ® P
» \
AE ||
»
decompressmn }\‘ .\/774/ Bunch length: 1ps
AGTER \
E—LA7

10MeV 10MeV
Energy spread: <0.]
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Bunch handling technigue

. Off-crest Acceleration/Deceleration
- Control energy chirp

Acceleration

Deceleration

-

Energy chirp

- Dispersion control in the Arc-section
- Control path length

Shorter path
for Low-E

"
an"
=
A
......
...........

Longer path

Low-E  High-E for High-E
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Bunch gymnastic

Bunch
compression
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Development plan

- Establish key technologies

INn b-year project
@ High current beam operation

(D High efficiency beam acceleration
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@ Overall machine designing
LFREORMEAARZEEXRZ T
70 %17 ERL B! FEL %R
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ERIL-FEL Board game
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summary

. ERL-EUV-FEL i1s a candidate of the light source
for next- generatlon Ilthography

By rewewmg |ts basm prmmple the followmgs can be understcod

S electrlc power efﬂmency R ' s

- key items to develop
. Development of core technologies are on going at KEK.

. Preparation of the photon beam line/ photon user (lithography)
are necessary at the same time.



