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Merger of two neutron stars (Aug |7,2017)

Credit: ESO/L. Calgada. Music: Johan B. Monell (www.johanmonell.com)



http://www.johanmonell.com/

Multi-messenger astronomy

GWI170817
Merger of two neutron stars (Aug 17,2017)

Host galaxy 40 megaparsecs away

Trigger: gravitational waves detected by LIGO—Virgo
The source was observed in a comprehensive campaign across the electromagnetic spectrum

- in the X-ray, ultraviolet, optical, infrared, and radio bands
- over hours, days, and weeks.

Direct detection of exotic physics messengers?
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Quantum sensor networks as exotic field
telescopes for multi-messenger astronomy
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Arne Wickenbrock GNOME talk today @ 15:00



Exotic Low-mass Fields (ELFs)
as exotic physics messenger



Exotic Low-mass Fields (ELFs)

Focus on exotic, BSM, (pseudo-) scalar fields:
® abundant in BSM theories [axions, dilatons, relaxions, etc]
® can solve the hierarchy (dilatons) & strong-CP problems (axions)

® dark-matter candidates

‘s



ELFs as a signature of quantum gravity!?

® Coalescing singularities in black hole mergers!?
yet unknown theory of quantum gravity

® Scalar-tensor gravity.
BH and NS immersed in the scalar field. Modes can be excited during the merger.
Dynamic scalarization + monopole scalar emission

® Scalar fields can be trapped in neutron stars - released during the merger

® Clouds of scalars (superatoms) around black holes
up to 10% of BH mass is in the cloud

® Direct production
(eg,y+y—>¢p+@porN+ N> N+N+Q+¢)

A pragmatic observational approach based on energy arguments:

ELF channel energy AE = fraction ofMQC2



: Signal at the sensor?
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Nearly universal wave-form independent of the production mechanism



Anti-chirp signature
® Start with a Gaussian pulse (wy, 7))

® higher frequency @ have larger momenta 7k =
Higher frequencies arrive earlier!

® [nstantaneous frequency chirp

dw
— <0
dt



What kind of ELFs can we detect!

Gravitational wave travels @ c over ~ 10° light-years

Reasonable time delay < a week => Vg ~ C

|. ELFs must be ultrarelativistic: mc? < ¢ = hw
2. For a clock, max(w) = 27x Hz = m < 107 %eV

ELFs must be ultralight



Energetics

Copious emission

AFE = fraction ofM@c2
e=10"10eV

~ 107°ELFs

Large mode occupation numbers => classical field all the way to the sensor
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Scalar waves are like E&M waves

“Internal” refractive index (ultrarelativistic scalars)

1 mc?

2 hw

n(w) ~ 1

Most of Jackson E&M problems/intuition can be directly transferred

e Group velocity v, S ¢
® Dispersive propagation
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LIGO style time-frequency map

Normalized amplitude
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|. Chop data stream into equal chunks,

2. Discrete Fourier Transform in each window
3. Each tile = (window time stamp, frequency)
4. Compute power spectral density in each tile
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ELF power spectrum template
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Anti-chirp is independent of the production mechanism



Quantum sensors



Quantum sensors

A quantum sensor is any device whose performance relies on quantum mechanics
to detect quantities of interest

quantized energy levels
superposition

coherence

quantum statistics
entanglement/squeezing (QS 2.0)

Exquisite sensitivity gains

Examples:
atomic clocks, magnetometers, NV centers in diamond, interferometers,
optomechanical oscillators, ...



Atomic clocks and exotic physics

© Lock laser/mw frequencies in resonance with atomic transition frequencies
> Quantum oscillator is well protected from environment => exotic physics sensor

Exotic physics channel: variation of fundamental constants of nature
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K, ~ 2 for atomic clocks

K ~ 10* for 29Th nuclear clocks
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Regimes of variations of fundamental constants (circa 2020)

t Oscillating  §
¢ transients §

} Slowdrifts § § Transients § § Oscillations § § Stochastic

“Clumpy” DM Dilaton DM Virialized DM Multi-messenger

?
Darkenergy’ D & Pospelov (2014)  Arvanitaki**(2015) AD (2016) (2020)

Andrei Derevianko - U. Nevada-Reno



Energy scale A, (TeV)

Projected sensitivity GV 170817 (NS+NS)

Stellar emissivity & gravity tests
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GPS constellation search for ELFs
BNS merger GW 170817



Archival data from 27 Rb clock on GPS satellites referenced to a terrestrial H-maser

50,000 km distributed quantum sensor (no network resolution due to |s sampling time)



Standard deviation

GPS clock noise for GW170817
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Excess noise coincides with an increased solar flux activity

Sen, Pfeffer, Ries, Blewitt, Derevianko |. Phys. Conf. Ser. 2889, 012003 (2024).



Limits on quadratic couplings GW 170817

BNS@ R = 40 Mpc

/9 10* — Projected [Nat. Astron. 5, 150 (2021)]
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Future prospects/ideas
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Power of the network
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LIGO-Hanford _ The same but time-shifted signal

LIGO-Livingston

+ locating progenitor in the sky
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Network desiderata

1
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8
- L

Time resolution A,

|. Resolve leading edge: A, < L/c
2. Resolve envelope: A, < 7

GNOME: L ~ 10,000km; L/c ~40ms;A, = 1ms
GPS: L ~50,000km; L/c~02s;A,=30s—1s

GPS can’t track the leading edge = compound multi-node sensor
all clocks must have the same signal



Cavities vs clocks

At c, ELF burst propagates across Earth in 40 ms.
Clock sampling rate is slow ~ Hz. Terrestrial network can not track ELFs.
Cavities ~ 100 kHz. ELFs can be tracked + sky location of progenitors!

Campus-sized network ~ 3 km

A. Geraci, C. Bradley, D. Gao, |. Weinstein, and A. Derevianko, PRL 123, 31304 (2019)



Catalogue of future search targets

Event Type Electromagnetic Cosmic Rays Gravitational Waves Neutrinos Event Example
Solar Flare v v - . SOL1942-02-28 [2]
Supernova v . . Ve SN 1987A [3]
Neutron Star Merger v - v . GW170817 [1]
Blazar Vv . - v TXS 05064056 [4]

BH+BH surprises: two events had X-ray counterparts



