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Problems with the Standard Model

New physics is required to explain observations

Composition of the Universe

Dark Matter
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Image generated using OpenAl's DALL-E model

Dark matter We do not know what the
Matter-antimatter asymmetry universe is made of

Neutrino masses
Accelerating expansion of the Universe (dark energy/cosmological constant?)



Atomic Quantum Sensors
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Very wide scope of AMO new physics searches

AMO: atomic, molecular and optical

( Precision tests of QED —\ Searches for dark matter

| : : : : Search for variation of
( A LAY fundamental constants
Atomic
CP violation
( (search for EDMs) quantum

s Searches for exotic forces
Sensors |
( CPT violation 4/ General relativity and
/ gravitation
[ Lorentz symmetry tests "

Search for new physics with atoms and molecules, M. S. Safronova, D. Budker, D. DeMille, Derek
F. Jackson-Kimball, A. Derevianko, and Charles W. Clark, Rev. Mod. Phys. 90, 025008 (2018).

Search for violations

of quantum statistics



Big Picture Questions in Atomic Theory

1. How to maximize the potential of AMO quantum technologies to discover new physics?
2. How to accurately compute any atomic properties and make them easily available?

Beyond the Standard Model
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Building a Computational Infrastructure

Demand

“We are building X... with Y...
and need Z*..”

X: atomic clock, quantum simulator,
precision measurement
experiment for new physics
searches

Y: Li, K, Rb, Cs, Ca, Al*, Ca*, Sr, Sr*, Yb,
Yb*, Ti*, Th*, Th3*, Ag, Lu*, Ti, Cr, Y+,
La-, Fr, Rat, Pri0+, Njt2*

Z. energy levels, transition rates,
branching ratios, lifetimes,
polarizabilities

* Missing data in databases,
conflicting literature values,
data not accurate enough

Paradigm Shift

Moving from codes to automated,
on-demand data generation

Leverage modern technologies:

®

®

®

0
parallelization machine learning

1T

A\\//

standardized
data formats

automation

Deliverables

Computational infrastructure to
support discovery

1. Modern high-precision atomic
structure code package
* Ability to compute properties of very
complex atomic systems required for
future experimental designs

2. Portal for High-Precision Atomic

Data and Computation
* Online, easy-access atomic data portal
* Focus on scalability and sustainability
* Automatic data generating workflow
with accuracy assessments

flaticon.com



Code Package Development Timeline

0000
Cheung et al., Cheung et al.,
PRL 124, 163001 (2020) CPC 308, 109463 (2025)
initial parallelization, machine learning,
dynamic memory allocation, pCl package
code documentation public release

2015 2022 Future

) (@) (@) (@) )
& & > & N
2018 2025 %

pCl tutorials/workshops,

¢ improved parallelization, all-order package release,
CI-MBPT package improved usability and interface, rework of Cl programs,
Online Portal for Atomic Data regular portal updates,
Kozlov et al., and more..
CPC 195, 199 (2015) Cheungetal.,

Symmetry 13(4), 621 (2021)



Computer Physics Communications 308 (2025) 109463

Contents lists available at ScienceDirect

COMPUTER PHYSICS
COMMUNICATIONS

Computer Physics Communications

1.SEVIER journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

L)

pCL: A parallel configuration interaction software package for G
high-precision atomic structure calculations ~

Charles Cheung**, Mikhail G. Kozlov b’f‘, Sergey G. Porsev®, Marianna S. Safronova®,
Ilya I. Tupitsyn!, Andrey I. Bondarev ®'

Features:

Designed for use on HPC platforms (scalable to many nodes/cores via MPI)
Python helper scripts to automate workflows

Methods: Pure CI, CI+MBPT, Cl+all-order, CI+PT, +RPA, +QED, +ML
Observables: energies, g-factors, multipole transition data,

A and B hyperfine constants, polarizabilities, and more..!
Available on GitHub: https://github.com/ud-pci/pClI
Read the Docs: https://pci.readthedocs.io/en/latest/



https://github.com/ud-pci/pCI
https://github.com/ud-pci/pCI
https://github.com/ud-pci/pCI
https://pci.readthedocs.io/en/latest/

Building a Computational Infrastructure
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Home Elements¥ OurTeam About¥ Source Code Video Tutorial Help Feedback

@ Portal for High-Precision Atomic Data and Computation
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Portal for High-Precision Atomic Data and Computation

From Data to Quantum Sensors

FROM DATA TO QUANTUM SENSORS BSM SEARCHES WITH CLOCKS
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Fifth force searches with precision
spectroscopy with atoms and ions

GNOME: global network of optical

magnetometers for exotic physics searches Data from Google Analytlcs



UD team and collaborators

Online portal team

Prof. Sergey Dmytro Charles Jason

Prof. Rudolf Prof. Bindiya

Eigenmann Arora Sanchez Marianna Porsev Filin Cheung Arakawa

UD (EECS) GuruNanak Dev UD (ECE) Safronova Research Research Scientist Postdoc
\ U., India j Associate Ill  Associate Ill

Collaborators:

Code development: Mikhail Kozlov (PNPI, LETI), llya Tupitsyn (St. Petersburg University),
Andrey Bondarev (Helmholtz Institute Jena, Germany)

ERC Synergy: Thorsten Schumm, TU Wein Ekkehard Peik, PTB, Peter Thirolf, LMU,

Adriana Palffy (FAU); Q-SEnSE: Jun Ye, Dave Leibrandt, Leo Hollberg, Nate Newbury, Vladan Vuletic

Particle physics: Josh Eby (IPMU, Tokyo), Volodymyr Takhistov (QUP, Tokyo), Gilad Perez’ group
(Weizmann Institute of Science, Israel), Yu-Dai Tsai (UC Irvine)

Dmitry Budker, Mainz and UC Berkeley, Andrew Jayich, UCSB, Murray Barrett, CQT, Singapore,
José Crespo Lopez-Urrutia, MPIK, Heidelberg, Piet Schmidt, PTB, University of Hannover,
Nan Yu (JPL), Charles Clark, JQI, and many others!
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