LIGO, NSF, Illustration: A: Simonnet (SSU) .
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GW observatories

©OLIGO




detections

0102 O3a O3b O4da
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Cumulative number of detections

, . - . . - . . : - . . - , . ;
0.000 0.002 0.004 0.006 0.008
Cumulative effective hypervolume (Gpc?® yr)

The cumulative number of detections Scandidates found with a probability of
being astrophysical greater than 50%) against the approximate space-time
hypervolume surveyed by the detectors (source: LVK consortium).



GW sources

Binary Black Hole Neutron Star Black Hole Binary Neutron Star
Binary
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Mistery of
GW events

Masses in the Stellar Graveyard

EM Neutron Stars

e GW events show that there are
many massive BHs (=30 Msun).

* On the other hand, the typical

mass of BHs in X-ray binaries is
~10 Msun.
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Origin of massive BBHs

In order to explain the origin of such massive BBHs

Many theories exist such as

1) Pop | and Pop Il BBH (present day and low metal stars)
e 2) Pop lll BBH (First stars)

e 3) Dynamical formation (Dence stellar environment)

* 4) AGN disk

 5)Primordial BBH




Origin of massive BBHs

In order to explain the origin of such massive BBHs
Many theories exist such as Stellar origin BH

¢ 1) Pop | and Pop Il BBH (present day and low metal stars)

¢ 2) Pop lll BBH (First stars)
¢ 3) Dynamical formation (Dence stellar environment)

* 4) AGN disk

5) Primordial BBH | Non-stellar origin BH




Origin of massive BBHs

In order to explain the origin of such massive BBHs

Many theories exist such as Isolated Binary

1) Pop | and Pop Il BBH (present day and low metal stars)
e 2) Pop lll BBH (First stars)

* | 3) Dynamical formation (Dence stellar enviroment)
* 4) AGN disk

* 5) Primordial BBH Dynamical




tidal effects

core collapse

supernova

©Shanika Galaudage



tidal effects

Effectively
single
~29%
Envelope
stripping

or CE ~14%
Sana et al.
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DYNAMICAL

©Shanika Galaudage
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Primordial Black Hole

Energy fluctuations immediatel
Star gy y

after the birth of the universe

‘ 10 billion years ‘ 0.1 ms

Black hole Primordial black hole

time
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Origin of massive BBHs

In order to explain the origin of such massive BBHs

Many theories exist such as Isolated Binary

1) Pop | and Pop Il BBH (present day and low metal stars)
e 2) Pop lll BBH (First stars)

* 3) Dynamical formation (Dence stellar enviroment)

* 4) AGN disk

 5)Primordial BBH




Why is isolated binary important for BBH?

* Binary fraction of massive stars is high (~¥70% e.g. Sana et al. 2012)
* Almost BH progenitors might evolve in binary systems

Effectively

single
~29%
Envelope

stripping
~33%

Sana et al. 2012 ©star wars



Isolated Binary scenarios

Years afte| the Big Bang

The Big Bang

= >
400 thousand 0.1 billio 1 billion 4 billion 8 billion 13.8 »illion
| | > | = | > | T —y
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: - : e ’
. F .
5 ' | \ :
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The Dark Age ?,g + , p - ' Presen day
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Pop | (Solar metal)

Pop Ill formation (First stars)

and Pop Il (low metal) formation
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—ormation fraction of BB

“which merge .Wi.th.iﬂ.t.h.e, Hubb

. Z=0 |
We predicted | z-1/200zsun —
Z=1/20Zsun mmmn 1

Z=0 (POp I") Z=7sun

Z=1/200 Zsun
Z=1/20 Zsun .

_|
e time

Typical total mass

| M~60 M,

(30 M, +30 M)

TK et al.
2014,2016,2020

| We predicted !

e.g. Pop |, Pop Il
(2=0.02,0.001,0.0001)
IMF:Salpeter
(1Msun<M<140Msun)
Typical mass ~10 M,

10 100 Total mass [Msun]



Mremnant [MO]

Wind mass loss & IMF

* If the progenitor of BH is Pop | (=Solar metal stars)
 Typical mass is small (IMF<M23>, 0.1Msun<M<100Msun)
 Stars lose a lot of mass due to the strong stellar wind

-y
O

-y
o

o)

o

Z=0.02 (Z,; Galaxy)

— o —— —
-_—-—--—-'-_-
— — —
— — —
-

Vink et al. (new)

Hurley et al. (old)

60 80
Mzams [MG]

100

120 140

Belczynski et al. 2010




300 f-J_cL.Hilj(;il}f i _ . Mass gap
s00l] o Tox1?  —— 100 /
Wind mass loss & IMF
20
. . ; 50
If the progenitor is low metal, =
= 304
* Pop Il (Metal<0.1SolarMetal) i o
Typical mass is same as Pop | o
But, week wind mass loss i | o 1
20 30 50 a0 100 200 300
mgams (Mg)
* Pop Ill (No metal) Abbot et al. 2020

Pop Il stars are the first stars after the Big Bang.
Typical mass is more massive than Pop |, Il
Mpopi~10-100Msun

No wind mass loss due to no metal.



Binary interaction changes progenitor mass

* Mass transfer
* Common envelope

Common envelope
Mass transfer

Red Giants tend to
become CE

o %

Close binary or merge




1= . N =N 1.00 .
Z=Z7.(=Pop I) e ] 7=1/20Z(=Pop Il)
—L i - L 0.64 ]
-z =002 Ce | [ Z = 0.007 ]
All star evoIve via a red giant | |

Almost biriaries eyolye via a Sfmilar evolution pass (Og;pmmon envelope)

Figure 1. Selected OVS evolution tracks for Z = 0.02, for masses Figure 2. Same as Fig. 1 for Z = 0.001. The 1.0 Mg post He
0.64, 1.0, 1.6, 2.5, 4.0, 6.35, 10, 16, 25 and 40 M. flash track has been omitted for clarity.
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Figure 1. Selected OVS evolution tracks for Z = 0.02, for masses Figure 2. Same as Fig. 1 for Z = 0.001. The 1.0 Mg post He
0.64, 1.0, 1.6, 2.5, 4.0, 6.35, 10, 16, 25 and 40 M. flash track has been omitted for clarity.



log L/Lg,p

Why Pop Il binaries become 30Msun BH-BH

o

I 70
551 50
Small
- 30
radius

45 20 =

4+ 12

3.5

Large radiu

5.2 5 4.8 4.6 4.4 4.2 4 3.8
log Teg

Marigo et al. 2001

3.6

|S

* M>50Msun red giant

—Mass transfer tend to be unstable

—common envelope

—1/3~1/2 of initial mass
(~30Msun)

* M<50Msun blue giant
—Mass transfer tend to be stable

—mass loss is not so effective
—2/3~1 of initial mass (30Msun)



dN/AM/Ni
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Pop Il BBH remnants for gravitational wave

* Pop Il stars were born and died
at z=z10.

* The typical merger time of compact binaries

~108-1Oyr
dN/dtoct? (kinugawa et al .2014,2020 Inayoshi et al. 2017)

* We can see Pop Ill BBH at the present day!

\.'.. h‘ qP.‘O..

3 merger :

*}

v § gital NVeola Center
. Djorgovski et al. &Degltal Media
time Center

~

merger




The star formation rate of Pop IlI

10'4.3

In order to calculate merger rate, 1030

we need to know
10-39|

When were Pop |l stars born?

SFR [Msun yr ' Mpc™]

10-4.0 I

*How many were Pop Il stars born?

=Star formation rate

10-4.5

Pop Il SFR —

0 5 10 15 20
z

We adopt the total Pop Il stellar mass density by Inayoshi et al. 2016
p=6 X 10°> Msun/Mpc3
(SFR peak at z=10)

We assume the binary fraction fb=0.5

25 30



R(t) [yr? Gpc™]

10° 5

104 3

10*

10°

0 5 10 15

Redshift z

B Fiducial
wm fA=05
mi  aA=0.1
mE M100
K14

mm FS51

e FS2

20

he Pop |Il BH-BH merger rate density

Pop Il BHBH merger rate at z=0

In our fiducial model

~ Ppop 111 fo/(1+fp)
R 10(6x105M®/Mpc3)( 0.33

) [yr Gpc~]

(Kinugawa et al. 2014,2016,2020)



BBH merger rate density

Comparison with mass distributions of observed BBHSs
1o m— GWTC-2

107 - == 1 Pop |/Il BBH (Belczynski et al. 2020)
= ==== Pop |l| BBH (Kinugawa et al. 2020)
'EG 101_; I = = s ]1/2*%Pop Il BBH (Kinugawa et al. 2020)
.—IL ] 4\ 1/3*Pop Il BBH (Kinugawa et al. 2020) [The mass distribution might
> 10° distinguish Pop Il from Pop I/l
9 o >The evidence of Pop Il ?
O, _ Not yet

1072 5

10-3 | . | |

0 20 40 60 80 100
M1 [Mo]

(Kinugawa, Nakamura& Nakano 2021)
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astrophysical distribution
=

Best combination mode
(lwaya, TK, Tagoshi
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astrophysical distribution
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What is the smoking gun of the origin of BBHs?

Years afte| the Big Bang

Fully ioniz

>
0.1 billio 1 billion 4 billion 8 billion 13.8 oillion
| Rl ™ N < | . . Lo " ™
> o . : -
) . ‘ ”~ » p
R F .
3 8-, - ’ ' -
o g - 4 7 ' .
o8 . X . *
3= ’ -
The Dark Age ?,g + , p - ' Presen day
L > N
o ?’: s . - / _
25 i N A .
0 e 3 .
| . Reionization _ T . B A S
< —— Fully io ize G
| | LI \ -
100 10 |
1+R} dshift

Popl and Pop Il formation

Pop Il formation



Future plan of GW observer :
ET, CE, B-DECIGO and DECIGO

* Einstein telescope (ET): the next generation GW observatory of Europe
* Cosmic explorer (CE) : the next generation GW observatory of US.
* DECIGO: Japanese space gravitational wave observatory project

104

We can see Pop |ll BH-BHs 103
when Pop lll stars were born (z>10)! 102

Redshift

(Nakamura, Ando, Kinugawa et al. 2016)

— | VK
m— ET
CE
— | |SA
— DECIGO

10° 10! 102 103 10* 105 105 107
Total Mass (M©®)




Merger time dependence of Pop Ill BBH spin

al/M1<0.1 |al/M1<0.1 |al/M1>0.9 |al/M1>0.9
a2/M2<0.1 [a2/M2>0.9 |a2/M2<0.1 |a2/M2>0.9

Mergertime 259 36% 0% 23%
<1Gyr

Mergertime 709, 0.3% 4% 0%
>10Gyr

* If the origin of massive BBHs is Pop lII,
high spin BBHs are easier to be detected at high redshift
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Detection rate of Pop Il BBH
for ET and aLIGO design sensitivity

aLlGO

104

=
(=}
[

=
=
=

10=t

Detection rate

Kot

1.0

=
=]

=
=

=
™

=
bt

0.0 -

o

ET

20 40 &0

(Kinugawa et al.2020)
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Summary

* There are many BBH formation theories.

* BBHs detected by LIGO/Virgo/KAGRA might be a mixture of different
origins.

* Pop Ill binaries tend to become 30Msun+30Msun BH-BH
* Pop Il might explain the GW190521 and GW231123 like massive BBHSs

* Pop Ill BBH merger rate density at present day.
~ Ppop 11 fo/(1+fp) -1 -3
R~10 (6><105M®/Mpc3)( 0.33 ) lyr= Gpc™]
* The mass distribution or the redshift dependence might distinguish BH
origins.
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Can Pop Il explain “Mass gap” BBH mergers?

GW190521

The most massive black hole collision
observed so far

Discovery Distance 3 Detectors
I — Three detectors made the

21 May 2019 17 billion observation: the two LIGO detectors
light years away in the USA and Virgo in Italy.

HIERARCHICAL
Binary Black ORIGIN STORY?
Hole Merger The high masses
®  * and spins of
- 1 GW23123's
— F:dnypomnts
[lgl= 1l they
‘ 66 Premerger twkrgmdﬂmm
High ~ | “UPPER MASS GAP R
: — - : - -
. g 5 Y)) Merger o e
asses 2 i knawn LVK black
This is the heaviest GW energy hole masses
R 42 Remnant

L the black holes

merge and
become ...

been observed L

BN G\W190521
GW23n23
.. ] final black hole
Origin Story Ringdown
The black holes which collided to — The black hole formed in the

make GW190521 are so massive / collision continues to vibrate after

that we're not sure how they were the merger, and “rings" like a bell

formed. @ for a while. This lets us test our . 150 200
One possibility is that they are theories.

both the result of previous black Once again Einstein's MASS [SO-LAR MASSES]

hole collisions. g General Relativity passed

this test.

Credit: LVC/Daniel Williams




GW190521

* Pop Ill can make GW190521 like BBH!
(Kinugawa et al. 2020, Farrell et al. 2020, Tanikawa et al. 2020)

3

s Rempant mass (no PPISN)
Remnant mass (PPISN)
mm (O core mass

'_I.
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L
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Remnant mass, CO core mass [Mg]
=
1

20 40 50 80 100 120 140
MEﬂuMS[Mﬂ]
Kinugawa et al. 2021
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1w PPISN .
E Primary mass
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Kinugawa et al. 2021
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GW231123

e 100Msun BH is very difficult,

But it might be explained by uncertainty of 1C(o,y)°0 and
overshooting parameter (Tanikawa et al. 2025)

PISN

gCi2

Farmer et al. 2020 logTesr [K]
Tanikawa et al. 2020



Remnant mass [Mg |

GW231123
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Can Pop IIl BBH explain massive BBHs?

30Msun BBHs 4
GW190521 4
GWZ 3 1 1 2 3 Small 12C(a,y)16:{eaction rate and
small overshooting parameter needed




Uncertainty in Pop. III model

No massive Pop. III stars discovered so far

Extrapolation from nearby stars to Pop. III
stars

Nearby star models

«  AB-type stars in MW open clusters,
GENEC(Ekstrom et al. 2012), adopted
by Farrell et al. (2020)

« Early B-type stars in LMC, Stern (Brott
et al. 2011)

The maximums radius of a 80M® star

« M model: ~ 40R_, similar to Farrell et
al. (2020)

. [Lmodel: ~ 3 X 103R®, similar to
Yoon et al. (2012)

log L/ L.

Yoshida et al. (2019)
6 AR B LI b T
b (a) Set L, (h) Set M, 1
ss| | I =y
[ (i Jr
[/ | [
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Il 13 I
LA | =] N o
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,;)’ﬁ 7Y I-'Z('u_;l ~
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eff
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\\O \ O A O M\\ G
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6 \‘ /7/;7 \\ _‘\\_‘
<1 T 4 | Two Pop. III
SO : — M -
S o ooy — 1| models
S5 ) f;\‘ i) © X
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3.5

logTerr [K] Tanikawa et al. (2020(:)
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Table 1. Parameter sets and merger rate density of GW231123- and GW190521-like events in each set.

Name Single star model PPISN/PISN model GW231123-like event GW190521-like event

(Overshoot efficiency) (**C(a,v)'°O rate) [yr~" Gpc™?] [yr~' Gpc™?]
Mstd M (inefficient) Standard 0 4.9 x 1072
Mlo M (inefficient) lo lower 0 1.0 x 101
M2o M (inefficient) 20 lower 2.1 x 1072 1.0 x 1071
M3o M (inefficient) 3o lower 2.1 x 102 1.0 x 107"
Lstd L (efficient) Standard 0 0
L3o L (efficient) 3o lower 0 8.6 x 1072

NOTE—The Mstd and L3o sets are the same as the fiducial and L-30 sets in A. Tanikawa et al. (2022).

Tanikawa et al .2025



Merger rate (GWTC-3)




NS-BH formation (Kinugawa et al. 2017)

* Pop I/l
* Pop Il

Table 2: The number of NS-BH formations and the number of NS-BHs which merge within 15
Gyrs for each metallicity for the initial 10° binaries. The numbers are for the oy = 265 km /s

models, while the numbers in the parenthesis are for the o, = 500 km /s models.

Z Zo 10797z, 107'Z, 10719z, 10727, 0

NS-BH 148 (32) 598 (169) 1296 (416) 1686 (576) 1896 (617) 22638 (11192)
merging NS-BH 15 (2) 191 (67) 525 (213) 755 (377) 862 (401) 9089 (5856)




Chirp mass distribution of observable NS-BH
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NS-BH merger rate density
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Pop Il remnant mass for single star case

3

s Remnant mass (no PPISN)

175 wm Remnant mass (PPISN)
mm COcore mass

™

o
()]
1

Remnant mass, CO core mass [Mg]
— I et
E &% 8 & 3B

20 40 50 B0 100 120 140
MzamslMg]
* We assume M,,,=40-60Msun —>PPISN



Characteristic Strain

10—12

Stochastic i MOOI‘e+ (2015)
background IPTA
10-14| en http://rhcole.com/apps/GWplotter
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Event rate of GW190521 like BH-BH mergers

Pop Il GW190521 like BBH merger rates at the present day
*0.13 /yr/Gpc3 for PPISN model
*0.66 /yr/Gpc3 for no PPISN model

Rate of GW190521 by LIGO is
0.02-0.43 /yr/Gpc?
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However....

After GW150914, there are 1 bad news and 1 objection for Pop Ill BBH scenario
1.Bad news Belczynski et al. 2017

LI B B L | | LELELILE |

~ decreasing expected Pop Il SFR N

108 xt-3

Because of constraints by Planck te

104

(Visbal et al.2015, Hartwig et al.2016, Inayoshi et al.2016)
2.0bjection
Chris Belczynski also tried to calculate

102

102

number per 0.1Gyr bin

10!

10°

Pop |l BBH merger rate.

10-!

In his calculation, almost all Pop Il

saaal

0.1 1 10
delay time [Gyr]

BBHs merge at the early universe



Pop Il star formation constraint by Planck

* The optical depth of the universe to electron scattering was inferred from CMB
anisotropies by the Planck

* |t is lower than previous estimates from WMAP
* This makes tight constraints on the star formation history of Pop Il

* Before Planck
p=2 X 10° Msun/Mpc3 (de Souza et al. 2011)
* After Planck
Optimistic constraint p=6 X 10> Msun/Mpc3 & our model uses this value
(Inayoshi et al. 2016)
Conservative constraint p=2 X 10> Msun/Mpc3
(Visval et al. 2015, Inayoshi et al. 2021)



However....

After GW150914, there are 1 bad news and 1 objection for Pop Ill BBH scenario
1.Bad news Belczynski et al. 2017
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Difference between K14 and Belczynski’s Pop Il calc.

* Kinugawa 2014: use Pop lll stellar evolution model (Marigo et al.2001)

* Belczynski 2017: use modified Z=0.005Zsun model.
(HR and radius evolution is changed like Pop Ill, but MT stability is not changed)
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Difference between our code and Belczynski’s Pop Il

Belczynski’s code
* Modified Pop Il (Z=10*) evolution
* The radius evolution is likely.
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Merger time distribution of Pop Ill BBH

103
Q
o
S
7 10°
on
ke]
‘.E mmm Fiducial
% . s beta=0.5
10 mmmm Kinugawa2014
mmmm M100
mmms BelFS1
10° - = BelFS2

0 1 2 3 4
log(tmerge/ LMyr)



6 L _1
e 2
o et ) =,
— .
ﬂﬁ Y A T e T e - I T T N e - e e ‘*.:-E’J
B 35

I !D.g{.z":zl'zij.':._g. | 5
5

i !ﬂg{.‘?"{z;:".‘?:.-z. ] i. L .m‘.g{.z";rz:;i}.':.-ﬁ. j |
5 4.5 4 35 5 4.5 4 35 5 4.5 4 3.
log(T /K) log(T +/K) log(T f/K)

Figure 1. HR diagrams for stellar models with log(Z/Zz) = -2, -5, and -8. In each panel, curves indicate stellar evolutions with
M /Mg = B, 10, 13, 16, 20, 25, 32, 40, 50, 65, 80, 100, 125, and 160 from bottom to top. Colors are coded by the helium mass fractions in the
stellar cores.
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Figure 1. Final fate of a star as function of the initial
helium core mass and 2C (ﬂ:,ﬂlﬁﬂ rate. oco1s denotes how
far the '2C (a, )"0 is from the median STARLIB rate, mea-
sured in standard deviations. Blue regions indicate stars
which undergo core collapse (CC) below the pair instability
supernovae (PISN) mass gap, green regions form black holes
after a pulsational pair instability supernovae (PPISN), while
white regions are completely disrupted in a PISN, and mod-
els in the orange region form black holes from core collapse
for stars above the PISN mass gap. There are 2210 models,
in the grid spaced by 1 My and 0.50¢012.
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