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» Ultralight/Fuzzy/Scalar field/Wave/etc dark matter
« Ultralight fields are a generic prediction of string theory
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Ultra light dark matter

» Ultralight/Fuzzy/Scalar field/Wave/etc dark matter
« Ultralight fields are a generic prediction of string theory

* Much of the work on Ultralight dark matter is model agnostic (other than a
single ultralight classical spin-0 field minimally coupled)
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Ultra light dark matter

» Ultralight/Fuzzy/Scalar field/Wave/etc dark matter
« Ultralight fields are a generic prediction of string theory
* Much of the work on Ultralight dark matter is model agnostic

» Historically Ultralight dark matter is a postdiction meant to fix “small scale
structure problems”
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Ultra light dark matter

* Lower bound on minimally coupled dark matter

Fermionic bound

Composite bound Upper mass bound

Lower mass bound Warm DM bound
QCD a.xi()n WM limit unitarity limit
1§22 eV s \% GeV 10Ty Mp 10

— g t I | : -

“Ultralight” DM “Light” DM WIMP  Composite DM Primordial

(Q-balls, nuggets, etc) . 3
non-thermal duzl sectors black holes

bosonic fields sterile v

n thermal
can be therma Lin arxiv 1904.07915



Pheno




e
Pheno

 “Quantum” pressure — oo




e —
M M

1.0 s
* “Quantum” pressure

.75

_ o 1/187 /1. )

1/2 —1
kJeq = 3 nlgé I\IPC """""" Cold Dark Matter
0.251 —— Warm Dark Matter
cOsS T === [nteracting Dark Matter
TF(}'{') ~ 0.1 =— Fuzzy Dark Matter

14 28

Hu et al., PRL (2000)

> 5 10 30 50 100
k [h Mpc™]

Nadler et al, PRL (2021)


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.091101
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.85.1158

NFW

core, 1 moo

Pheno

* “Quantum” pressure
e Solitons

core, 10mo9

core, 100 Mmoo




Pheno

* “Quantum” pressure
e Solitons

Log density slice




Pheno

* “Quantum” pressure
e Solitons
* Density granules

- Halos exhibit ~O(1) fluctuations
In the density

Log density slice




e
Pheno

* “Quantum” pressure
e Solitons
* Density granules
- Halos exhibit ~O(1) fluctuations

. . plz) field
in the density .f\ | i
: {{HT
- Interference between different sl W,,m\
momentum streams in phase ()
0.5 ‘ ‘ ‘
space ;H* M M i
0.0— r/\

! |
-04 —0 ? 0.0 0‘2 0.4

z



e
Pheno

* “Quantum” pressure
e Solitons
* Density granules

- Halos exhibit ~O(1) fluctuations s = 2mh/mo® ~ 3 (10—22 eV) (2001{111/5)2 o
in the density ) m o -

1072 eV /200km/s
Adb = 2mh/mo ~ 0.6 ( e ) ( m/s) kpc.
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* Often describe ultralight dark matter pheno as “quantum” behavior on
astrophysical scales




Quantumness

* Often describe ultralight dark matter pheno as “quantum” behavior on
astrophysical scales

* Most of the pheno is classical field “wave” effects
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Quantumness

* Often describe ultralight dark matter pheno as “quantum” behavior on
astrophysical scales

* Most of the pheno is classical field “wave” effects

* Classical field is assumed for most studies (including the ones | will discuss
today)
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Quantumness

 There is a lot of literature looking at “real” (ie second gquantized) effects
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Quantumness

 There is a lot of literature looking at “real” (ie second gquantized) effects
* This has been studied in terms of large scale structure
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Quantumness

« There is a lot of literature looking at “real”  ®
(ie second quantized) effects
* This has been studied in terms of large
scale structure |
* And studied in terms of haloscope signals ., i ,. _ ¢ )

Marsh Annalen Phys. 2024
Lentz arxiv 2509.03877
Bao+ arxiv 2510.05198
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Quantumness

 There is a lot of literature looking at “real” (ie second gquantized) effects
* This has been studied in terms of large scale structure

* And studied in terms of haloscope signals

* In this work I will assume that the field is classical
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Probes and constraints
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Probes and constraints

ULDM Mass vs Ener’ Densit
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Probes and constraints

* Some of the strongest constraints here involve dark matter granules
e Studying these granules is promising to push to higher masses
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Probes and constraints

* Some of the strongest constraints here involve dark matter granules

e Studying these granules is promising to push to higher masses

* At higher masses the dynamical times of the granules becomes observable

* Hope is that sensitive observations of the gravitational potential can probe this region




O
Probes and constraints

* Some of the strongest constraints here involve dark matter granules

e Studying these granules is promising to push to higher masses
* At higher masses the dynamical times of the granules becomes observable
* Hope is that sensitive observations of the gravitational potential can probe this region

* Density perturbations from the granules changes by O(1) on the timescale of my
experiment




Astrophysical observations

e Astrometry [Kim 2406.03539, Dror and Verner 2406.03526]
e Stochastic lensing [Eberhardt+ 2502.20697]

e Pulsar timing Doppler shifts [Kim and Mitridate 2312.12225, Eberhardt+ 2411.18051]
* Pulsar timing Shapiro delay [Eberhardt+ 2411.18051]

* Pulsar timing gravitational redshift [Eberhardt+ 2411.18051]

* Pulsar timing Compton scale redshifts [Khmelnitsky and Rubakov 1309.5888]




Astrophysical observations

e Astrometry [Kim 2406.03539, Dror and Verner 2406.03526]
e Stochastic lensing [Eberhardt+ 2502.20697]

e Pulsar timing Doppler shifts [Kim and Mitridate 2312.12225, Eberhardt+ 2411.18051]
* Pulsar timing Shapiro delay [Eberhardt+ 2411.18051]

* Pulsar timing gravitational redshift [Eberhardt+ 2411.18051]

* Pulsar timing Compton scale redshifts [Khmelnitsky and Rubakov 1309.5888]

We simulated and analytically modeled some of these effects
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Simulations

Simulated stars in a “plane-wave” box whose density fluctuations mimic those of the
local halo




Simulations

* Simulated stars in a “plane-wave” box whose density fluctuations mimic those of the
local halo

* Simulate the Doppler shift, gravitational redshift, and Shapiro delay of the pulsars
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Pulsar Timing Array

* Pulsars are very precise clocks, which are sensitive to metric perturbations
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Pulsar Timing Array

* Pulsars are very precise clocks, which are sensitive to metric perturbations
* Ultralight dark matter granules also perturb the metric
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Pulsar Timing Array

Pulsars are very precise clocks, which are sensitive to metric perturbations
Ultralight dark matter granules also perturb the metric
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Pulsar Timing Array

* Simulated a fake pulsars in an oscillating ultralight dark matter box

 Worked out

- rms oscillation

Shapiro delay
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Pulsar Timing Array

* Simulated a fake pulsars in an oscillating ultralight dark matter box

* Worked out _Shapiro delay Redshift delay

I 10t = 10! p~—
- rms oscillation :
- Temporal spectrum L0k Lok
=107 <107k
= <
A, | 3 |
1074F 102
g simulated data : 0 i . simulated data
| — o<f‘8/36_7f/‘/§ | — ocf_Qe_Tf/\/§
-3 . . | -3 . . |
107 =T 100 107 =T 00




Pulsar Timing Array

Simulated a fake pulsars in an oscillating ultralight dark matter box
Worked out

rms oscillation

Temporal spectrum

Current sensitivity insufficient for detection
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Stochastic lensing

* An oscillating density along the line of sight should also make a lensing signal

Density along LOS «10-1!' K over time
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Stochastic lensing

* An oscillating density along the line of sight should also make a lensing signal
* Interesting because we are always viewing an bright object through the dm halo
* Unlike PBH/MACHO microlensing the granules are tightly packed always present
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Stochastic lensing

* An oscillating density along the line of sight should also make a lensing signal

* Interesting because we are always viewing an bright object through the dm halo

* Unlike PBH/MACHO microlensing the granules are tightly packed always present
* Every (group of) bright object(s) potentially places a constraint




Stochastic lensing

Ran simulations of ultralight dark matter densities over a range of masses
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Stochastic lensing

* Ran simulations of ultralight dark matter densities over a range of masses
* Worked out
- rms lensing
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Stochastic lensing

* Ran simulations of ultralight dark matter densities over a range of masses
 Worked out Granules
- rms lensing

—  Temporal spectrum
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Stochastic lensing

* Ran simulations of ultralight dark matter densities over a range of masses
* Worked out

Angular correlations
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Stochastic lensing

* Ran simulations of ultralight dark
matter densities over a range of
masses

* Worked out

- rms lensing

— Temporal spectrum

— Angular correlations
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Conclusion

« Ultralight dark matter granules can create Shapiro delays, gravitational redshifts,
and stochastic lensing

* Signals are too small to detect with current data
* Future work will look into using correlations between objects

* But if we can detect these signals we may be able to probe higher mass ultralight
dark matter

Eberhardt et al, arxiv 2502.20697
Eberhardt et al, arxiv 2411.18051
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