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Talk plan

« Astrophysical capability of space GW detectors
« Instrumentation activities in our lab
« Some advanced topics
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Gravitational wave spectrum
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Launch in 2035 _ ’
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A future landscape

J. Harms+, arXiv:2010.13726 (2020)
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Binary sources

KI and K. Jani, Springer (2022)
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Astrophysical reach
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Proactive MMA

Plot from Isoyama+, PTEP (2018)
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SMBH merger with GW+X-ray

M. Colpi+, Athena-LISA Synergies (2019)
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Probing inflationary Universe

p— 1 5 [ L | 3 |
* Reheating energy scale provides hints for inflatons —_— m2¢2 ]
* Thermal history of early Universe — ¢4 .
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[3] Nshizawa+, 2010 Figure Kuroyanagi+, Phys. Rev. D 83, 043514 (2011)



osmology with high angular

resolution

Binary signal gives the luminosity distance d,

Credit: Claire Lamman/DESI collaboration -u
https://newscenter.lbl.gov/2025/03/19/new-desi-results-strengthen-hints-that-dark-energy-may-evolve/

Phys. Rev. D, 80, 104009 (2009)
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Instrument activities



Instrument activities

« Formation flying mission: SILVIA -
- SORAC: inertial reference sensor r
« Small force measurement on ground [1

- Back-linked Fabry-Perot interferometer [2,3]
e elC

[1] Okuma+, Phys. Rev. D 111, 082006 (2025)
[2] Kl and M.K. Fujimoto, PTEP (2021)
[3] R. Sugimoto+, Phys. Rev. D 109, 022003 (2024)



Measurement principle

Test mass Separation = L

Optical phase (measurement quantity)

AD(t) = ke [, L+ h(©)H2 dt

~ k|L -k Lh(t)/2 |
h: GW amplitude
Laser Noise Signal k: wavenumber of light field

Test mass noise Slide 14




Two interferometer approaches

» Transponder laser interferometer

elisascience.org

» Fabry-Perot laser interferometer

DECIGO

LISA, TianQin and Taiji.

Small portion of light is sampled, similarly
to radio wave communication.

No need for precision formation flying

B-DECIGO and DECIGO

Similar to ground-based interferometers
Precision formation flying (better than 1
um) required.
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SILVIA

T. Ito+, PAS] (2025)

(Space Interferometer Laboratory Voyaging towards Innovative Applications)

In-orbit demonstration of technologies
necessary for formation flying (FF) satellites

< Proposed for JAXA's M-class mission
o Proposed in 2020
o Use of Epsilon rocket

< Engineering demonstration

o Ultra-precision FF
o Intersatellite laser interferometer

Target launch in early 2030’s

© S. Sato (Hosei U.) Slide 16



Use of asymmetric Michelson

Spacecraft sensors

GNSS-R, STT,
Gyroscope
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T. Ito+, PAS] (2025)
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Into ultra-precision

Control precision in ISD [m]
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Your idea

goes here
(Tell us!)
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Inertial reference sensor

» Floating mass serves as an inertial reference
» Shielding necessary to keep TM from external disturbances
» Drag free necessary not to introduce the vibration of spacecraft to TM

3

Test mass

Solar radiation
and wind

Drag-free spacecraft
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Accelerometer

» Instead, feeding the signal back to TM
» Feedback force directly tells acceleration acting on spacecraft

il

TM is forced to follow spacecraft

Slide 21
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Space accelerometer: SORAC

As a technology development step, our lab chose to go for the development of
space accelerometer, specific for monitoring the solar radiation pressure

« Use of capacitve sensors and electrostatic actuators, 3 axes
« Goal sensitivity :10-10 m/s2 (for 10-100 sec in Allan dev.)
- Improving the automous navigation accuracy and GNSS

oy
i T
H FANIZ (TM) | -k
—
B s
N &@

Schematical view (ISAS/JAXA)
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Noise on ground (in air)

Yakabe master thesis (2025)
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Requirement for test mass sensing noise -
Measurement voltage noise (Vi, = 0.5V)

N 10773
N
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gas molecular collision noise
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Noise test package in ISS =
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Denoising ISS vibration

Application of three-channel corretion [1] is being
considered for suppressing the high vibration noise

IT.IT.II|\ ITIW

. o= I”j" Data
k- iih downlink

-'l-lJ:"_l!‘L!'sl—-'l- .J'-l!;-!!‘t!'ij—-'L-

Relative alignment precision Offline three-channel correlation
~ 1075 rad or better necessary for denoising

[1] Sleeman-+, " Three-Channel Correlation Analysis: A New Technique to Measure Instrumental Noise of Digitizers and Seismic Sensors” (2006) Slide 26



Advanced topics



Application of formation flying

LIFE :

Beam combiner satellite Mid infrared stellar light interferometer

Can we do something similar to
radio wave interferometer, i.e.,
receiving light at the collector satellites?

Collector satellite

A. M. Galuser et al., SPIE (2024) Slide 28



Quantum enhanced interferometr

Gottesman+, PRL 109, 070503 (2012)

EPS satellite
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Avoids the shot noise problem
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Application of accelerometer?

T R 1 T. Ebisuzaki+, Intn’l J. Mod. Phys. D (2020)
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% Space GW observations will open new window for
astrophysics

% Development of several key concepts and components
underway

“ If you have any new ideas utilizing our experimental
activities, please let us know!
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