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SUPETMAassIve
Black Holes

The formation of such objects is not well
understooc

. Stellar black holes cannot grow fast enough

- Many alternative cosmologies have been
suggested

- JWST has seen SMBH at earlier times than
expected

vent Horizon Telescope



Star Formation

. Formed from z ~ 20 — 30 or a few hundred million years after the Big Bang

. Gravitational collapse and molecular cooling (H,) allowed high (baryon) density
environments

- DM cannot drive this collapse despite its gravitational influence (no cooling)

. |t does contract with the baryons to an extent due to adiabatic contraction



Contraction of the
first DM halos

- As the first halos collapse, there are no
compact objects to disperse the
contracting halo

- Conventional heating/relaxation is
SUPPressec

- Higher and more persistent central
density than modern halos

. Thermal relic dark matter annihilates in
regions of high densities
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Contraction of the
first DM halos

« Asthe first halos enllinea thara Ara Nnn
compact objec
contracting hal

. Conventional
SUPPressec

- Higher and more persistent central
density than modern halos

. Thermal relic dark matter annihilates in
regions of high densities
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TWST Observation . & NS s

The James Webb Space
Telescope (JWST) has seen

several objects consistent
with supermassive dark stars

at redshiftsz ~ 10 — 15 JADES-GS-214-O/

&

JADES-GS-z14-0 (NASA)



Dark Stars

. Include DM annihilation and r
equilibrium with gravitationa

. Large, low density, low
temperature stars

- Low temperature, weak
solar wind, large surface
area means sustainead
accretion
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Dark Star .

L UMINOosSIty

- Weak dependence on the DM Lotol.
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Opjectives

. Allow the population of dark stars to seed supermassive black holes
 Ensure such a population is consistent with JWST observations

. Predict the multi-messenger signals from a population of supermassive
dark stars

.« Develop a new method to search for dark stars

. |dentify which dark matter parameters are consistent with this story

025.04061 with M. Manno and V. Takhist
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k Star Evolution

COLLAPSE
Supermassive : .
, Supermassive
Dark Star E Black Hole
o<, T,
DM overdensity DM spike
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The.
Re-scale halo
population to that of
SMBHSs

JWST has ‘only” seen a
few candidates in 264
arcmin® with sensitivity
outtoz ~ 15

Assumptions:

. AllDScollapseatz = 15
. Uniform fraction of halos

host dark stars — 1 %
- No mergers

Dark Star Population
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Dark Star Population
Luminosity
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Dar.

< Star Neutrino rFlux

Neutrino edtmomluminosity
(per neutrimohumber of neutrinos / s)



- Dominant
packground is
atmospneric
Neutrinos

- Energy scale set py

DM mass and 7

. Spectral shape set
py the annihilation

channel
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Neutrino betectors

Super-Kamiokande: lceCube:

. 1 km? array of PMTs embedded in the

- 50kTon ultra-pure water Cherenkov
Antarctic ice

etector

. Sensitivity to MeV scale neutrinos via 1IBD . Sensitivity to ~ 100 GeV neutrinos

L » Improvesto ~ 10 GeV including DeepCore
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k Star Neutrino Measurements
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vark Star Neutrino Measurements
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Dark Stars photon
emission

M. Manno, TS, V. Takhistov: 2512.04061

- For neutrino emission, we studied t
neutrino counterpart to the annihilation
which powers the star

. There is also significant annihilation
from the halo outside the baryonic
surface

- Such a large ove

support the cont
oowering the star

rdensity is required to
nued annihilation
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DM annihilation outside the star:
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Optica.

Deptn

Photons are absorbed by the IGM

. Above ~ 100 GeV pair production of

allowed

electrons from CMB scattering is

- High energy photons are easily

absorbea

e Less importo
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Thermal emission of the star:
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DM Distripution
Around SMB

Mgy = 10° M

m, = 100GeV

My, = 10° Mg

(ov) =3 x107%°cm? 57!

- Dark Stars collapse when the DM
fueling them becomes less abundant

- The rest of the nearby DM halo is still
enhanced relative to NFW

- Further adiabatic contraction following
DS collapse

. Various sources of depletion ana
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Subseqguent

BH Spike

- DM continues to annihilate
efficiently in this spike

. Consider two extreme cases
to bracket the physical case
of an evolving DM spike

We have again neg
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Subseqguent

BH Spi

« DM cor
efficien

E

tinues to annihilate
tly in this spike

Consider two extreme cases

to bracket the physical case
of an evolving DM spike
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Pnhoton Measurements

ArXiv: 2512.04061



Pnhoton Measurements
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Summary

- We consider Supermassive Dark Stars as the progenitors of Supermassive
Black Holes and study their emission of neutrinos as well as high and low

energy photons

- We find that neutrino emission is most constraining for heavy dark matter
while high energy photon emission is most constraining for lighter dark
matter

» Using this multi-messenger probe, we find that much of the DM
oarameter space at the thermal relic cross-section is ruled out in this

scenario

. Smaller DSs, collapse at z > 15, or a stronger disruption of the DM over
density may still be viable




