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Introduction and 
Motivation



Cosmic Dark Matter

Plenty of evidences exist for the dark matter (DM)

For light DM (𝒎 ≪ 𝐞𝐕), DM behaves like a classical wave
- We want to detect this weak wave directly by some detector

- Quantum sensors are getting more attention for that
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Quantum Sensors

Artificial two-level system with some energy gap
- e.g. superconducting qubit, NV center, ion trap, …

Why do we use quantum sensors?
- Very small energy gaps (GHz ∼ 𝜇eV for superconducting qubit)

- Can be insensitive to the unknown DM phase

- We may manipulate the sensor states: use of entanglement

I’m going to talk about how we may exploit the sensor entanglement

Note: Our proposals are theoretical. I admit our proposals may be experimentally 
difficult now, but I hope they will be possible in 5-10 years.
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A Simplified Model: Signal-Sensor Interaction

Core setup for our quantum sensing protocols
(Details vary, but the essential physics is often similar)

Sensor: A Quantum Two-Level System Signal: A Weak Classical DM Field

The Goal: Estimate the signal strength 𝜺
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• E.g., qubits

• Two states: Ground 0 and Excited 1

• Can be a physical qubit, a cavity mode 
( 𝑛 = 0 , 𝑛 = 1 ), etc.

• Drive transitions from 0 to 1

• Interaction Hamiltonian: 𝐻𝐼 = 𝜀(𝜎𝑋cos 𝛼 + 𝜎𝑌 sin 𝛼),
𝜀: Signal strength (the quantity to be estimated)

𝛼: Signal phase (often stochastic/random)

1. Evolve: System evolves from 0 under 𝐻𝐼. For a weak signal 𝜀𝑡 ≪ 1, 𝜓 𝑡 ≃ 0 − 𝑖𝑒𝑖𝛼𝜀𝑡|1⟩

2. Measure: Project onto 0 and 1 . Probability of finding 1 : 𝑝1 = 1 𝜓 𝑡 2 = 𝜀2𝑡2
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Avenues for Quantum-Enhanced Sensing

In my opinion, there could be two possible direction:

1. Quantum Analogs of Classical Signal Processing

2. Enhancing Signals
Using entanglement to enhance signals (e.g., the GHZ state)

I’ll focus on the former in my talk.
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Use of Entanglement: 
Signal Processing



Core Idea: Move signal processing from the classical to the 
quantum domain.

• Instead of processing measurement results, we propose to directly 
manipulate and interfere the quantum states of the sensors.

• We’ll see it has an advantage for weak signals

Topics I’m going to mention:
• Directional Sensing

• Noise Suppression
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Quantum Analogs of Classical Signal Processing



Case Study 1: Measuring Dark Matter Direction

The direction of the DM is a smoking-gun signature

“Classical” Protocol [Derevianko ‘18]

1. Interaction: The DM signal field interacts with two sensors

2. Measurement: Measure an observable 𝜎𝑋, for each sensor independently: 
𝜎𝑋 = 2𝜀𝜏 sin 𝛼

3. Correlation: Take the correlation of the result

Δ𝑟Sensor 1 Sensor 2

𝜓1 = 0 − 𝑖𝑒𝑖𝛼𝜀𝜏|1⟩ 𝜓2 = 0 − 𝑖𝑒𝑖𝛼
′
𝜀𝜏|1⟩

Velocity is encoded in 𝛼:

𝛼′ = 𝛼 − 𝑘DM ⋅ Δ𝑟
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The Challenge of Weak Signals

What limits the Classical Protocol?
• Zero-point fluctuation of 𝜎𝑋 is 𝒪(1): 𝜎𝑋

2 − 𝜎𝑋
2 = 𝒪 1

• The information of 𝛼′ − 𝛼 is suppressed by 𝜀𝜏 ⋅ 𝜀𝜏 = 𝜀2𝜏2

Our Quantum Approach: A Disclaimer
• Our proposed method requires creating quantum correlations between 

distant sensors (from meters to kilometers).

• The Fisher information is 𝒪 𝜀2𝜏2 : sensitivity improved by 𝜺𝝉!

• Assumption: We assume it’s possible to transfer quantum states b/w two 
sites

• This is a key quantum technology and being developed seriously
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Only the difference is meaningful

𝛼′ − 𝛼 = −𝑘DM ⋅ Δ𝑟

More quantitatively, 
the classical Fisher 
information is 𝒪 𝜀4𝜏4



Quantum Protocol: Interference of Distributed 
Sensors

Step 1: Entangling Measurement (Projection)

• Two-sensor state: 𝜓1⊗𝜓2 = 0 − 𝑖𝑒𝑖𝛼𝜀𝜏 1 ⊗ 0 − 𝑖𝑒𝑖 𝛼−𝑘DM⋅Δ𝑟 𝜀𝜏 1

• Measure 𝑃 = 10 10 + 01 01 , which succeeds with probability 𝑃 = 2𝜀2𝜏2

• State after measurement: 𝑃 𝜓1⊗𝜓2 ∼ 10 + 𝑒−𝑖𝑘DMΔ𝑟 01 ≡ Ψ

Step 2: Information Readout
• Measure 𝑀 = −𝑖 01 10 + 𝑖 10 01

• 𝑀 = −sin 𝑘DMΔ𝑟

• We can rigorously prove our method is optimal
• Our method saturates the quantum Cramér-Rao bound
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Result
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• We check the effect of the local 
standard of rest velocity

• Blue: 𝑀  (analytic for dotted)

• Dashed lines: Number of post-
measurements needed to 
measure 𝑀
• Yellow: no error

• Green: same noise rate as the signal

• Red: 10x more noise than the signal
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Case Study 2: Noise Reduction in a Sensor Array

Setup: An array of N identical sensors.

The Signal vs. The Noise

• Signal: Acts globally across the entire array.

• Noise: Acts locally on each sensor.

Classical Approach:
• Take the correlation of each sensor.

• As we've seen, it’s difficult for weak signals.
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Use of W-state

Our task (in QM language): To distinguish

• Use 𝑊 ≡
1

𝑁
10…0 + 01…0 +⋯ 00…1 :

• 𝑊 𝜌𝑠 𝑊 = 𝒪(𝑁), whereas 𝑊 𝜌𝑛 𝑊 = 𝒪 1

• Noise is suppressed! 
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Signal: operators act on all qubits Noise: operators act on a single qubit



Result

• We let 𝑁 sensors evolve 
independently and measure 
them by the W-state

• We consider a system with 
thermal noises
• “Decoherence” (∼ 𝛾1)

• Excitation (Γ0)

• For 𝛾1 ≲ Γ0, no gain is 
expected. Why?
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Noise Reduction by Quantum Error Correction

The noise not only mimics signals but also reduces signals:

0 − 𝑖𝜀𝑡 𝑊 → 10⋯0 − 𝑖𝜀𝑡 1 ⊗ 𝑊 𝑁−1 +⋯

Instead of measuring by W, we may perform the quantum error 
correction (QEC) like procedure to putting back

- 10⋯0 to 0 and 1 ⊗ 𝑊 𝑁−1 to 𝑊 ,

- … and so on for other errors
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noise on the 1st qubit

𝑁 qubit W states cannot measure 𝜀 anymore!

𝑊 ≡
1

𝑁
10⋯0 + 01⋯0 +⋯+ 00⋯1

HF Moroi Sichanugrist 2511.03253



QEC-Sensing Protocol

Repeating “correction and sense” many times
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Kessler et al 14, Dür et al 14, Arrad et al 14
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QECDM sensing

Final measurement



Result

We consider only the ex. noise.

Green: without QEC

Blue: with QEC

Orange: Quantum Cramér–Rao bd.

• Our protocol approaches to the 
QCRB
• The QCRB cannot be achieved for

DM measurement due to its 
unknown phase!
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Summary
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Summary

• Quantum sensing is a powerful tool for searching for extremely 
weak signals, such as those from dark matter.

• Using entanglement between sensors, we can achieve better 
sensitivity than classical counterparts
• Directional detection

• Noise reduction

• …
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