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Background

Nitrogen vacancy (NV) centers in diamond C. Degen et al., Rev. Mod. Phys. 89.3 (2017)

Two electron spins are trapped to form a triplet states
Long coherence time as a few milliseconds at room temperature
Manipulation of the spin by microwave pulses
Initialization by green laser
Readout of the spin from the photoluminescence
Coupling with the magnetic field
=⇒application to magnetic field sensors
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Quantum Sensing Flow with qubits (summary)

Estimating the value of ω = gµbB in the Hamiltonian of H = ω
2 σz

1 State Preparation by using a green laser and microwave pulse.
|+⟩ = 1√

2(|0⟩ + |1⟩)
2 Time Evolution with the Hamiltonian
3 Readout by photoluminescence
4 Repeat 1–3, and obtain measurement results.
5 From the measurement results, estimate the value of ω

Sensitivity increases as we increase the number of repetitions (or number
of qubits.)
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Approach 1
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Approach 2
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Approach 3
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Motivation

Dynamic range is the span of values we can measure without ambiguity.
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Motivation

Ex. Good dynamic range (We can uniquely specify the magnetic field)
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Approaches to use small diamond with dense NV centers

· The previous approach uses Floquet engineering, which works when the pulse
operations are done faster than the inverse of the coupling strength
(τpulse ≪ 1/g).
H. Zhou et al., Physical Review X 10, 031003 (2020), H. Zhou et al., Physical Review Letters 131, 220803 (2023),

· As an alternative approach, we theoretically propose to use quantum circuit
learning, which could , in principle, be applied to more general circumstances.
H. Kawaguchi, Y. Mori, T. Satoh, Y. Matsuzaki (2025). arXiv:2505.04958.,
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Quantum metrology to measure magnetic fields

Hamiltonian for a single qubit

H = ω

2 σ̂z,

ω = gµBB: Zeeman energy.

Expectation values

⟨ϕ(t)|σ̂y|ϕ(t)⟩ = sin(ωt).

where |ϕ(t)⟩ = e−iHt|+⟩ and |+⟩ = 1√
2(|0⟩ + |1⟩).

Uncertainty (inverse of the sensitivity)

δω =

√
⟨ϕ(t)|(δσ̂y)2|ϕ(t)⟩∣∣∣d⟨ϕ(t)|σ̂y |ϕ(t)⟩

dω

∣∣∣√M
= 1√

Mt
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Uncertainty of the estimation
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Uncertainty of the estimation
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Uncertainty of the estimation
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Uncertainty of the estimation
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Setup
Using an ensemble of qubits, we measure magnetic fields from electric
currents and aim to estimate their strength.
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Quantum metrology to measure electric current

Hamiltonian for an ensemble of qubits

H =
L∑

j=1

hjI

2 σ̂(j)
z , (1)

hj : Relative coupling strength, I: Electric current,

Expectation values

⟨ϕ(t)|M̂y|ϕ(t)⟩ =
L∑

j=1
sin(hjIt). (2)

where |ϕ(t)⟩ = e−iHt| + + · · · +⟩ and M̂y =
∑L

j=1 σ̂
(j)
y

Sensitivity

δI =

√
⟨ϕ(t)|(δM̂y)2|ϕ(t)⟩∣∣∣d⟨ϕ(t)|M̂y|ϕ(t)⟩

dI

∣∣∣√M
=

√∑L
j=1(1 − sin2(hjIt))∣∣∣∑L

j=1 hjt cos(hjIt)
∣∣∣√M

, (3)
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Quantum circuit learning (QCL)

Setup for supervised learning
· Training data set (xi, yi)N

i=1 is given with samples N
· Relationship such as y = f̃(x) between x and y is assumed
· Function fθ is used to approximate f̃ by minimizing the following

L(θ) =
N∑

i=1
(fθ(xi) − yi)2. (4)

where θ is the parameter.

Quantum circuit learning K. Mitarai, Kosuke, et al. " Physical Review A 98.3 (2018): 032309.

· The input state is e−ixiH |00 · · · 0⟩
· A parametrized unitary operator Uθ is applied with the input state
· By using an observable M̂ , the learning model is defined as

fθ(x) = ⟨0...0| eixHU †(θ)M̂U(θ)e−ixH |0...0⟩ . (5)
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Setup for quantum metrology with QCL
By using an ensemble of qubits, we aim to estimate the strength of the
electric currents. However, at high qubit densities, inter-qubit interactions
induce multiple oscillations in the signal, which reduces the dynamic range.
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Low dynamic range

As the number of qubits increases, the region where the expectation value
changes monotonically becomes narrower, indicating a reduction in the
dynamic range.
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Hamiltonian and input state

Hamiltonian

Hdata = HI +
L∑

j=1

hjI

2 σ̂(j)
y , (6)

HI =
L∑

i,j=1
Jij(σ̂(i)

x σ̂(j)
x + σ̂(i)

y σ̂(j)
y + σ̂(i)

z σ̂(j)
z ), (7)

· HI is the interaction Hamiltonian and Jij denotes the strength of the
interaction
· hj = 1

2 + 2rj , where rj is sampled from the uniform distribution on [0, 1).
· Jij = −1 + 2sij where sij is drawn from a uniform distribution on [0, 1).

Input state

|ϕinput⟩ = e−iHdatat|00 · · · 0⟩, (8)
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Single-qubit rotation

Rx(θ) =
(

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

)
,

Ry(θ) =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)
,

Rz(θ) =
(

e−i θ
2 0

0 ei θ
2

)
.

35 / 42



Parametrized unitary

Ux(θ1) =
(

L⊗
i=1

R(i)
x (θ1)

)
e−itHI , Uy(θ2) =

(
L⊗

i=1
R(i)

y (θ2)
)

e−itHI ,

Uz(θ3) =
(

L⊗
i=1

R(i)
z (θ3)

)
e−itHI ,

Hgx =
L∑

j=1
Bx

j σ̂x + HI , Hgy =
L∑

j=1
By

j σ̂y + HI , Hgz =
L∑

j=1
Bz

j σ̂z + HI

where Bx
j = By

j = Bz
j = B0j and B0 = 1. The total unitary is as follows

U(θ) =
D∏

d=1
U (d)(θ(d)), (9)

where U (d)(θ(d)) = e−iHgztUz(θ(d)
3 ) · e−iHgytUy(θ(d)

2 ) · e−iHgxtUx(θ(d)
1 ).
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Training inputs and target functions

· Let {Ii}N
i=1 denote the set of training inputs, where we set N = 200.

· The inputs {Ii} are generated by uniformly sampling from the interval
[−1, 1].

· The target function f(I) is defined as follows:

f(I) = A · L · sin
(∑

j hjIt

B · L

)
, (10)

where we set A = B = 1.
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Results with L = 3

Dynamic range improvement of quantum sensors through QC
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Results with L = 4

Dynamic range improvement of quantum sensors through QC
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Comparison of the sensitivity (L=3)
Let us compare the sensitivity of our method with that of other cases.
As a comparison, we consider an imaginary scenario with negligible
inter-qubit coupling strength and calculate the sensitivity (theoretical)

with separable states as δI =
√

⟨ϕ(t)|(δM̂y)2|ϕ(t)⟩∣∣∣ d⟨ϕ(t)|M̂y |ϕ(t)⟩
dI

∣∣∣√M
=

√∑L

j=1(1−sin2(hjIt))∣∣∣∑L

j=1 hjt cos(hjIt)
∣∣∣√M
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Comparison of the sensitivity (L=4)
Let us compare the sensitivity of our method with that of other cases.
As a comparison, we consider an imaginary scenario with negligible
inter-qubit coupling strength and calculate the sensitivity (theoretical)

with separable states as δI =
√

⟨ϕ(t)|(δM̂y)2|ϕ(t)⟩∣∣∣ d⟨ϕ(t)|M̂y |ϕ(t)⟩
dI

∣∣∣√M
=

√∑L

j=1(1−sin2(hjIt))∣∣∣∑L

j=1 hjt cos(hjIt)
∣∣∣√M
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Conclusion and perspective

Conclusion
· We propose to improve the dynamic range of quantum sensing at high
qubit densities by using quantum circuit learning
· From numerical simulations, we confirm that the dynamic range is
improved without a significant reduction of the sensitivity

Perspective
· We will use a more realistic setup where the Hamiltonian is determined
from the positions of qubits and the current lines.
· Sensitivity can be further improved by an entanglement if we consider a
more sophisticated cost function

H. Kawaguchi, Y. Mori, T. Satoh, Y. Matsuzaki (2025). arXiv:2505.04958.,
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