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. Introduction

- Eliminating Incoherent Noise
- Quantum Metrology for Dark Matter

« Conclusion



What is dark matter”
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Wave-like DM candidates

« Axion (ALPs)
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Current limits
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With such large parameter space, scan rate is cruciall



What is a quantum sensor”

Quantum 1.0

- Detecting a single quantum of something (classically)

- Using guantum mechanics to sense small (classical) things

Quantum 2.0

- Both at once
- Making use of guantum squeezing, non-demolition, entanglement...

for better sensitivity or noise performance



Quantum Sensor
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Quantum Coherence measurement

Coherent excitation due to DM, but noise uncorrected

Measuring the coherence between | W) = (| e;g,) + \g1e2>)/\/§
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Noise free with full correlation information included!



Quantum Coherence measurement

For N quantum sensors, there are O(Nz) coherence channels: signal N* enhanced
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Enhancement from entanglement

Single detector:
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Quantum Metrology for DM

Quantum estimation theory
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Initial state * Parameter » POVM
oreparation encoding Measurement
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Quantum Metrology tor DM

- For two detectors, inequalities saturated by the optimal state
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- For N identical detectors at same location, inequalities saturated by Dicke states
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Quantum Metrology for DM

Noise resilience

J
(C) f
E%—plitude
,-:qa’mping
Ay
F9 = (1 = ppp)' >IN C, FPM9 = 0(g?), F"9 = (1 = pap) 4N,C,

P.He, J. Shu, BX, and J. Xu, in preparation, arXiv:25T0.xXXxxx



Conclusion

- Detection of dark matter benefit from quantum technologies.
- W states can be used to eliminate incoherent noises.
- Fundamental Heisenberg limits are saturated by the Dicke states.

. Future direction: exploring the quantum nature of DM and GW
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DM distripbution

Non-relativistic limit: @; = mp,,(1 + v].2/2), k] = MppV;

J

J

The standard Halo model (Maxwellian distribution):
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Standard quantum limit (SQL)

- Due to the limited coherence time << than the mixing period, the DM wave displaces the
cavity vacuum state by an amount much smaller than the zero-point fluctuations

P
Vacuum Force from DM

Heisenberg uncertainty principle
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Beyond the SQL

.« Squeezing: reduce uncertainty in one guadrature
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Backes et al. Nature 590.7845 (2021): 238-242

Force from DM

- Single Photon Counter:

measure only displacement amplitude

AnAg > 1
disregard phase (since it is randomized) l

A. Dixit et al. PRL 126.14 (2021): 141302



Photon counting device

P. Zheng, Y. Cai, BX et al., arXiv:2507.23538

| Shield
- DM act as a displacement operator:
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« quantum non demolition readout
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Enhancement py stimulated emission
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