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What is dark matter?
CMB LSS

Bullet cluster rotation curve

WIMP Primordial 
Blackhole

Sterile 
neutrino

Wave-like DM 
Axion, Dark Photon



Wave-like DM candidates
• Axion (ALPs) 

 

• Dark photon 

 

de Broglie wavelength  

Coherence time 

ℒa ⊃
1
4

gaγaFμνF̃μν → Ja μ
eff

= − gaγF̃μν∂νa

ℒA′￼
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A′￼
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1

mDMv0
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mDM
∼ 100 m

τc ∼
1

mDMv̄v0
∼

106

mDM
∼ 100 μs

inverse primakoff effect

kinetic mixing



Current limits

https://cajohare.github.io/AxionLimits/

Axion Dark Photon

With such large parameter space, scan rate is crucial!



What is a quantum sensor?

Quantum 1.0 

• Detecting a single quantum of something (classically) 

• Using quantum mechanics to sense small (classical) things 

Quantum 2.0 

• Both at once 

• Making use of quantum squeezing, non-demolition, entanglement… 

    for better sensitivity or noise performance



Quantum Sensor
• Detector: two-level system ,  

• Coupling to DM:  

• Excitation probability: 

{ |gI⟩, |eI⟩} H0 =
1
2

ωIσI
z

HI = η cos(ωDMt + ϕDM) ̂σx
I = ηe−i[(ωDM−ωI)t+ϕDM] ̂σ+

I + h.c.

pI = |⟨eI |𝒯e−iHτ |gI⟩ |2 ∝ (ητ)2
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Quantum Coherence measurement
Coherent excitation due to DM, but noise uncorrected  

Measuring the coherence between  

  

Projecting to :  

 

Noise free with full correlation information included!

|W⟩ = ( |e1g2⟩ + |g1e2⟩)/ 2

ρ0 = |g1g2⟩⟨g1g2 | → ρ̄η =

0 0 0 0
0 p2 + n2 C12 0
0 C*12 p1 + n1 0
0 0 0 1 − p1 − p2 − n1 − n2

|e1e2⟩
|g1e2⟩
|e1g2⟩
|g1g2⟩

Π12 = |e1g2⟩⟨g1e2 | + |g1e2⟩⟨e1g2 |

Tr[ρτΠ12] = 2Re[C12(τ, ⃗x12)] ∝ ⟨ϕ( ⃗x1)ϕ( ⃗x2)⟩

⟨e1e2 | ⟨g1e2 | ⟨e1g2 | ⟨g1g2 |

S. Chen et al, arXiv: 2510.01816
H. Fukuda et al, arXiv:2506.19614
J. Shu, BX, and Y. Xu, arXiv:2410.22413



For N quantum sensors, there are  coherence channels: signal  enhanced 

Use of the W state:  

O(N2) N2

|W⟩ =
1

N
( |e1g2…gN⟩ + |g1e2…gN⟩ + … + |g1g2…eN⟩)
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Enhancement from entanglement
Single detector: 

,       

where ,  

N detectors: 

,   

For GHZ states: ,  

|gI⟩ =
| +I ⟩ + | −I ⟩

2
→

eiητ | +I ⟩ + e−iητ | −I ⟩

2
∼ |gI⟩ + iητ |eI⟩ pI ≃ (ητ)2

HI | ±I ⟩ = ± | ±I ⟩ | ±I ⟩ =
e±iϕI |gI⟩ + |eI⟩

2

|ψ⟩ =
| +I ⟩⊗N + | −I ⟩⊗N

2
→

eiNητ | +I ⟩ + e−iNητ | −I ⟩

2
∼ |ψ⟩ + iNητ |ψ⊥⟩ p ≃ (Nητ)2

|ψ⟩ =
| +x ⟩⊗N + | −x ⟩⊗N

2
p ≃

1
2

(Nητ)2
S. Chen, et al. Physical Review Letters 133.2 (2024): 021801



Quantum Metrology for DM
Quantum estimation theory 

The Cramer-Rao inequality:  

Quantum Fisher information:        where  

Classical Fisher information:

nVar(η) ≥ F−1
C (η) ≥ F−1

Q (η)

FQ(η) = Tr[ρηL2
η ] Lηρη + ρηLη = 2 ∂ηρη

FC(η) = ∑
X

1
p(X |η) ( ∂p(X |η)

∂η )
2

Initial state 
preparation

Parameter 
encoding

POVM 
Measurement

ρ0 ρη = UI(t)ρ0U†
I (t) . p(X |η) = Tr[ρηΠX]



• For two detectors, inequalities saturated by the optimal state 

, where  

 

• For N identical detectors at same location, inequalities saturated by Dicke states 

, where  

|ψopt⟩ =
1

2
(eiϕ12 |e1g2⟩ + |g1e2⟩) ϕ12 = arg(C12(t, ⃗x12))

(FQ)max = 4(C11 + C22 + 2 |C12 | )

|DN
j ⟩ = 𝒩∑

π

𝒫π ( |g⟩⊗(N/2+j) ⊗ |e⟩⊗(N/2−j)) {j = 0 for N even

j = ± 1/2 for N odd

(FQ)max = 2(N2 + 2N − 2 | j | )C

Quantum Metrology for DM

F̄Q,1 F̄Q,2 Enhancement due to entanglement

P. He, J. Shu, BX, and J. Xu, in preparation, arXiv:2512.xxxxx
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Noise resilience

Quantum Metrology for DM

F(ind)
C = (1 − pAD) 4NdCdF(GHZ)

C = 𝒪(g2),F(Dicke)
C = (1 − pAD)Nd/2+m+1N2

d Cd

P. He, J. Shu, BX, and J. Xu, in preparation, arXiv:2510.xxxxx



Conclusion

• Detection of dark matter benefit from quantum technologies. 

• W states can be used to eliminate incoherent noises. 

• Fundamental Heisenberg limits are saturated by the Dicke states. 

• Future direction: exploring the quantum nature of DM and GW



Thank you!
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DM distribution
Non-relativistic limit: ,   

The standard Halo model (Maxwellian distribution): 

 ,  

de Broglie wavelength  

Coherence time 

ωj = mDM(1 + v2
j /2) kj = mDMvj

fDM( ⃗v) = (2πv2
vir)

−3/2exp [−
( ⃗v − ⃗vg)2

2v2
vir ] vvir ≈ vg ≈ 10−3

λd =
1

mDMv
≈ 103 1

mDM

τc ≈
106

mDM

Δω/ω ∼ 106



• Due to the limited coherence time << than the mixing period, the DM wave displaces the 
cavity vacuum state by an amount much smaller than the zero-point fluctuations

Vacuum Force from DM
(Exaggerated)

Standard quantum limit (SQL)

Heisenberg uncertainty principle

ΔXΔP ≥ 1/4

n̄SQL = 1

displacement 
 <  of zero 
point noise

10−3
X

P



• Squeezing: reduce uncertainty in one quadrature 

• Single Photon Counter:  

    measure only displacement amplitude  

    disregard phase (since it is randomized)

Force from DM

Backes et al. Nature 590.7845 (2021): 238-242

ΔnΔϕ ≥ 1

A. Dixit et al. PRL 126.14 (2021): 141302

Beyond the SQL



Photon counting device
• DM act as a displacement operator: 

 , where  

• Cavity QED: 

 

• quantum non demolition readout 

• Sensitivity limited by 

e−iHDMt ≡ D̂(β) = eβa†−β*a |β | = ρDMmDMVeffϵτ

HCQ = ωca†a +
1
2

ωqσz+χa†aσz = ωca†a + ( 1
2

ωq + χa†a) σz

n̄th ≈ 10−3 ∼ Teff = 20 mK

P. Zheng, Y. Cai, BX et al., arXiv:2507.23538

where σz = |e⟩⟨e | − |g⟩⟨g |

Shield

linear cavity
two-level 

“atom”
dispersive 
coupling

photon number- 
dependent frequency



Enhancement by stimulated emission
For vacuum initial state:  

For Schrödinger’s  cat states:  

We obtain an 8.1-fold speed up for ,  

⟨1 | D̂(β) |0⟩
2

≈ |β |2

⟨ϕ1 | D̂(β) |ϕ0⟩
2

≈ |α |2 |β |2

|α |2 = 12 η = 0.68
Cosmology
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