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Living Review of Machine Learning for Particle Physics
Do you know how many papers linked on the landing page?
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Living Review of Machine Learning for Particle Physics

Do you know how many papers linked on the landing page?
 Read them all, or, let Al do it for you ©
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Living Review of Machine Learning for Particle Physics

Do you know how many papers linked on the landing page?
 Read them all, or, let Al do it for you ©

Impossible to cover everything in one talk
« Highly selective and apologize for missing many important work
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v'Classifier (Supervised)
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v'Classifier (Supervised)

v'Self-guided Detection/Search (Weakly Supervised/Unsupervised)
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v'Classifier (Supervised)
v'Self-guided Detection/Search (Weakly Supervised/Unsupervised)

v'Reconstruction
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v'Classifier (Supervised)
v'Self-guided Detection/Search (Weakly Supervised/Unsupervised)
v'Reconstruction

v'Simulation
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v'Classifier (Supervised)

v'Self-guided Detection/Search (Weakly Supervised/Unsupervised)
v'Reconstruction

v'Simulation

v'Language Model
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v'Classifier (Supervised)

v'Self-guided Detection/Search (Weakly Supervised/Unsupervised)
v'Reconstruction

v'Simulation

v'Language Model

v Agent —an idea
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Smarter and More Sophisticated Classifier

Class token

L blocks
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b-jet
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Upgrade: GNN component
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ATLAS General Network 2
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Recap: Series of GloParT tagger (v1-v3)

Sep 202

Initiated project: ParticleNet for H—VV tagging for novel boosted H—+WW se¢
JME presentations[22.01.11 by Cristina/Zichun][22.03.08 by Dawei[22.08.09 by Dawe| s

ParticleNet
for HVV

2
Sep 202

GloParT
vi

Wy 00?23

GloParT
v2

July 2024

GloParT
v3

&\ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan

[22.12.13 by Conggiao (JME)]

+ upgrade to ParT architecture (so-called GloParT v

+ propose: “large model for large-scale
classification” & subsequent fine-tuning
capabilities (concept of Global ParT)

[23.02.22 by Conggiao (ML Forum)]

the study of fine-tuning (f.t.)
capabilities - first demonstration

;;;;;

GloParT v1: . «

used in the following

analysis

« Boosted bbWW search: i)
CMS-PAS-HIG-23-012 o -

« HWW (0I/11/VH): HIG-24- b
008 -

we X—H(bb)Y(WW): B2G-23-/ e M

007 — R

Ho32 prong classes:

[23.07.24 by Conggiao e s
%ificantly improve pre-training comprehensiveness e e GloParT v2:
(extend to 314+2 nodes) : < = * H(bb)+y: B2G-24-
. ¢, b, ¢, others 007

[23.09.13 ML Town Hall] [23.12.05 ML Forum]

* re-studied f.t. capability with the stronger

model

+ study of f.t. for anomaly detection
[24.09.20 by Conggiao (BTV)]

» v3 enhencement + extend to 374+374+2

nnrac

[24.10.18 Cross-POG]
A comprehensive review prepared for
GloParTv3’s integration into cmssw

* Run-3 VH(bb/cc)
(AK15): HIG-25-001
* boosted W—cb

——

Global Particle Transformer
(GloParT) algorithm

g Run-3 HH(4b)
GloParT v3:
* Run-3 HH(4b)
+ (more to join)
L. A
ok B R -Z xR 2026.01.19



Smarter and More Sophisticated Classifier #*/.5/TUPA
Recap: Series of GloParT tagger (v1-v3)

(extend to 314+2 nodes)

[23.09.13 ML Town Hall] [23.12.05 ML Forum]
* re-studied f.t. capability with the stronger

Sep 00?2}
Initiated project: ParticleNet for H—VV tagging for novel boosted H—+WW se¢
JME presentations[22.01.11 by Cristina/Zichun][22.03.08 by Dawei[22.08.09 by Dawe| wm= = ==
ParticleNet B
for HVV . - .
[22.12.13 by Conggiao (JME)] GloParT vi: - i : Global Partlcle Transformer
2022 . de to ParT hitect led GloParT v used in the following —lmta [ .
SepP upgrade to ParT architecture (so-called GloParT v Tl - ! (GIoParT) algorlthm
+ propose: “large model for large-scale + Boosted bbWW search: flone - —
GloParT classification” & subsequent fine-tuning CMS-PAS-HIG-23-012 o =
vi capabilities (concept of Global ParT) « HWW (0I/11/VH): HIG-24- .
008 . 1 :
[28.02.22 by Conggiao (ML Forum)] \o X H(bb)Y(WW): B2G-23- 4 —— Transformer model is based
q the study of fine-tuning (f.t.) L | — on “self-attention” mechanism:
way 202 capabilities - first demonstration e e
T = Transfer model can focus on
- [23.07.24 by Conggiao I o | certain parts of the input
oPar BIM\:«: . . : .. :
2 %lflcantly improve pre-training comprehensiveness ﬁwé | GloParT v2: data, g|V|ng more Welght to

Poop:B2G24 - orycial features and

* Bun-3 VHi(bbic) disregarding unimportant
(AK15): HIG-25-001

024 model + boosted W—cb ones.
July ¢ - study of f.t. for anomaly detection - Run-3 HH(4b)
[24.09.20 by Conggiao (BTV)] e g
GloParT * v3 enhencement + extend to 374+374+2
[24.10.18 Cross-POG] ) + Run-3 HH(4b)
A comprehensive review prepared for i N + (more to join)

- GloParTv3’s integration into cmssw - . e \ .
@\ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan moK B IR -

R 2026.01.19
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SN D I I L L L B W T g ¢
80 ATLAS Preliminary j
20 F Vs =13 TeV, pyr€[85,110] GeV GN2 J3500
¥ (g0at@ = 74%) 1 =
< 60 :_ C-jet rejection in simulated (Pythia8) top-pair events - 3000 E
w - W C-jet rejection in top-pair data events ] E
- - light-jet rejection in simulated (MadGraph) Z + jets events ] -
c 50 — H  light-jet rejection in Z + jets data events + —: 2500 -
o - i @
S ank 6.4 : B
@ 40 Reco Software Update § + 32000 &
[«b) " 1 . E
= 30F i 11500 +
- 30 - Reference: DL1r | dagl'j%o/ i ] <
oof DL1 (€57 =75%) | (€57 = 75%) X 41000 &
(6577 = 77%) +_._.'_§_' i 20 | 4. : -
0:...|....|..l.|....i....l....l....|...:0
2017 2018 2019 2020 2021 2022 2023
Year of tagger deployment

v Significant improvement after years of development
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5 T T T T T

510 E_ATL»"[? I GN2 E
s ;E4$_{:pt5n‘(§;;)3;1ﬁt3 GN2 calibrated |
T L L L L LI L I 4000 % 104 ;20<pr< 250GeV, |n] < 2.5 DL1d 3
80 ATLAS Preliminary : £ Drtdcaliratod
_ob VS =13TeV, pr €[85,110] GeV GN2 33500 Tl
- (Edata 74%) ] - E ]
< 60 :_ C-jet rejection in simulated (Pythia8) top-pair events - 3000 E 2
w - H C-jet rejection in top-pair data events ] \Ug 10 F 3
- : I?ght-J:et rej:ectfon ?n simglated (MadGraph) Z + jets events _ - F ]
p 50 — H  light-jet rejection in Z + jets data events + ] 2500 - 1 7 7
Sk 1 9 10§
5 C 6.4 1 b3 : ]
@ 40 Reco Software Update § 32000 &
o - | ] 2 10055 060 065 070 055 080 085 080 095
S 301 Reference: DL1r i d?Ud + 1% orjet efficiency
O B ata o, : ara 750/ 40 i c fd T T T T T T T
20 datEL1 (€02t = 75%) i (€ o ) X -1000 E» S 10° - ATLAS GN2 E
(€577 =T77%) e = : X2.0, 4. ] R Sien S GN2 calibrated |
10 H—o+ x1.4x1.7 i x1.5 -1500 = - 20 < pr<250GeV, |n] < 2.5 DL1d
: | I | i I I | 5 I DL1d calibrated |
0 2017 2018 201 9 2020 2021 2022 2023 0 10 ¢ E
Year of tagger deployment
10" £ E
v Significant improvement after years of development
v' Essential calibrations done for b-/c-jet and light jet flavors

v Performance in data matches simulation after calibration 0055 060 065 070 075 080 08 080 0%

b-jet efficiency

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR-Z ES 5% 2026.01.19



Better and More Robust Performance 4% SITUPA
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Better and More Robust Performance 4% SITUPA

CMS JME-25-001

Process Final state 4 of classes

q
HoWW qqqq 3 H g H q
(full-hadronic) G ®  0c/lc/2 3 —'ﬂé q -"\ﬁté q
evqq 2 q q
wvaq 2
H-oWW q q
S /1 — _
Tvaq 2 — £ wr A
™vaq 2 - ()
bb 1
ce 1 H q
H— _< —
qq ® Ss 1 q
aq (g=u/d) 1
Ry
H—tt TuTh T - 7,
ThTh 1
t—bW baq 2 q
LR =
(hadronic) bq ® 1b + 0c / 1c , Iq& q —4&: q
b b
bev 1
buv 1
=L . t v t (tfv),g..-"
iy @ i
bryv 1 b b
bT]l‘f 1
b 1 8 q (blc) g (blc)
bb 0 mmm-<: iBle —
QCD ¢ 1
ce 1 1 88 8 8
[goTeTo]e o opl
others (light) 1 q
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Better and More Robust Performance 4% SITUPA

Process Final state 4 of classes g = 10°F —_— : (13 TeV) = 10— (‘13‘1—?\/2
H->WW aqqq 3 G 7 & | CMS simuiation Preliminar A & | CMS Simulation Prelimina A
. ® 01/ H g H N A Y g | v
(full-hadronic) qaq 3 q q = H - WW 4q vs QCD £ | Howwaqust—bw
evaq 9 q q T -1k pr>200Gev, Ini<24 4 ByprL pr>200Gev, Ini<24
S F mgp >30 GeV 8 F mgp >30 GeV
HoWW o i q q 2 | 2 |
—
L 0c / lc 2 H - H - S 3
(semi-leptonic) e ® q q m m
T,vaq 2 £ wr 1072 E E
Tra (Tcd/)'i"m
Tvaq 2
bb 1 — ParT (200<pr <400 GeV) — ParT (200 <pr <400 GeV)
H 1073 --- ParT (400 <pt <600 GeV) e --- ParT (400 <pr <600 GeV) e
@e 1 E E E
H—qq X _<: - & ParT (600<pr <1000 GeV) ParT (600 <pr < 1000 GeV) ]
ss 1 q L ~-- DeepAK8-MD (200<pr <400 GeV) 1 --- DeepAK8-MD (200<pr <400 GeV) |
- DeepAK8-MD (400<pr<600 GeV) | -+ DeepAKB-MD (400<pr<600 GeV) |
aq (g=u/d) 1 DeepAK8-MD (600 <pr <1000 GeV) . DeepAK8-MD (800<pr < 1000 GeV)
—4 ' PSR S S SR A N SR SR S T T—" -4 - L P S N S T TR NN SO T SR N S T
TeTh 1 H (z¢) 7 %00 ) 0.4 0.6 0.8 70 Yoo 0.2 0.4 0.6 0.8 1.0
ST Signal efficiency Signal efficiency
H—=t TuTh 1 :
Th
ThTh 1
t—bW baq 2 q
b + 0c / 1c t g 1 q
(hadronic) b ® / 2 ﬁé q 1
b
bev 1 b
buv 1
t—bW ; o’ (tev)
br. 1b 1 4 G
(leptonic) - ® el e
bryv 1 b b
bT]l‘f 1
b 1 8 q (blc) g (blc)
T - _—
bb ) mmm-<: 4 (bi2)
QCD ¢ 1
q 88 8 8
cc 1
Lo eToTep
others (light) 1 q
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Better and More Robust Performance 4% SITUPA

CMS JME-25-001 5+,

Process Final state # of classes g - 10°F —,— : (‘13‘T§V) o 10°F
&) F J [ F
H-WW 4949 ® 0/l 3 H g H g § [ CMS simuiation Preliminary <A & | CMS Simuiation Preliminary A
. c/ lc/ 2c 5 3 3] - 7
(full-hadronic) qqq 3 q q £ | H-wwaqvsacD ‘1 £ | Howwaqvst—bw
evqq 2 q q B 101 pr=200Gev, Ini<24 4 B oL pr=200Gev, ni<24
S E mgp >30 GeV » 8 ; mgp >30 GeV =
HoWW el ’ q q 2 g
— L Pt
; q Tevaq ® Oc / 1e 2 H — H _ S | o S
(semi-leptonic) q q s} & e o
T,vaq 2 — £ /7 10-2 - P e _ 102 ?
Ta (Tt;l/)"i"m L & gl
vaq 2 -/
bb 1 I ;f ParT (200 <pr <400 GeV) — ParT (200 <pr <400 GeV)
e 1 H q 103/ --- ParT (400 <pr <600 GeV) E --- ParT (400 <py <600 GeV) =
H—qq ® _<: _ He ParT (600<pr <1000 GeV) ParT (600 <pr <1000 GeV) ]
S8 1 q Hi - DeepAK8-MD (200 <pr<400 GeV) 1 -~ DeepAK8-MD (200 <pr <400 GeV) A
H - DeepAK8-MD (400<pr<600 GeV) | -+ DeepAKB-MD (400<pr<600 GeV) |
aq (q=u/d) 1 : DeepAK8-MD (600 <pr <1000 GeV) ; DeepAK8-MD (600<pr <1000 GeV)
ez I T N WA NS NN SN S S NN S SR SR R S T -l e o L L
TeTh 1 H (z¢) £ %00 0.2 0.4 0.6 0.8 1.0 9.0 0.2 0.4 0.6 0.8 1.0
= Signal efficiency Signal efficiency
H—tt TuTh 1 T
h

: v' Highly granular multi-classifier gives 6-20 fold

= bW baq 2 q _ ) : . .
(hovtron) b @ 1b+oe/l ; ’ﬁéz t—a&:z improvement in background rejection rate on
2 ! H—-WW* —4j vs. QCD/top jets

buv 1 .
= o ® . . ’ —‘“Q; o1 s « Compared with early DeepAK8-MD tagger
cpionic b 1 p T,
btpv 1
b 1 8 q (blc) g (blc)
b . mmo-< GBI —
QCD c 1
» . q 88 8 8
T
others (light) 1 q g
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Better and More Robust Performance 4% SITUPA

CMS JME-25-001 4 1

Process Final state # of classes g - 10— (‘13‘T67V) - 100_
H-oWW aqqq ® e/ 3 H g H g 5 - CMS Simuiation Preliminary ' § CMS Simulanon Prehmmary ,.»""_
(full-hadronic) aqq 3 q q 1{::; | H— WW aqvs QcD "%‘j i H—WWdqvst—bW "
evqgq z q (_] e 10-1l Pr>200GeV, Ini<2.4 4 B 10~k Pr>200Gev, ni<24 )
H-WW wvaq 2 q q g: [ mossoes g) [ mso>30 GeV :
Cti oo I G : H—%ﬁf y H_"‘ﬁ'&ﬁ y o %
= 9 N B -2 P . -2 4
“ 22 2 T ‘ (rp)e ‘ E /f e g
TRV [ o [ ’
bb L i q " I 5"”‘ - ParT (200 <pr <400 GeV) . _."";"" — ParT (200<pr <400 GeV)
-3 -- ParT (400 <pr <600 GeV, E 1073/ --- ParT (400 <p7 <600 GeV| E
H—qq X e 1 —<: g ;‘f ParT :600<ET<1000 Ge\).') ] i ParT 2500<2T<1000 Ge\)l)
SS K == DeepAK8-MD (200 <pr<400 GeV) A - DeepAK8-MD (200 <pr<400 GeV) A
H Dee;AKB-MD §400<::T<sooeev; | DeeZAKS MD 5400<§T<soo GeV; |
aq (q—u/d) 1 S/ - DeepAKS WD (800<pr <1000 GeV) | - DoepAKE-MD (600<pr <1000 GeV)
TeTh 1 H (7¢) 7 000 0z o4 o6 08 10 Y05 o0z o4 06 08 1.0
H L B Signal efficiency Signal efficiency
—+1T TuTh T,
™WTh 1 . c . .
o . : ¢ v' Highly granular multi-classifier gives 6-20 fold
- b c / 1c t = 1 = . . . .
ey b ® broc/1 2 —Qég —a&:g improvement in background rejection rate on
be ! H-WW* —4j vs. QCD/top jets
buv 1 .
bW e ® " 1 E—— NP « Compared with early DeepAK8-MD tagger
(leptonic) ' . .
b 1 » T, v Challenge for tagger calibrations
btpv 1 c . . .
1 ) 1 . Bl oo « Hard to find SM events in similar topology
L - -
bb : o< ey —— « New technique uses Lund jet plane
QCD 1 :
¢ 1 q 2 g ;2 . Effectlvely_measure scale factors per
others (light) 1 q g q uar k Su b -J et
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Impact on Physics g\ SITUPA

5 T T I T T T T T T T T T T | T T T T T T
45 ATLAS ¢ Data
4F- s=13/13.6TeV, 140/ 168" =" Cont. background
HH—>bByy Total background

——— Signal + background

log(1+Sg,,/ B) weighted sum N
M, = 0977

Sum of weights / 2.5 GeV
w
(@]

w
TTTT III]IIII][HH[IIII|IIH|IIH|IIH

e b b b b b b

| I =
0 PR AN R S S S R R |+|*|||‘|*| .+."‘+|?..r.|:
110 120 130 140 150 160
m,, [GeV]
—e— QObserved limit
ATLAS ---- Expected limit (uyy = 0)
V5 =13/136 TeV, 140/ 168 fb~! Expected limit (upy = 0) £20
_ Expected limit (uyy = 0) £1o
HH - bbw —+— Expected limit (;

Expectedlimit(:j:::;: GN2 alone brlngS
20% improvement for

®  JHEP 01 (2024) 066

005 (10 0) i 2 1) .
_— HH — bbyy analysis
Run 2- i }o{:: 4.8 4.2 5.5
Aunst o se w0 so | arXivi2507.03495
Combined - E ' 3.8 2.6 37
0 2 : 4 6 8 10 12 14 16

95% CL upper limit on Ltyy
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Impact on Physics
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SJTUPA

LiEsRiE KR IR S R IF R

5 T T T T T T T T T T T T T T T T T T ] n H H
> F | E High-mass resonances in H/Z(bb)+y final state
O 45 ATLAS ¢ Data =
w = =
N gfF Vs=13/13.6TeV, 140/168 " """ Cont. background 3 ¥
g 3.5 f— HH—>bByy Total background —f
=) = . - Signal + background 4
g 3 log(1+Sg,,/ B) weighted sum W =09 = Fermion
S 25 Ha = loop
E F ] e
%) = = H © ‘
155 | E o
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- —» Expected limit (yy = 1) 1 o =
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20% improvement for g &
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(s = O) (1 = 1) . . aL i
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S
coed TR ' s 26 7 v' GloParT V2 used for X->bb tagger
- « H/Z->bb vs. QCD jets
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Impact on Physics {2\ SITUPA

1.0
__.__+....*.... . 100 _ 100
efffavor tagging With =, K*, KE’S id. 1- Relative uncertainty, HL-LHC 52 mm 95% CL upper limit, CEPC [
—_—— —— T T TE B Relative uncertainty, CEPC [
087  ig..t ]
N 107" - 107
j’f‘ B F
0.6 1
1072 4 - 1072
0.4
=103
0.2
L 10—4
Kb Kc Kg Kw Kr Kz Ky Bsz Bug Bag Bsb Bab Buc Bas
0.0 5 T p
_ - - c s u
e'te > VW H=->w
&8 PRL 132, 221802 (2024)

Jet Origin ID:

« 11 categories (5 quarks + 5 anti quarks + gluon) identification, realized at Full Simulated di-jet
events at CEPC CDR baseline with Arbor + ParticleNet (GNN).

« Jet flavor tagging efficiencies ranging from 67% to 92% for b-, c-, and s-quarks and jet charge flip
rates of 7%-24% for all quark species. Higgs decay BRs range from 2 x 10™to 1 x 1073 (95% C.L.).
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Impact on Physics
. o] .
v’ See more in Mangi’s talk on Friday
1.0

™ __.__+....*.... . 100 _ 100

. - Y efffavor tagging With £%, K=, K id. 1- Relative uncertainty, HL-LHC 52 mmm 95% CL upper limit, CEPC F

/i f // "il . _};&'v —_—— = LRERL LR I Relative uncertainty, CEPC [

/o S // v ges | r

“ /I/ !' ////// ‘//i’// } 'ﬂh 081 ET - L

. Vo ' 10~ - 107
J" N / I’;/ ///////‘// "/’é:::/ E E
- / Lo ] C
/ = 0.6 1 [
1072 4 - 1072
0.4 1
=103
0.2 4
L 10—4
Kp Kc Ko Kw Ke Kz Ky Bsz Bug Bag Bsp Bab Buc Bds
S u d
PRL 132, 221802 (2024)

Jet Origin ID:
events at CEPC CDR baseline with Arbor + ParticleNet (GNN).
« Jet flavor tagging efficiencies ranging from 67% to 92% for b-, c-, and s-quarks and jet charge flip
RkBR BEEHER 2026.01.19

ete > VW H->vwgg
11 categories (5 quarks + 5 anti quarks + gluon) identification, realized at Full Simulated di-jet
rates of 7%-24% for all quark species. Higgs decay BRs range from 2 x 10™to 1 x 1073 (95% C.L.).



Let’s Go Even Bigger: Event-Level Foundation Model £= siTupa

LiEsRiE KR IR S R IF R

Core Idea: One strong body + many small heads Classification

& Decoder — Discriminative Heads: * Multi-Class event classifiers (with regression)
Segmentation Assignment

* Inspired by * Symmetry-aware mapping of objects to truth partons

* The model performs set prediction (queries > predict (requires known decay topology).

class & mask), preserving permutation symmetry. * High accuracy for well-defined processes, but rigid,

. . costly, not generalizable.
* Naturally extendable from objects to substituents Vs &

without changing the model design.

@ Input Representation Task: Classification Task: Assignment Task: Segmentation
Learnable quires
. . Resonance Il
- X particle Cloud (Up to 18 Particles per Event): (GElvgnllTokfth) . . . .
joDbal conte: lesonance
* Each particle is encoded with 7 features: 4- Detection Token  Resonance | i y ,-‘:“?'““"‘““““
ap jets to queries
momentum, isbhJet, isLepton, and charge. Assignment
| . Matrix S ‘\ P ’
- & Global Features / Event Observables: ’ . — o] Masked Decoder o
X T o—0 3 = (Cross attentions + )
+ Missing transverse energy A — % — Self attentions) 3 B
* Number of leptons, number of jets SRR % 3 o— [
o— N 7]
* Invariant mass of visible objects ; . . . —MLP ‘ H
. i Physics Objects
Scalar sums like HT, ST, etc. Physics Process ..l : o ysics Obj
-, Clsitcsion @& S U e Q fogaree,
underlying physics process Prob. of existence pgggg:tnscgodsep;cymc

Class for each queries
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EveNet: Event-Level Foundation Model  #2 siTura

S
o Task: Supervised Generation .
Decoder (Head) 4 s
) .
¢ o ]
il ° [ [ ]
¢ P - ° — i
i - [°] 3 e °
3 s =) ® [ ) a
i 5 7
Q = = il
Qb () i S
D= o > 5 i
05 3 i
&3 8 1 5§ o @ i
(=4 = =
S % £ . sx % -80 i . i i - = .“?. «* Invisible particle E
Q 9 " gg gz i i i . . ‘ . generation '
> — |
— g I == 2 = . Diffusion vectors for z
i 1
g _g 8 I I diffuse back unknown objects
o a o k i
g 5 2 ® . (generation) 1
§ -
g8 i
3 (7)) i i
§ f Task: Self-Supervised Generation 2
o= | i
: '
AN B K
8 0o o 1 1 - ® e
= 1
RN » :
T - Ea—- . D
3. NN = o DR ]
LN e .
, o= .
g = g Y = _ = @ Physics event i
‘ o i Generation i
Pe 1 1] ! i
© o " Diffusion vectors for |
&, % " I diffuse back masked objects I}
S " ’
. (generation) ¢
¢
L 3
. L T =)

Core Idea: One strong body + many small heads

@ Decoder — Generation Head:
Supervised Generation
e Use known objects as input to predict missing ones

(e.g., neutrinos).

e Diffusion models capture high-dimensional
probability densities - predict the most likely
kinematics.

Self-supervised Generation

* Mask part/all of the inputs and reconstruct them
with a diffusion model.

e Learns underlying event structure without requiring
labels.
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SJTUPA

ARSI

v' Jointly trained on the Assignment and Classification tasks 2-15x improvement on bkgd. rejection

[ ] Signa I : H —} aa —) b bb b 400 model training model training model training

SpaNet —— wcls ®  SpaNet —— wls Spahet —— w ik

. .
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Weakly Supervised: Search for Exotic Higgs Decay 4= S/Tupa

Ligsmim IR SR E R

v' Jointly trained on the Assignment and Classification tasks 2-15x improvement on bkgd. rejection

-
S
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Reconstruction: PID L.SJTUPA

a. ITS SPD (Pixel)
b. ITS SDD (Drift)
c. ITS SSD (Strip)
d. VOand TO

e. FMD

» Transformer for particle ID in ALICE THE ALICE DETECTOR

can result in higher purity and efficiency than
standard methods K-

v e
-t

» Use domain adversarial neural networks
to mitigate data-simulation differences b e

12. Muon Tracker
13. Muon Wall
Self-

. 14, Muon Trigger
Embedding ARk Classifier 15. Dipole Magnet {’ !
16, PMD
———— 17.AD

| [ 18.ZDC

19. ACORDE
InputSet Fregen
PER— Transformer g > Softm e
Encoder L axX |

— — | -

~——— [ B B
Proton PID Results Featirm:manpinig S S S Particle label
o o~ o~
Model Precision Recall Fy b 3 é § é
e ] L= L= =
Standard ~ 99.40 + 0.01 59.72 + 0.03  74.61 + 1.88 g g - o
5 5 —
Ensemble  97.16 + 0.46 93.74 + 0.30 95.42 + 0.12 £ £ b 8 g
sl (3] |3
Mean 97.85 + 0.41  93.34 4+ 0.32  95.54 + 0.06 E 2 @ ~>O Domain label
o o ©
Transformer  Proposed  97.80 +0.44  93.86 + 0.27 95.79 + 0.07 E £ £

Regression  97.38 £ 0.40 93.67 £+ 0.38 95.49 £ 0.15
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Reconstruction: Tau ID 42 SITUPA

A 21 X 21 cells (n X ¢ = 0.05 X 0-05) 105 694 inputs J—— Data and MC R, 5 Dutpuis
[ iy : . : 1611004 TP § MC
~ ~ L QEE s ;
o4 Hightlevel i > - - B i
pd \\ | variables : k(5 E| 52 outpuls E
03 AN : E &
2 / 1 1 X 1 1 Cells E-V-f-v-r-vﬂl“-‘-“v‘"‘i === -----:'- '-':- --: i
* (n X ¢ = 0.02 x 0.02) 21 % 21 grid i ZERIP Y 31 w91 rid g Thowmy | Ye
o1 = 184 inputs each : at T i 64 outputs each : E . ; T:-: ﬁ § § £ % :
‘ it ' ' Outer cells i e 18 @ i Sdoupus HIRISIEIEISH " Yp
H rﬂ[ I oy = = |12 === '
¢_¢T}10 1 ) ; li,lﬂ ; Eiégg . ENF"I:“-IN E yl—
I 1 1= /1 i P=SER ! Wiet
_ 0 3 1 - i i~ :_‘_-_‘_‘_-_‘_‘_‘ -._'_‘_-_-_‘_'_'_ h : WY _‘_‘_‘_‘_‘_‘_‘_T_T_'_E E
\ ™ / i1 % 11 grid ; ZEME T 10w 11 grid ' tadsn el i
—02 \ / 188 inputs each i L’:i f-'r"r' ¢ 64 ourputs each i g = = :
% Inner cells |:>‘ = |:>' z 2 % | 64 outputs >
-03 A “~Signal cone : ; tEEe s : T
\\ // PlnEmt BEE: : P
o4 / Isolation cone T i SR
P — e - { 161001 TP § Data and MC
< ky - Ly | NE — Ky + O Ly [T | 4
-04 -03 -02 -01 O 01 02 03 04 "
— n""l-:
JINST 17 (2022) P07023

CMS DeepTau: multi-class tau identification
algorithm based on CNN ::> Forward Pass

« v2.5 adds domain adaptation subnetwork :
with adversarial training to deal with MC <::’ Sackpropsgation . :
mismodelling in the high-purity region

» Better data handling

» Feature standardization, hyperparameter
optimization

I Lngy [ Bl E
H

P

concatenated
[ 200 nodes |

TP wrainabds parameler
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http://dx.doi.org/10.1088/1748-0221/17/07/P07023

Reconstruction: Tau ID £# 7t SITUPA
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Reconstruction: Tau ID £# 7t SITUPA

10° CMS Simulation Preliminary (13 TeV) 100 CMS Simulation Preliminary (13 TeV)
—— DeepTau (v2.1) vs jet —— DeepTau (v2.1) vs jet
DeepTau (v2.5) vs jet DeepTau (v2.5) vs jet
,43‘ 10-14 pr <100 GeV 2 1o-1 pr>100 GeV
3 Inl<2.3 _ E Inl<2.3
© Jets from W + jets I Jets from tf
o o
a a
o 1072 o 1072
I :
— v
£ wn
b E
g ]
10 10-31
25 2.5
IV 2.0 wl
?E 159 ¥ 151
g
1.0 , . . . | | 1.0
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Tau ID efficiency Tau ID efficiency

DeepTau v2.5 significant improvement compared to v2.1
« Jet misidentification reduced by = 50%
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Reconstruction: Tau ID §x 0 sITUPA

100 CMS Simulation Preliminary (13 Tev) 100 CMS Simulation Preliminary (13 TeV)
. 59.7 fo' (13 TeV 59.7 fb" (13 TeV,
—— DeepTau (v2.1) vs jet —— DeepTau (v2.1) vs jet < T -.----.-.--[-)a*a----.(----) < 18000F T T LR, o e_}
DeepTau (v2.5) vs jet DeepTau (v2.5) vs jet &20000 F CMS 2o E K o000 CMS ) zon
= 18000F Preliminary e . = t Preliminary B 2o E
> — =
£107 pr< 120;) GeV é\ 101 pr>100 GeV Steooof |:- gla::;mweak ] 30% decrease om0 [ Electroweak ]
5 Inl<2. = Inl<2.3 S om0k ™ t ] in the background ©
o Jets from W + jets % Jets from tE = [ Background inty > = 12000 || Background uncertainty J
) -g 7 7 10000 3
_ -
o 102 2 8000 ]
2 © 107 1 6000
E é E
= ] 4000 b
E e
T in-3 Q E 2000 3
10 103 L 0
L% 1.5 % 1.5
22 25 3 ettt ema e et ity 3 - egepeyeitetitetiy
20_ OU L 1 1 L L ODC|ln\|ln|||n1|||1l\llllliJlan
- 2.0 %0 50 700 T50 200 750 300 %o 50 100 750 200 250 300
S s P, S_M/J M, (GeV) M (GoV)
N -3 -
-
10 T T T T T T 1.0‘
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Tau ID efficiency Tau ID efficiency

DeepTau v2.5 significant improvement compared to v2.1
« Jet misidentification reduced by = 50%
 30% decrease in the background
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Reconstruction: Tau ID £# 7t SITUPA

100 CMS Simulation Preliminary (13 Tev) 100 CMS Simulation Preliminary (13 TeV)
- DEEDT&U (v2.1) vs ?Et — DeepTau (v21) VS jet ;“ _' AL B '.' T E)a{a's?_'(f'bl (J%Tel\f_) < 1g000F T T T N Daa 59-7fb-‘ USTBV_}
DeepTau (v2.5) vs jet DeepTau (v2.5) vs jet &2 CMS %%—»n K] oo CMS 7o
< 18000F Preliminary S 1 <= 10008 prafimi [ ]
E‘ 10-14 Pr= 100 GeV Fay 10-1 4 pr>100 GeV £ 16000 5 Elf;grweak : 30% decrease f14000 reminay [ Electroweak 1
5 Inl<2.3 = Inl<2.3 S om0k ™ t ] in the background ©
g Jets from W+ jets E Jets from t % [0 Background ] > = [ Background uncertainty 3
e o 1 3
o 10 © 107 ; ]
& " :
o B ]
£ : - -
GJ e
= [] E 3
1073 _'10—3_
& g 5
2.5 25 % g o % s e geigetynate ety
"'l: 2.07 2.0 © 05 5 00 0 20 750 300 © N 1 R T R )
rsi ; 1.54 Eg 15 _m%/fj mu( (Gev) My, (GBV)
1.0 7
. . . . . . 1.0 CMS Prelimi 59.7 fo-' (13 TeV
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 ! L ! ¥ T T [ F lrel minary T ( T )
. v 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 =]
Tau ID efficiency Tau ID efficiency 5
o]
5] B |
CMS-DP-2024-063 O 100
DeepTau v2.5 significant improvement compared to v2.1 0.95- ‘ | ‘ _ |
« Jet misidentification reduced by = 50% ]
. 0.90 ‘ —
 30% decrease in the background ; [ |
« Data vs. MC scale corrections are closer to 1 val |
* Minimizing dependence on MC mismodelling ‘ # DeepTauvat
| DeepTau v2.5 ]
% a0 e 8 q0 20
pt (GeV)
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https://cds.cern.ch/record/2904699/files/DP2024_063.pdf

TRIDENT Experiment g\ SITUPA
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TRIDENT Experiment {2\ SITUPA

 TRIDENT: TRoplcal DEep-sea Neutrino Telescope.

A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean. Nature Astronomy (2023).

 To be located in the South China Sea.

Penrose tiling structure with 2000m radius, 700m height (8.7 km?3). 3500m deep under
sea level. hDOM

24220 hybrid Digital Optical Module(hDOM).
o et

iR - B2 L% 2026.01.19


https://doi.org/10.1038/s41550-023-02087-6

TRIDENT: Neutrino Reconstruction 4%\ SITUPA
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Detector

/
/
/

v‘”,’l

/ Water sphere

/
/

Preliminary earth model

Neutrino event generator Based on CORSIKA8

Detector simulation based on Geant4
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Detector

\

DOM7

ol

DOMg.____ oM,

/
Vy,
,I Water sphere

/
/

DOM3

Preliminary earth model

Neutrino event generator Based on CORSIKA8

Detector simulation based on Geant4

DOM;

\I/

ROV path

Top view of TRIDENT

/

DOM4

DOMg
DOM 2

DOM 5

\

Use point cloud to represent neutrino events:
* Triggered DOMs
* Location of DOMs

- Nodes of point cloud
-> Coordinate of nodes, pos;.

* DOM-measured time -> Features of nodes, x;.
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

* GNN is built based on EdgeConv block: modified block as in ParticleNet
* Both graph-level and node-level target can be predicted.

u X pos
__i ¢ ¢ X u pos
Y
EdgeConv Block ) K-NN
y v
( MLP )4—( Pooling )4-—| edges
_“'j i pis ——® (u, xi , xj — xi }d—l
EdgeConv Block ) xN-1
Y
( MLP H Pooling 3
L ! X'

4
==

graph-level node-level
prediction prediction

Network Structure

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR - B ES 9 2026.01.19



TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Vy Direction reconstruction

train : validation : =900k : 70k :

wlz
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Vy Direction reconstruction

train : validation : =900k : 70k :

* Input features: location ﬁi, first photon arrival time 7'; and
number of photo hits 7;.

wlz

Track-like event display
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Vy Direction reconstruction

train : validation : =900k : 70k :
* Input features: location D;, first photon arrival time T'; and DOM, (D;, T)
number of photo hits 7;.
v/ >

wlz
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Vy Direction reconstruction

train : validation : =900k : 70k :
* Input features: location D;, first photon arrival time T'; and DOM, (D;, T)
number of photo hits 7;.
Ty
* To make full use of the geometric feature of track-like events, g

. ) R 14 (Xy, by Ty,
the network is trained to predict 7; for each DOM i%ﬂoninﬁﬁggﬁm boM,

wlz

Track-like event display
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Vy Direction reconstruction

train : validation : =900k : 70k :
* Input features: location D;, first photon arrival time T'; and DOM, (D;, T)
number of photo hits 7;.
Ty
* To make full use of the geometric feature of track-like events, g

. ) R 14 (Xy, by Ty,
the network is trained to predict 7; for each DOM i%ﬂoninﬁﬁggﬁm boM,

* Linear fit on the predicted 7'; to reconstructs 7i,,.

wlz

Track-like event display
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TRIDENT: Neutrino Reconstruction 4%\ SITUPA

Vy Direction reconstruction

train : validation : =900k : 70k :
* Input features: location D;, first photon arrival time T'; and DOM, (D;, T)
number of photo hits 7;.
Ty
* To make full use of the geometric feature of track-like events, g

. . R 14 (Xy, by, Ay)
the network is trained to predict 7; for each DOM i%;otoninﬁﬁg;,s boM,

* Linear fit on the predicted 7'; to reconstructs 7i,,.

wlz

 Loss function: mean square error (MSE) with weight
proportional to n;:

, L2
Loss = Xin; X |0utputi — ri| /Zin;

* Hybrid-GNN models: LITE, LARGE Trackclike event display
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Normalized Counts

0.08}

0.06}

0.04f

0.02}

0.00

TRIDENT: Neutrino Reconstruction 4%\ SITUPA

i 1 Model: LARGE 102k 95% Angular Error Band —— LARGE
i --— peak: 12.50 68% Angular Error Band —— LITE
! --- median: 30.00 —t— Median Angular Error (stat. unc.) —— full GNN
! 101k -§ —— likelihood
e = 100
g :
5 10 =
- E =
- 5
2 1071 §
e : :
i = 1071}
! 1072}
r i L L . L L L A L 2 ‘3 '4 5
0 50 100 150 200 0 50 100 150 200 10 10 10 10
number of triggered hDOMs number of triggered hDOMs Eu[GeV]
TABLE I. Mean run-time cost per inference.
Method Time (0.1-1 TeV) (ms) Time (1-10 TeV) (ms) Time (10-100 TeV) (ms) PhyS. Rev. D 112, 072012
Likelihood 1552.30 1259.86 919.14
GNN light (GPU) 0.19 0.21 0.29
GNN large (GPU) 0.38 0.78 2.37
GNN light (CPU) 5.05 12.53 30.44
GNN large (CPU) 54.71 152.48 181.80

- Median angular error decreases from 1 degree to 0.1 degree as the energy of v, increases
» Light hybrid-GNN model (LITE) runs 0.19-0.29 ms per event on GPUs, 1000 times faster than

traditional likelihood fitting method --- real time processing
« Large hybrid-GNN model (LARGE) takes longer but with more precision --- offline processing
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Fast and Flash Simulations at LHCb £# 7t SITUPA
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Fast and Flash Simulations at LHCb £# 7t SITUPA

_Fast
/—M

Event Particle o .
[Generation} [ Transport ] [ Digitization } [ Reconstruction }

N~ -
~
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Fast and Flash Simulations at LHCb £# 7t SITUPA

_Fast
/_M

Event Particle o .
[Generation} [ Transport ] [ Digitization } [ Reconstruction }

— -
~"

Why simulation matters?

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR-Z ES 5% 2026.01.19



Fast and Flash Simulations at LHCb £# 7t SITUPA

Event Particle e . .
[Generation} [ Transport ] [ Digitization } [ Reconstruction }
S -

—Y—

Why simulation matters?
* 90% of computing resources are used for simulations at LHCb
« Calorimeter simulation is the most computationally intensive
part of the simulation process
* 60% of the total CPU time is used for calorimeter simulations

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR-Z ES 5% 2026.01.19



Fast and Flash Simulations at LHCb £# 7t SITUPA

lm arXiv:2511.02020

Event Particle e . .
[Generation} [ Transport ] [ Digitization } [ Reconstruction }
S -

—Y—

Why simulation matters?
* 90% of computing resources are used for simulations at LHCb
« Calorimeter simulation is the most computationally intensive
part of the simulation process
* 60% of the total CPU time is used for calorimeter simulations

CaloML based on CaloChallenge
« CaloML is the first production-ready option with generative models

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR - B ES 9 2026.01.19


https://arxiv.org/abs/2511.02020

Fast Simulation at LHCb

Particle vertices

-= ECAL sensitive area ]
—@— 7Max / Collector Plane tilted by 0.207 deg |

#2 @~ Triggering Plane tilted by 0.207 deg

y [mm]
B
()
()
o

Cylinder of virtual hits 11000 11500 12000 12500 13000 13500 14000 14500 15000
z [mm)]
around a particle shower Training

ﬁmax
X Hx émax
- # o Mg o) decoder Z
> dy(2) ¢
p p
é
Inference
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Fast Simulation at LHCb 4o % SITUPA

Particle vertices
-= ECAL sensitive area
—@— 7Max / Collector Plane tilted by 0.207 deg |
B8 @ Triggering Plane tilted by 0.207 deg 1

y [mm]
B
()
()
o

Cylinder of virtual hits 11000 11500 12000 12500 13000 13500 14000 14500 15000
z [mm]
around a particle shower Training
ﬁmax
< Hx émax
0 s ) decoder Z
> dy(2) s
4 p
é
Inference
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Modified Variational autoencoders (VAE) predict
spatial and energy profiles of the cylinders, improving
both accuracy and training speed
« ~100x times faster for electrons and photons in ECAL
« ~0.01% energy difference on reconstructed objects
 Ongoing efforts to include hadrons
« Good agreement with physics observables
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Flash Simulation at LHCb 42 SITUPA
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Flash Simulation at LHCb 42 SITUPA

Charged /[ Geometrical
— acceptance
Propagation in

magnetic field

Tracking
efficiency

amarr

Modular pipeline

Tracking
resolution

Physics
generators

Neutral object y

kinematics Neutral object Charged particle
identification identification
Neutral \ f
[ Persistency ]

Two branches approach
« Charged: branch treating charged particles
relying on tracking and particle identification
parameterizations
* Neutral: branch treating neutral particles that
require an accurate parameterization of the

CalO M O O
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Flash Simulation at LHCb 42 SITUPA

HepMC PID
Charged P ——— RICH detector
acceptance

Tracking
, \ system
Propagation in Propagation in Kinematic params
mag netic field the magnetic field .
| \ J | [ Global PID vars
m r _ rem———r— , \ E— i osc moce
Physics d arr Tracking Accuiitiinee Detector occupancy
generators Lo resolution | sampling | 1
Modular pipeline ;l_/ \ J—I_ MUON detector amarr
— PID pipeline
. Tracking
Neutral object h J efficiency
i i i icle | | | ] f-- - oo e oo e
kinematics Neutral object Charged particle " LHCb Simulation Preliminary 1 Pythia8 + Geantd || LHCb Simulation Preliminary :
identification identification | Protomsfrom A) —» Afu~ 7, Pythia8+Lamarr ||y prererereeeeereeee :
e = i : § FE == Y " vy !' 0 % Sy & ¢ 4 v ;o : E E7OOOT 20 Good 7asso'cie.nion 2016 MagUp 7 E
Neutral \ j - -l validation | Zoooof 3 Famosd i
1 E200fk AD > At X[« EpmEs o O
| 3] r : 118 E 1as + Lamarr B :
) i) L {e1 g o o Q 1 1
[ Persistency ] Tracking 1S 1s0f B LI Validation ; o L
- 1211 2 + = 1+ N ]
system :gloo:— 18 1 s000p B —>pp/K o
Y EZ . ‘Zii 2000 © © 3
i S0F 181 NN 1
' ¥ 151 1000 F \ 1
Two branches approach L b
! e T T T i O e i Y VI Gl :: e T e At ot i / H
- . i 2200 2250 2300 2350 2400 11 900 5150 5200 5250 5300 5350 5400 !
« Ch d: b ht t h d rticl ! LHCb-FIGURE-2022-014 A mass [MeV/c?] 11 B manss [MEVTe')
arged: pbranchn treating cnarged particies | LHCh-FIGURE-2022-014 A £ mass [MeV/c?] o BrmesMeVE]
relying on tracking and particle identification
parameterizations

* Neutral: branch treating neutral particles that
require an accurate parameterization of the

calorimetler
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Flash Simulation at LHCb 42 SITUPA

HepMC PID
Charged Geometrical Tracking RICH —— system
m— acceptance efficiency T S ‘j 2
Propagation in

Propagation in f Kinematic params
mag netic field the magnetic field l .
\~ / —| Global PID vars
PhYSiCS amarr Trackir)g ‘:ig:’:::ta':z:' Detector occupancy \ — .
generators Modular pipeline resolution ;l—/ - ‘—I_{ MUON detector } PII.El-ar'narlf
-based mode ipeline
_ —— PP
Neutral object h J efficiency
kinematics \[ Neutral object Charged Partide] r THCh Simuiation Preliminary - =3 Pythiag + Geantd 30" IooTs e T T—— -
identification identification | Protons from A) — Afu~ 7, Pythia8 + Lamarr 1} 4 i biion B ey :
' X :§ :_I T T I' A LRI B A S _§7OOOT = Good”/asso'cie.nion 2016 MagUp — :
Neutral \ / reion | 157} AL LT
3§200;A2—>Aj,u_X i 11 B soof 5 AR o et ~ OGQ i
Persistency ] o EISO- §'§4000- ‘ "
[ TrGCklng EE _ Eél Z3000—B+ —>pf)”/K+ \ D (‘l)_f |
system  HcRd: RN \loNGCEEE
L osoF ;'Zfi i
Two branches approach b I
: . ; P me B mo 2a00 | S0 5150 5200 5250 5300 5350 524005
» Charged: branch treating charged particles | LHCOFIGURE-2020:014 _ AtmssMevil 1 BTmesteved |
relying on tracking and particle identification « Lamarr accelerates detector simulation and
parameterizations reconstruction by 2-3 orders of magnitude
* Neutral: branch treating neutral particles that compared to GEANT4 full simulation
require an accurate parameterization of the « Validation for LHCb analyses, neutral sector needs
calorimeter ] morework
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Large Language Models for Design  #%/.s/1uPA

Motivation

* Physics instruments (e.g., collider
detectors) require long, expensive design
cycles.

e ML optimization exists (Trust-region (TR)
optimizer, differentiable surrogates, RL), but
humans still craft action spaces, rewards,
and workflows.

Can LLMs propose physically meaningful

designs with *only prompting*?

« Keep simulator + reward fixed, swap
proposal mechanism (e.g. RL — LLM

prompting).

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR - B ES 9 2026.01.19



Large Language Models for Design

/A
P_,o’/ SJTUPA
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Motivation

* Physics instruments (e.g., collider
detectors) require long, expensive design
cycles.

e ML optimization exists (Trust-region (TR)
optimizer, differentiable surrogates, RL), but
humans still craft action spaces, rewards,
and workflows.

Can LLMs propose physically meaningful

designs with *only prompting*?

« Keep simulator + reward fixed, swap
proposal mechanism (e.g. RL — LLM

prompting).

arXiv:2601.07580

Benchmarks reused from RL study
(controlled testbeds)

A) Sampling calorimeter segmentation

Design variables Metric
e layer positions z (mm) Mean-corrected energy
* discrete layer thickness t resolution
* global thickness/cost budget (EM & hadronic @ 50/100 GeV)

B) Magnetic spectrometer layout

Design variables Metric

* station positions z (m)
 granularity g (bins/side)
» total pixel budget

Tracking efficiency & momentum
resolution @ 10/100 GeV

2026.01.19


https://arxiv.org/abs/2601.07580

Large Language Models for Design  #2/./TuPA
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Large Language Models for Design  #2/.S/TuPA

Prompt

Problem spec
+ constraints

+ objective targets
+ memory: best
designs

BR -2 L% 2026.01.19



Large Language Models for Design  #2/./TuPA

Prompt LLM proposes

Problem spec Return ONLY JSON
+ constraints {z:[...], t:[...]1}

+ objective targets or {z:[...], g:[...]}

+ memory: best

designs

BR -2 L% 2026.01.19



Large Language Models for Design  #2/./TuPA

Prompt LLM proposes Projection

Problem spec Return ONLY JSON Sort & snap to

+ constraints {z:[...], t:[...]} discrete sets
+ objective targets or {z:[...], g:[...]} enforce budgets
+ memory: best remove overlaps

designs

@5, L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan oK BIR - B ES 9 2026.01.19



Large Language Models for Design  #2/./TuPA

Prompt LLM proposes Projection Evaluate / Iterate

Problem spec Return ONLY JSON Sort & snap to Simulator +
+ constraints {z:[...], t:[...]} discrete sets reconstruction

+ objective targets or {z:[...], g:[...]} enforce budgets + reward S(x)
+ memory: best remove overlaps

designs

R 2026.01.19
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Large Language Models for Design  #2/./TuPA

Prompt LLM proposes Projection Evaluate / Iterate

Problem spec Return ONLY JSON Sort & snap to Simulator +
+ constraints {z:[...], t:[...]} discrete sets reconstruction

+ objective targets or {z:[...], g:[...]} enforce budgets + reward S(x)
+ memory: best remove overlaps

designs

Optional hybrid step: Trust-Region (TR)
refinement

- Keep discrete choices fixed
* Locally optimize continuous positions (z)
* Use black-box optimizer (BOBYQA) under hard constraints

5% 2026.01.19
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Large Language Models for Design  #2/./TuPA

Prompt LLM proposes Projection Evaluate / Iterate

Problem spec Return ONLY JSON Sort & snap to Simulator +

+ constraints {z:[...], t:[...]} discrete sets reconstruction
+ objective targets or {z:[...], g:[...]} enforce budgets + reward S(x)
+ memory: best remove overlaps

designs

What makes it interesting?

* No fine-tuning, no gradients, no simulator Optional hybrid step: Trust-Region (TR)
Interaction by the model. refinement

* LLM is used as a *proposal generator* using . Keep discrete choices fixed

broad pretrained physics knowledge. « Locally optimize continuous positions (z)

° Feasibility projection prevents wasting * Use black-box optimizer (BOBYQA) under hard constraints
evaluations on invalid designs.

 Memory of best designs gives a compact
“dataset” for in-context improvement.

R 2026.01.19
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Large Language Models for Design

Models tested (350 proposal iterations each)
GPT-0SS-20B * GPT-OSS-120B * GPT-5 » Gemini 2.5 Pro

Calorimeter benchmark

Highlight (hadronic resolution dominates reward)

Baseline Had 50 GeV: 32.13% Had 100 GeV: 25.19%

RL best

Best
LLM(+TR)

Had 50 GeV: 24.29% Had 100 GeV: 18.07%

Had 50 GeV: 25.09% Had 100 GeV: 18.06%

Observation: even without task-specific training, LLMs
quickly find non-uniform layer layouts that improve
hadronic performance.

/A
P_// SJTUPA

LS RE AR S KB

Spectrometer benchmark
Highlight (100 GeV momentum resolution)

Baseline Res@100 GeV: 13.27% Eff@100 GeV: 99.17%

Res@100 GeV: 7.95% Eff @100 GeV: 99.90%
Eff@100 GeV: 99.91%

RL best

Best

- 0
LLM(+TR) Res@100 GeV: 7.97%

Observation: open-weight GPT-OSS-20B performs
strongly; TR improves z-placement and nearly matches
RL at 100 GeV.

2026.01.19




Large Language Models for Design  #2/./TuPA
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Large Language Models for Design  #2/./TuPA

Main takeaways

LLMs can generate valid designs under hard constraints
Even with no task-specific training, prompting +
ields physicall ingful layouts.

RL remains the strongest end-to-end optimizer
But LLM+local refinement can recover much of the
performance.

Feasibility projection is crucial
Deterministic cleanup turns brittle generations into a

stable search process.

LLMs as meta-planners
They can help define search strategies, organize
experiments, and orchestrate optimization pipelines.

@ L.Li, Al and Machine Learning Application in Experimental High Energy Physics @ KEK, Japan ook BE B 3% 2026.01.19
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Large Language Models for Design  #2/./TuPA

A practical hybrid workflow

Main takeaways _
(toward “closed-loop” design)

LLMs can generate valid designs under hard constraints
Even with no task-specific training, prompting + LLM
ields physicall ingful layouts.

Propose design hypotheses, constraints, and

RL remains the strongest end-to-end optimizer evaluation plan

But LLM+local refinement can recover much of the
performance. Optimization engine

RL / TR / differentiable surrogate refines designs

Feasibili rojection is crucial
easibility projection is crucia under reward

Deterministic cleanup turns brittle generations into a

stable search process. _ _ .
Simulation & validation

LLMs as meta-planners GEANTA4-like simulation, reconstruction, system-
They can help define search strategies, organize level checks
experiments, and orchestrate optimization pipelines.

Human-in-the-loop

Review, constraint updates, safety & engineering
feasibility
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Large Language Models for Design  #2/./TuPA

A practical hybrid workflow

Main takeaways _
(toward “closed-loop” design)

LLMs can generate valid designs under hard constraints
Even with no task-specific training, prompting +
ields physicall ingful layouts.

LLM

Propose design hypotheses, constraints, and

RL remains the strongest end-to-end optimizer evaluation plan

But LLM+local refinement can recover much of the
performance. Optimization engine

RL / TR / differentiable surrogate refines designs
under reward

Feasibility projection is crucial
Deterministic cleanup turns brittle generations into a

stable search process. _ _ .
Simulation & validation

LLMs as meta-planners
They can help define search strategies, organize
experiments, and orchestrate optimization pipelines.

Limitations & Outlook Human-in-the-loop

» Benchmarks are simplified; real detector design Review, constraint updates, safety & engineering
adds more subsystems and constraints. (el

» LLMs need robust guardrails (projection, validation)
to avoid invalid or misleading proposals.

» Agent that calls LLMs and tools to do optimization
studies.

GEANT4-like simulation, reconstruction, system-
level checks
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Model-centric vs. Agent-centric {2\ SITUPA
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Model-centric Al
« Single inference
« Passive response
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Model-centric Al
« Single inference
« Passive response
« Stateless
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Model-centric vs. Agent-centric {2\ SITUPA

Model-centric Al
« Single inference
 Passive response
« Stateless
 Does not understand goals or objectives
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Model-centric vs. Agent-centric {2\ SITUPA

Model-centric Al
« Single inference
 Passive response
« Stateless
 Does not understand goals or objectives
« Does not execute actions

Agent-centric Al
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Model-centric Al
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 Does not understand goals or objectives
« Does not execute actions

Agent-centric Al
« Long-horizon with multiple tasks
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Model-centric Al
« Single inference
 Passive response
« Stateless
 Does not understand goals or objectives
« Does not execute actions

Agent-centric Al
« Long-horizon with multiple tasks
* Proactive planning
« State memorized
« Can understand goals and objectives
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Model-centric vs. Agent-centric {2\ SITUPA

Model-centric Al
« Single inference
 Passive response
« Stateless
 Does not understand goals or objectives
« Does not execute actions

Agent-centric Al
« Long-horizon with multiple tasks
* Proactive planning
« State memorized
« Can understand goals and objectives
« Can execute actions and call (other) tools/agents
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Agent: Al4Science {2 SITUPA

Agents Tools
v Memory ) o ,’
summary
— @ & =
Feedback

Short-term  Long-term Chat

_ Objective
Memory Retrieval \L

= D) s — B .

Rethink LLM Action Machine

T

Observation q
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Q Environment
APls

v

Reward
‘s Impact
! 1 1 1 :
; m
@ o
Crawler
Computer Game Code Simulation Real-Word
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A
Agent: AI+HEP {2\ SITUPA

Physicist / Operator

(set goal or ask question)
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A
Agent: AI+HEP {2\ SITUPA

Physicist / Operator Agent Orchestrator
(set goal or ask question) (plan + route + memory)
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STA
Agent: AI+HEP pA el TN

Physicist / Operator Agent Orchestrator Tool Layer
(set goal or ask question) (plan + route + memory) (software + services)
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STA
Agent: AI+HEP pA el TN

Physicist / Operator Agent Orchestrator Tool Layer
(set goal or ask question) (plan + route + memory) (software + services)

Reconstruction /

Al Calibration

Metadata DQM / Trigger

Visualization /

Analysis tools Validation tools
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Agent: AI+HEP

Physicist / Operator Agent Orchestrator
(set goal or ask question) (plan + route + memory)

What does the Agent do?

Ligsmim IR SR E R

A
P_,c’/ SJTUPA

Tool Layer
(software + services)

HTCondor Reconstruction /

Calibration

Metadata DQM / Trigger

Visualization /
Validation tools

Analysis tools
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v’ Task decomposition and tools selection HTCondor Reconstruction /
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Metadata DQM / Trigger
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Physicist / Operator Agent Orchestrator Tool Layer
(set goal or ask question) (plan + route + memory) (software + services)

What does the Agent do?

v’ Task decomposition and tools selection HTCondor Reconstruction /

) i Calibration
v'lterative refinement

v"Run monitoring: summarize alarms and propose checks :
Metadata DQM / Trigger

Visualization /
Validation tools

Analysis tools
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Physicist / Operator Agent Orchestrator Tool Layer
(set goal or ask question) (plan + route + memory) (software + services)

What does the Agent do?

v’ Task decomposition and tools selection HTCondor Reconstruction /

) i Calibration
v'lterative refinement

v"Run monitoring: summarize alarms and propose checks :
Metadata DQM / Trigger

v’ Launch workflows: submit jobs, monitor DAGS, retry safely

Visualization /
Validation tools

Analysis tools
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Agent: AI+HEP pA el TN

Physicist / Operator Agent Orchestrator Tool Layer
(set goal or ask question) (plan + route + memory) (software + services)

What does the Agent do?

v’ Task decomposition and tools selection HTCondor Reconstruction /
: : Calibration
v Iterative refinement

v"Run monitoring: summarize alarms and propose checks :
Metadata DQM / Trigger

v’ Launch workflows: submit jobs, monitor DAGS, retry safely

v'Data discovery: locate datasets, validate schemas, track

provenance Visualization /
Validation tools

Analysis tools
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Physicist / Operator Agent Orchestrator
(set goal or ask question) (plan + route + memory)

Tool Layer
(software + services)

What does the Agent do?

v’ Task decomposition and tools selection
: : Calibration
v Iterative refinement
v"Run monitoring: summarize alarms and propose checks
o _ Metadata DQM / Trigger
v’ Launch workflows: submit jobs, monitor DAGS, retry safely

v'Data discovery: locate datasets, validate schemas, track
provenance

: Visualization /
Analysis tools L
: : : : Validation tools
v'Analysis assistance: produce plots and sanity checks with

reproducible results
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STA
Agent: AI+HEP pA el TN

Physicist / Operator Agent Orchestrator
(set goal or ask question) (plan + route + memory)

Tool Layer
(software + services)

What does the Agent do?

v’ Task decomposition and tools selection HTCondor Reconstruction /
: : Calibration
v Iterative refinement
v"Run monitoring: summarize alarms and propose checks
o _ Metadata DQM / Trigger
v’ Launch workflows: submit jobs, monitor DAGS, retry safely
v'Data discovery: locate datasets, validate schemas, track

provenance : Visualization /
Analysis tools L
: : : : Validation tools
v'Analysis assistance: produce plots and sanity checks with

reproducible results

Goal: make agents useful by constraining them with tools, permissions,
records, validation checks, and reproducible execution.
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v The field of (experimental) high energy physics is rapidly adopting ML

and Al techniques leading to real impact on physics results
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Conclusion and Outlook %), SJTUPA

v The field of (experimental) high energy physics is rapidly adopting ML
and Al techniques leading to real impact on physics results

v Diversified use case: classification with both supervised and

weakly/self-supervised scheme, reconstruction, simulation and more

v Trend: bigger and more sophisticated, more generalized (foundation)

model + fine tuning
v Agent-centric Al is emerging as a potential game-changer

v Regardless, human insight and expertise remain essential to success

In the foreseeable future
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b - o
Self-Supervised: Anomaly Detection #2370

* Reference paper: 2502.14036 (To test EveNet’s generative capability, we extend an existing anomaly detection
method using normalizing flows by replacing it with diffusion-based generation of full 4-momentum)

e Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Y resonances in di-muon final states.

Per-channel Bundled Significance

(o0]

. . o o . 5 I EveNet-f.t.(Cls+Gen)
Final Significance (¥-reweighting) BN EveNet-ft.(Cls+Gen+Assign)
/ I EveNet-f.t.(SSL)
® paper: 6 4-0' 6 B EveNet-scratch
Uncalibrated
5 mmm Calibrated

 EveNet-Pretrain: 7.50
+_EveNet-Serateh-2g (mass sculpting X)

IS

w

Median significance *+ 68% CL
N

Note: the energy regime here is even different
from the main samples in pretrain 3

=

o ~ . o X 0~
1o improvement on significance  «°
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Faster Simulation: Photon Showers
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Particle energy

Use Variational autoencoders (VAE) and generative
adversarial networks (GAN) to simulation ATLAS photon

showers

 VAE/GAN: x100 faster than GEANT4 full simulation
« Good agreement between GAN/VAE and Geant4 for EM

showers of different energies

 GAN needs improvement in the longitudinal shower
development
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