

The 2nd "AI+HEP in East Asia" Workshop

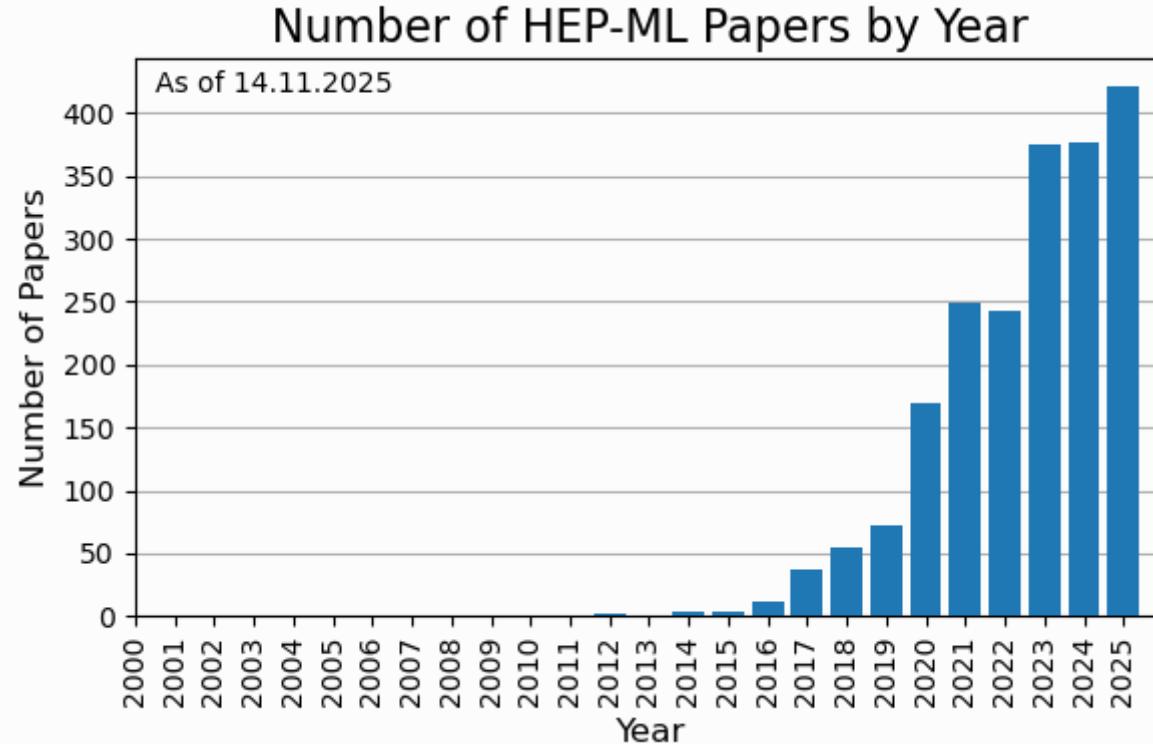
AI and Machine Learning Application in Experimental High Energy Physics

Liang Li

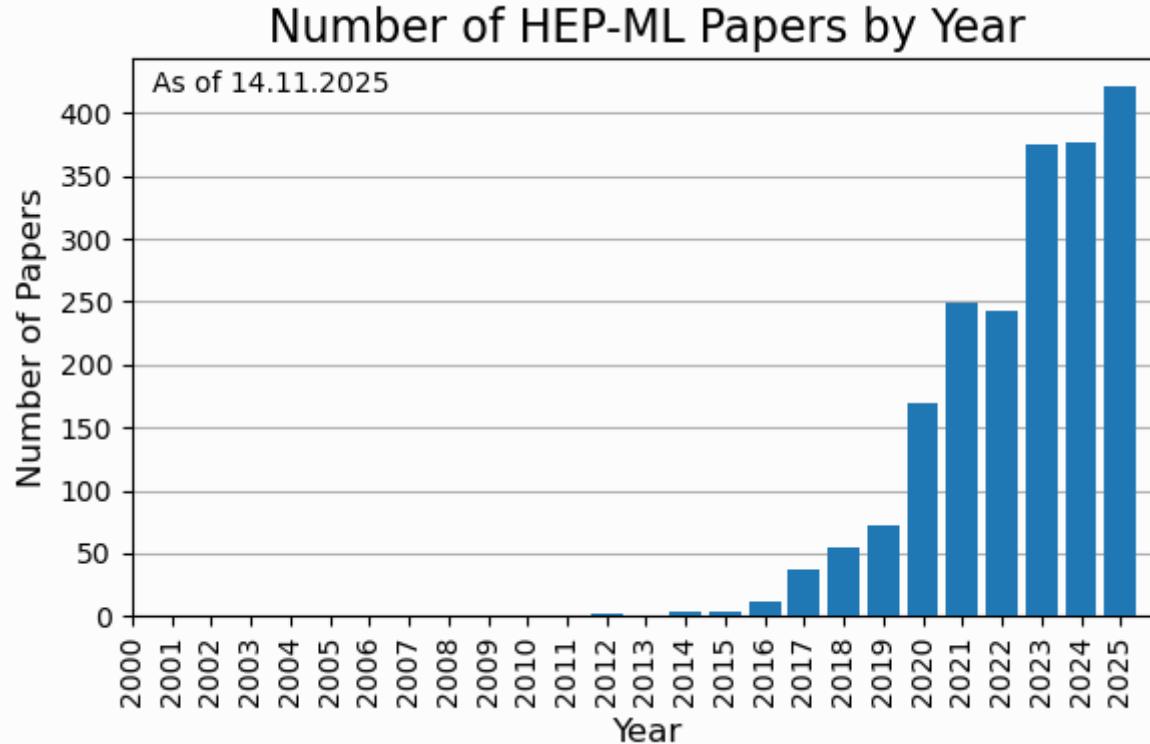
Shanghai Jiao Tong University

AI and ML in High Energy Physics

AI and ML in High Energy Physics

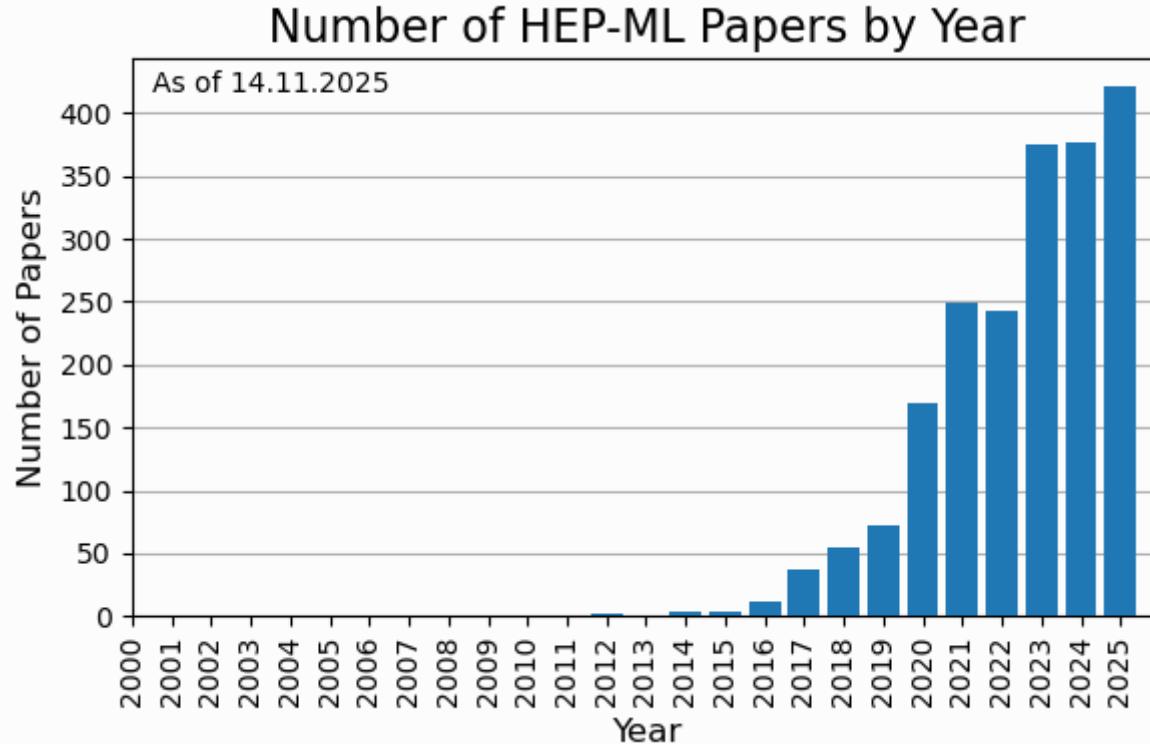


[Living Review of Machine Learning for Particle Physics](#)



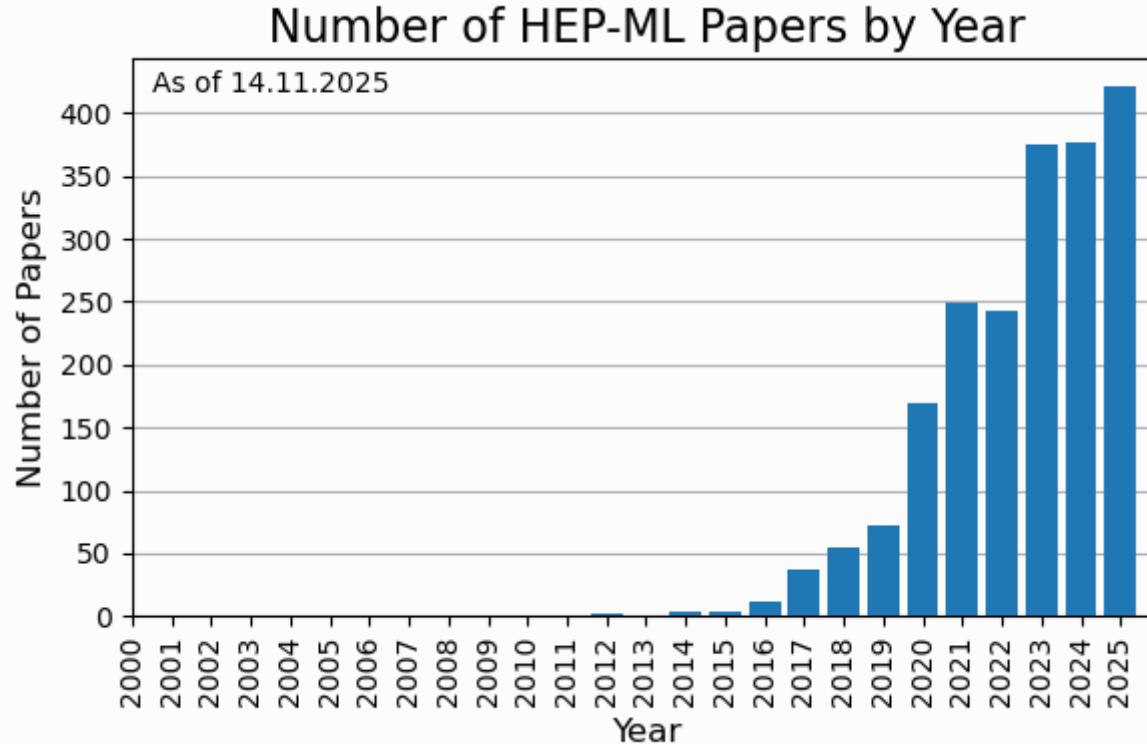
Living Review of Machine Learning for Particle Physics

- Do you know how many papers linked on the landing page?



Living Review of Machine Learning for Particle Physics

- Do you know how many papers linked on the landing page?
- Read them all, or, let AI do it for you 😊



Living Review of Machine Learning for Particle Physics

- Do you know how many papers linked on the landing page?
- Read them all, or, let AI do it for you 😊

Impossible to cover everything in one talk

- Highly selective and apologize for missing many important work

✓ Classifier (Supervised)

- ✓ **Classifier (Supervised)**
- ✓ **Self-guided Detection/Search (Weakly Supervised/Unsupervised)**

- ✓ **Classifier (Supervised)**
- ✓ **Self-guided Detection/Search (Weakly Supervised/Unsupervised)**
- ✓ **Reconstruction**

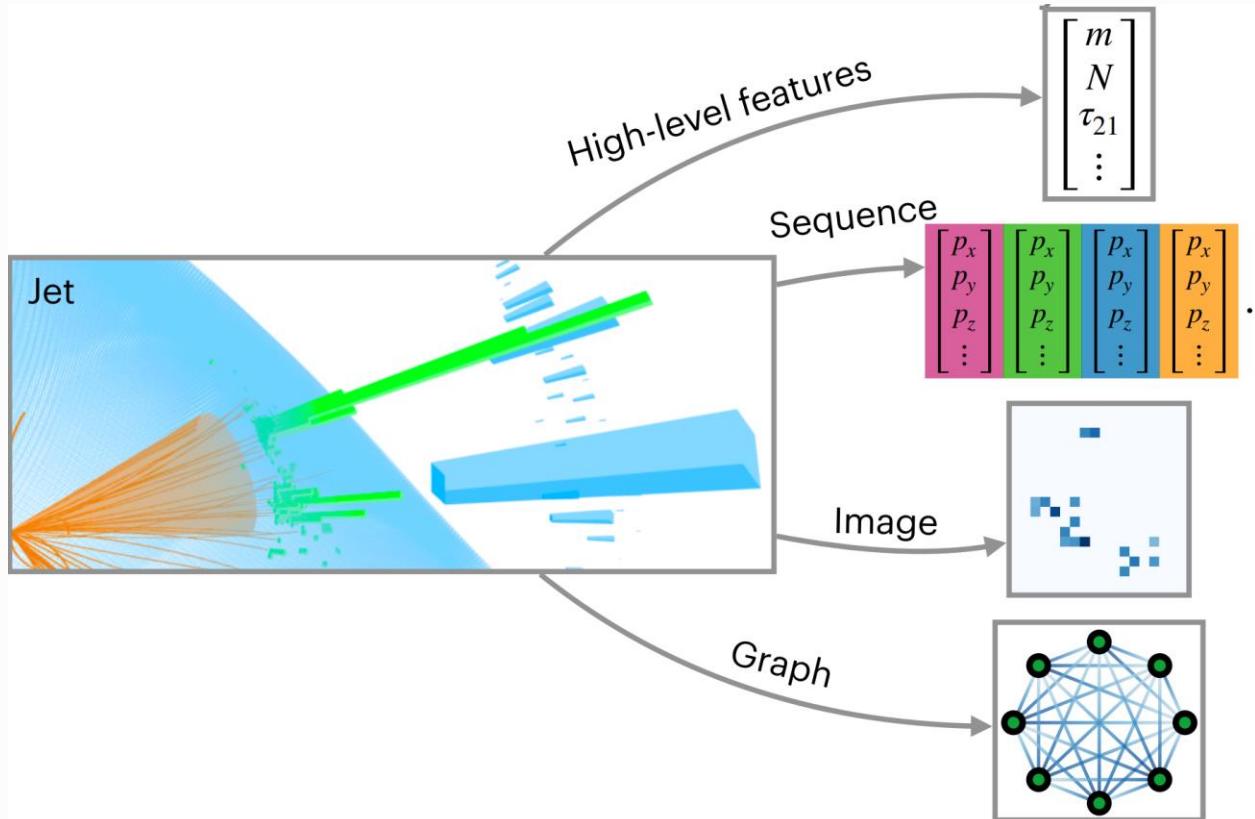
- ✓ **Classifier (Supervised)**
- ✓ **Self-guided Detection/Search (Weakly Supervised/Unsupervised)**
- ✓ **Reconstruction**
- ✓ **Simulation**

- ✓ **Classifier (Supervised)**
- ✓ **Self-guided Detection/Search (Weakly Supervised/Unsupervised)**
- ✓ **Reconstruction**
- ✓ **Simulation**
- ✓ **Language Model**

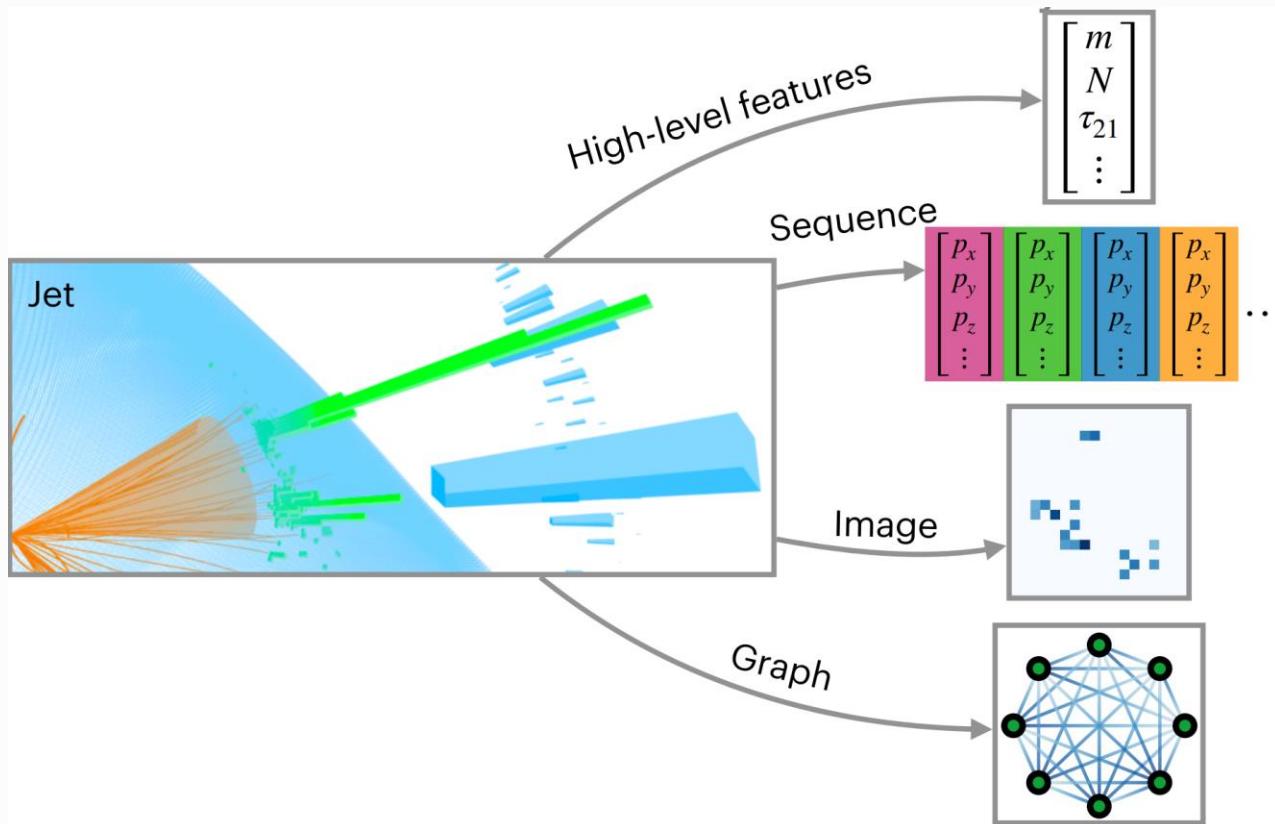
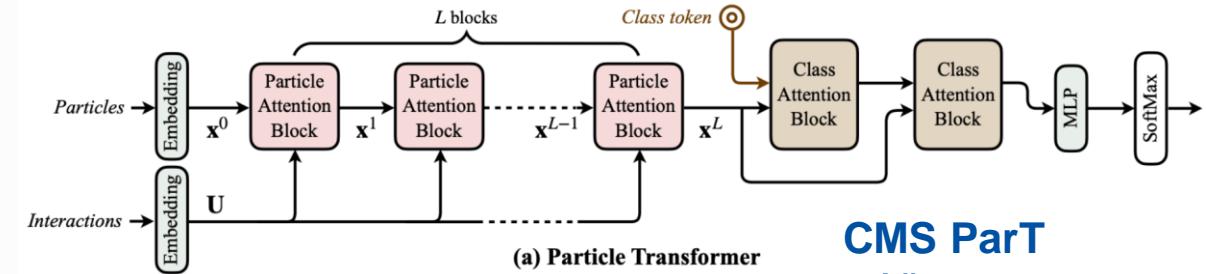
- ✓ **Classifier (Supervised)**
- ✓ **Self-guided Detection/Search (Weakly Supervised/Unsupervised)**
- ✓ **Reconstruction**
- ✓ **Simulation**
- ✓ **Language Model**
- ✓ **Agent – an idea**

Smarter and More Sophisticated Classifier

Smarter and More Sophisticated Classifier

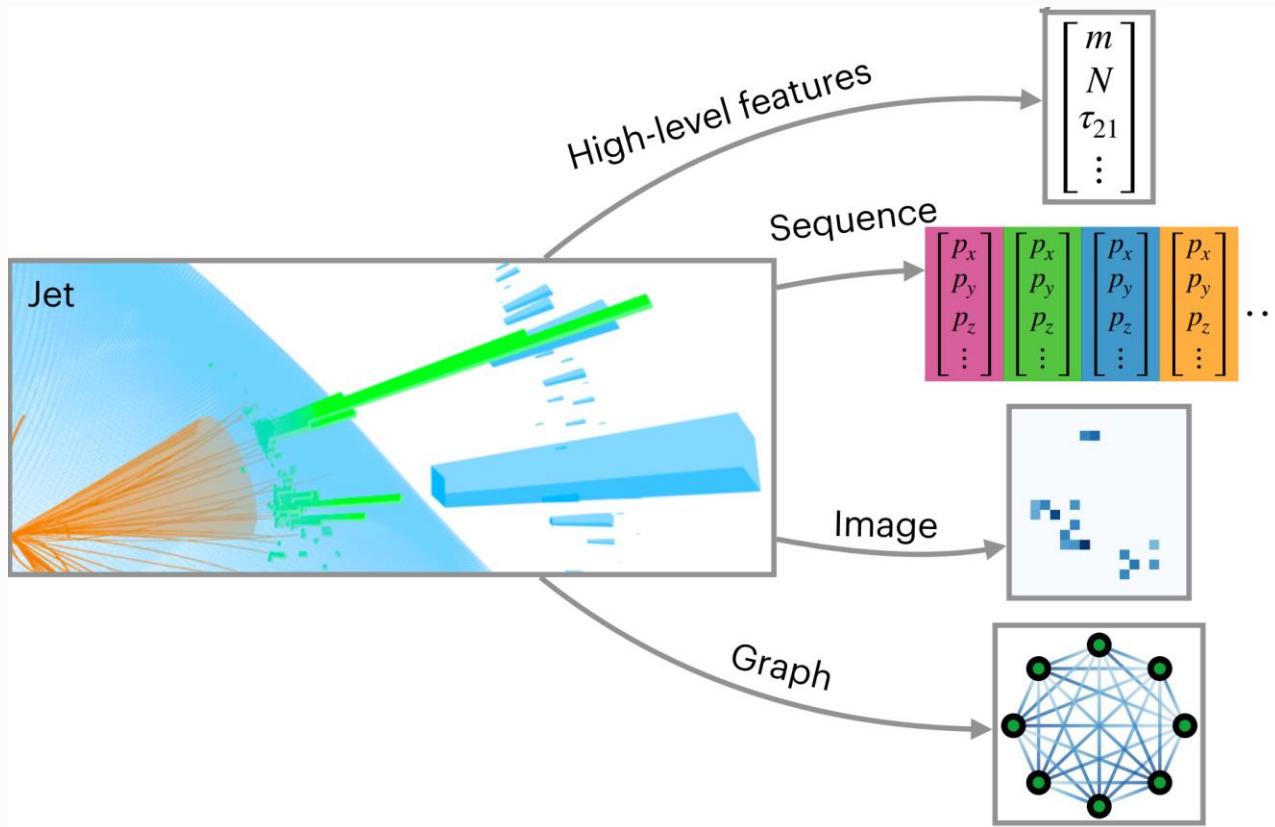
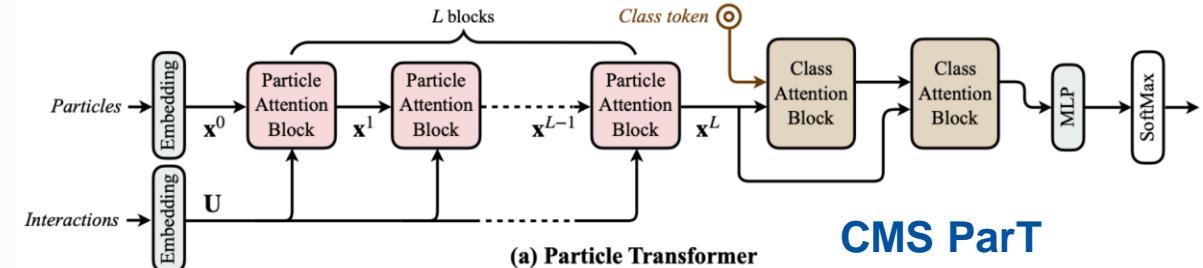


Smarter and More Sophisticated Classifier

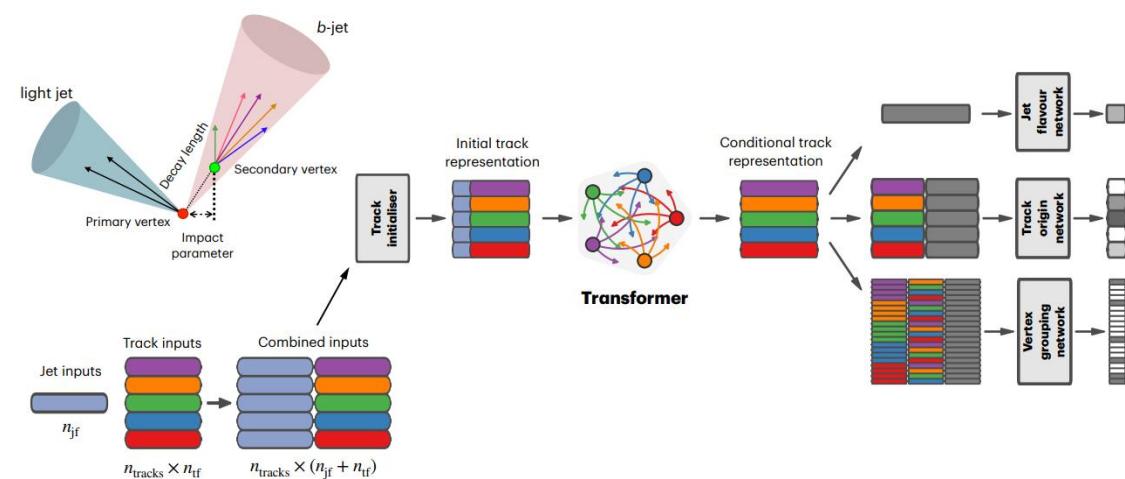


CMS ParT
[arXiv:2202.03772](https://arxiv.org/abs/2202.03772)

Smarter and More Sophisticated Classifier

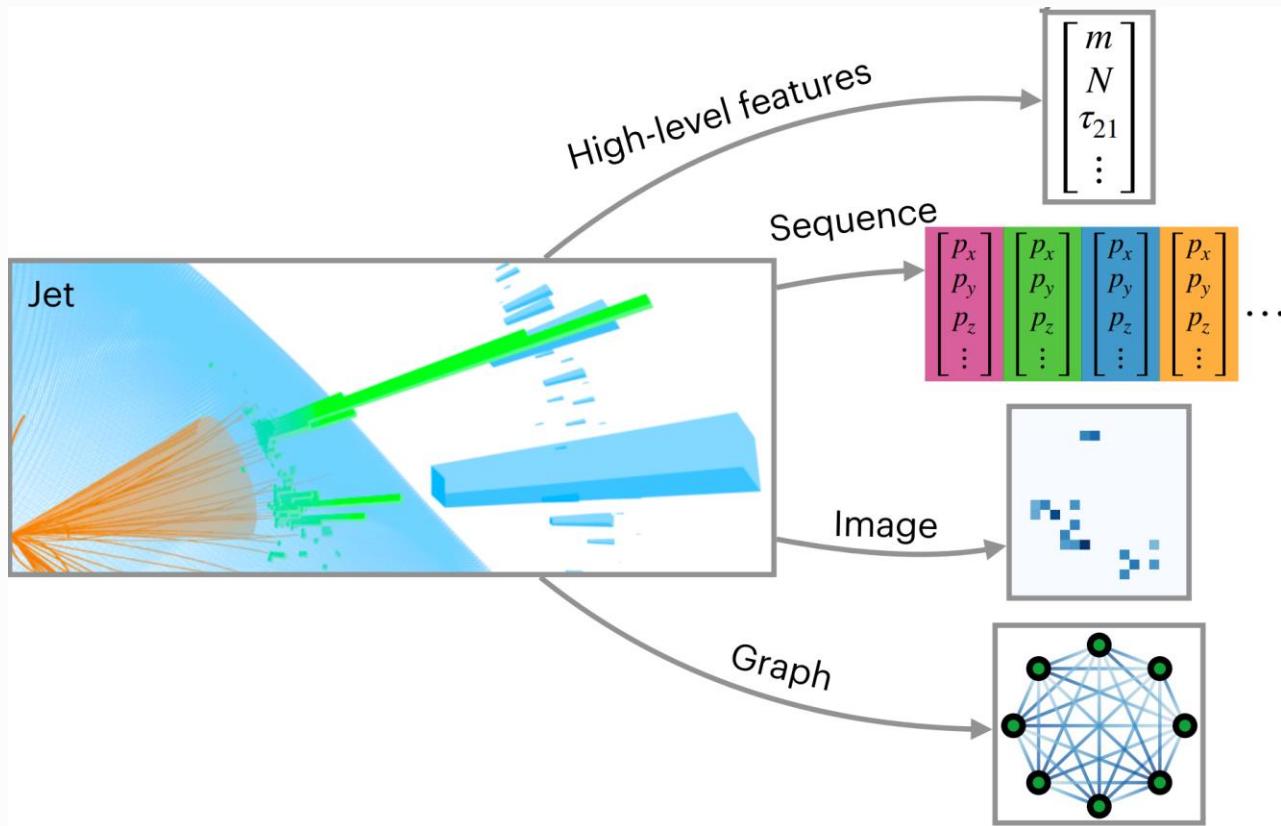
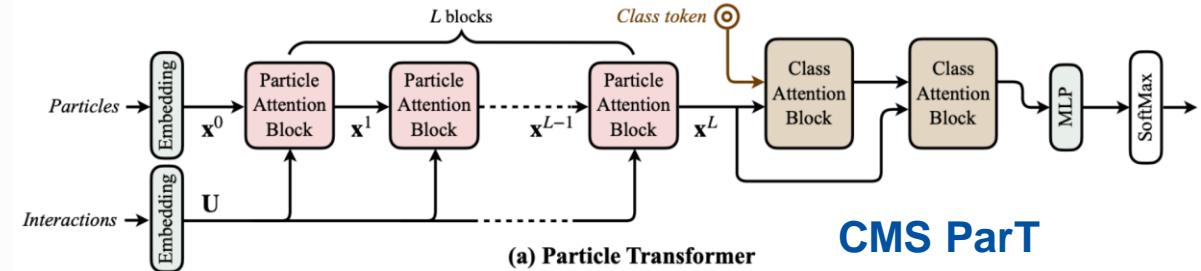


CMS ParT
[arXiv:2202.03772](https://arxiv.org/abs/2202.03772)

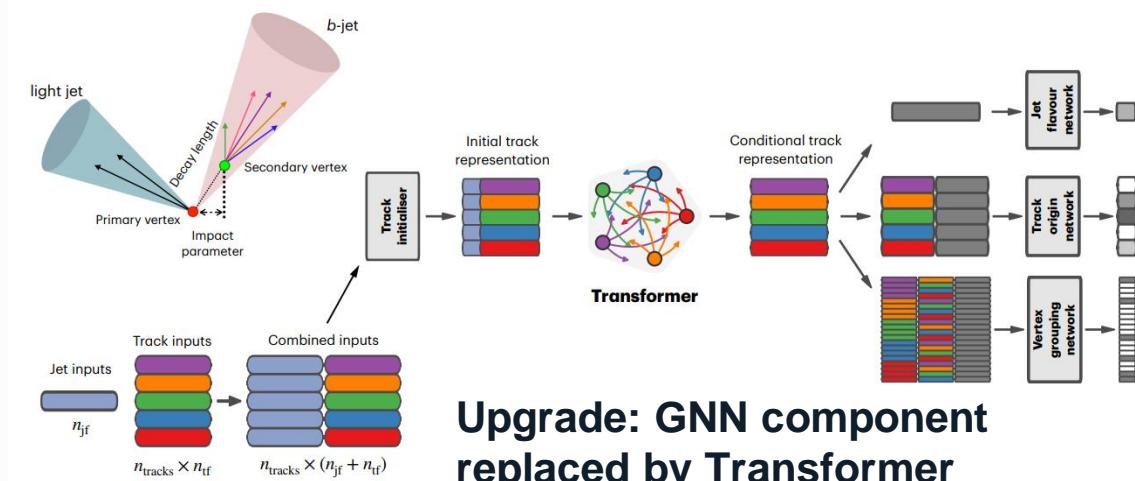


ATLAS General Network 2
[arXiv:2505.19689](https://arxiv.org/abs/2505.19689)

Smarter and More Sophisticated Classifier



CMS ParT
[arXiv:2202.03772](https://arxiv.org/abs/2202.03772)

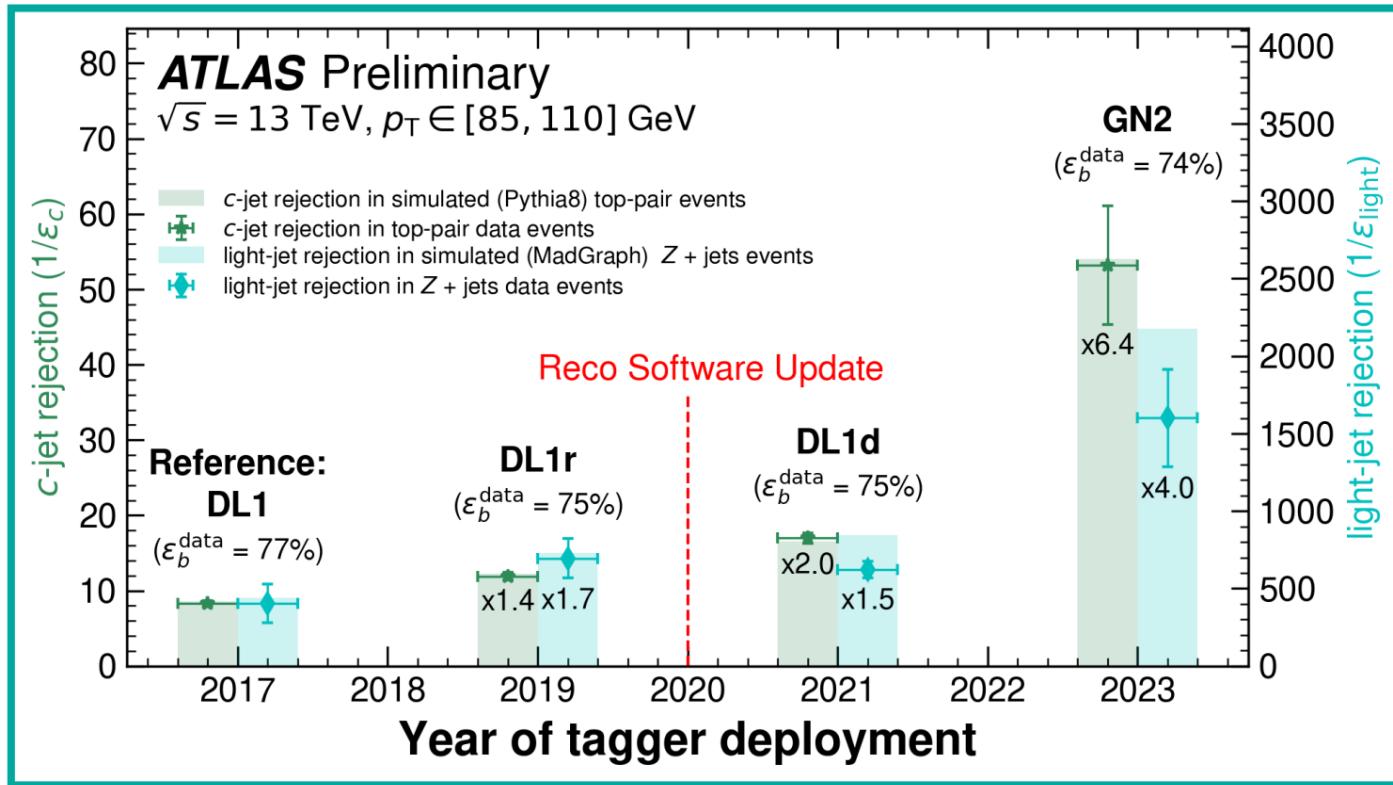


ATLAS General Network 2
[arXiv:2505.19689](https://arxiv.org/abs/2505.19689)

Smarter and More Sophisticated Classifier

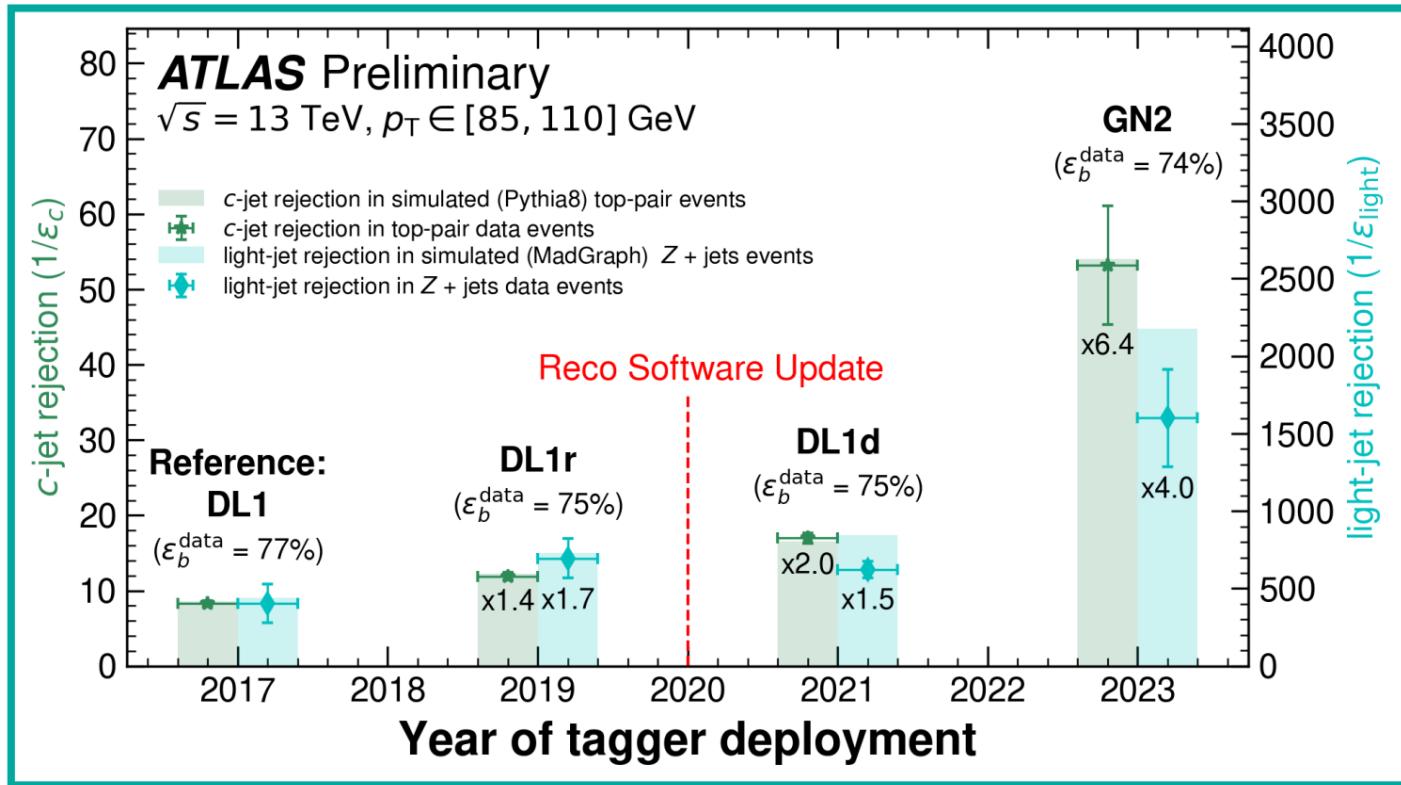
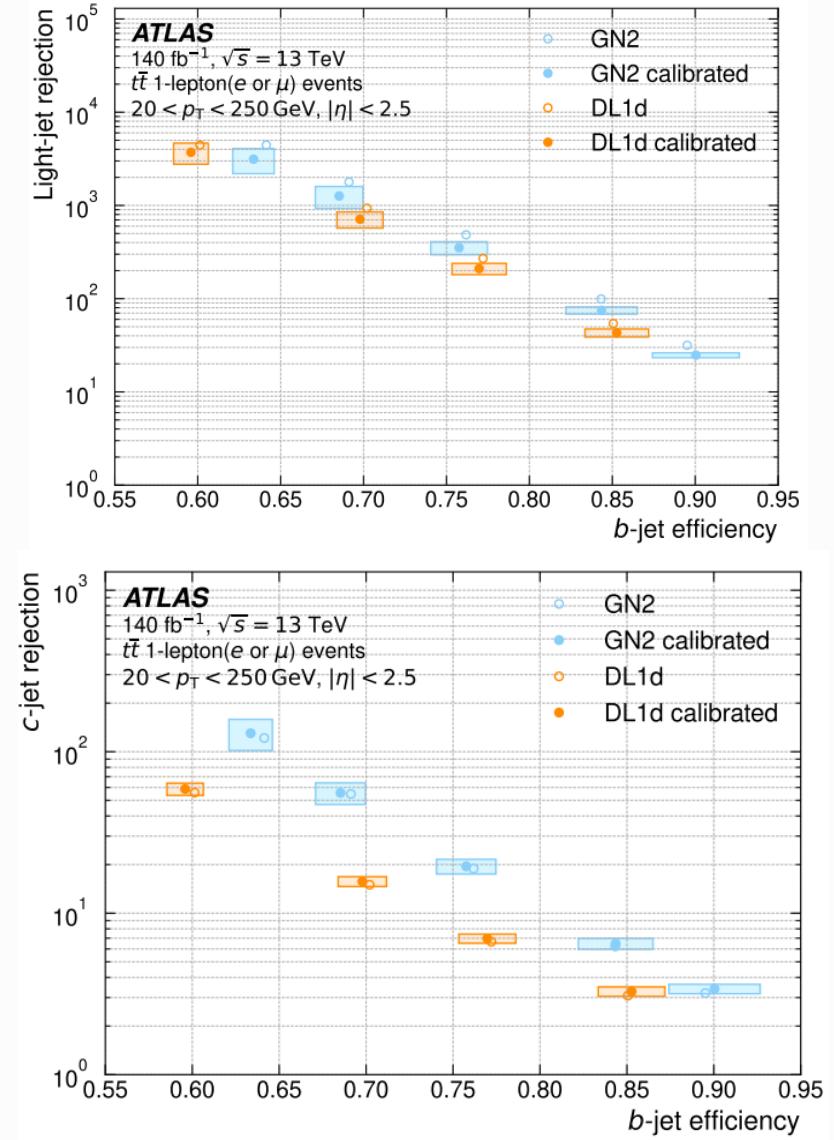
Better and More Robust Performance

Better and More Robust Performance



✓ Significant improvement after years of development

Better and More Robust Performance



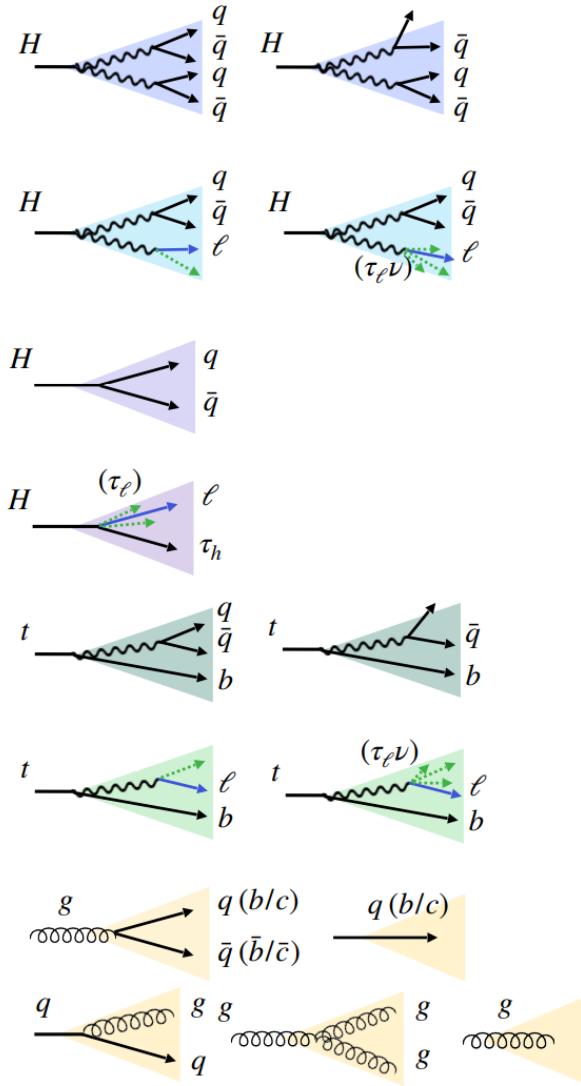
- ✓ Significant improvement after years of development
- ✓ Essential calibrations done for b/c-jet and light jet flavors
- ✓ Performance in data matches simulation after calibration

Better and More Robust Performance

Better and More Robust Performance

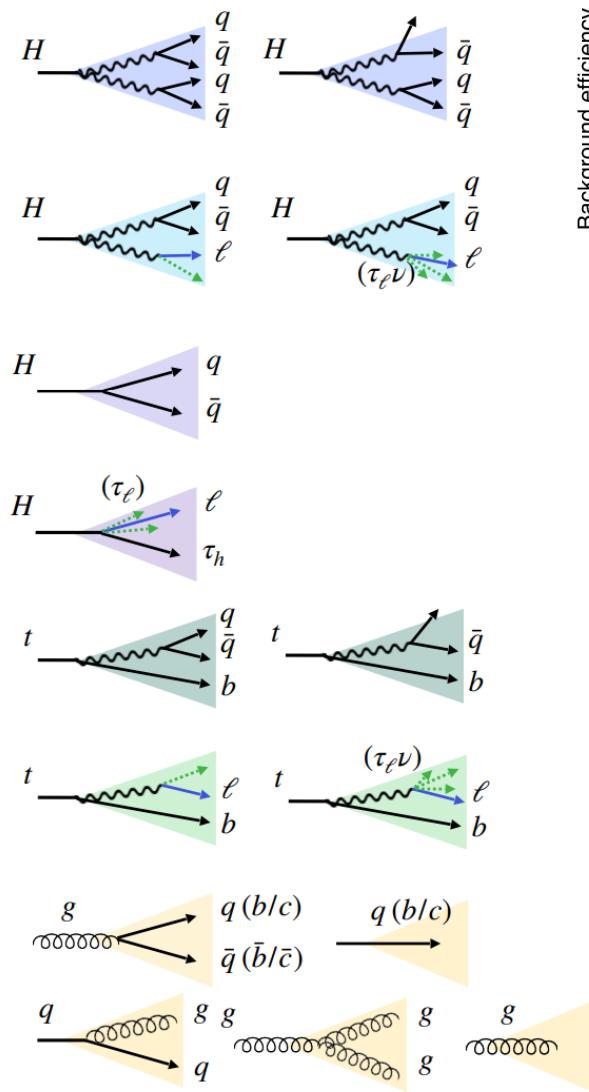
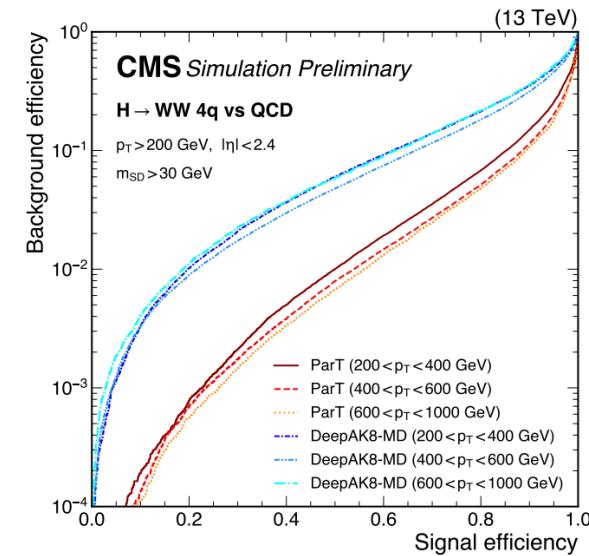
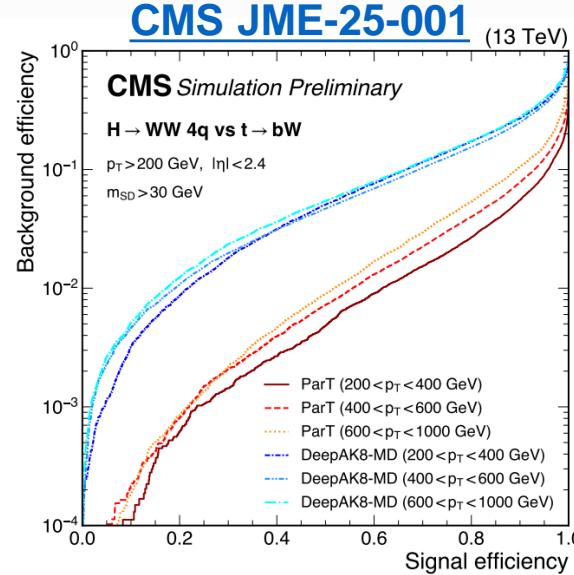
CMS JME-25-001

Process	Final state	Flavor	# of classes
H \rightarrow WW (full-hadronic)	qqqq	\otimes	0c / 1c / 2c
	qqq		3
	$e\nu$ qq		2
H \rightarrow WW (semi-leptonic)	$\mu\nu$ qq	\otimes	0c / 1c
	$\tau_e\nu$ qq		2
	$\tau_\mu\nu$ qq		2
H \rightarrow qq	$\tau_h\nu$ qq	\otimes	2
	bb		1
	cc		1
H \rightarrow qq (q=u/d)	ss		1
	$\tau_e\tau_h$		1
	$\tau_\mu\tau_h$		1
H \rightarrow $\tau\tau$	$\tau_h\tau_h$		1
	bqq	\otimes	1b + 0c / 1c
	bq		2
t \rightarrow bW (hadronic)	$b\bar{e}\nu$		1
	$b\mu\nu$		1
	$b\tau_e\nu$	\otimes	1b
t \rightarrow bW (leptonic)	$b\tau_\mu\nu$		1
	$b\tau_h\nu$		1
QCD	b		1
	bb		1
	c		1
	cc		1
	others (light)		1



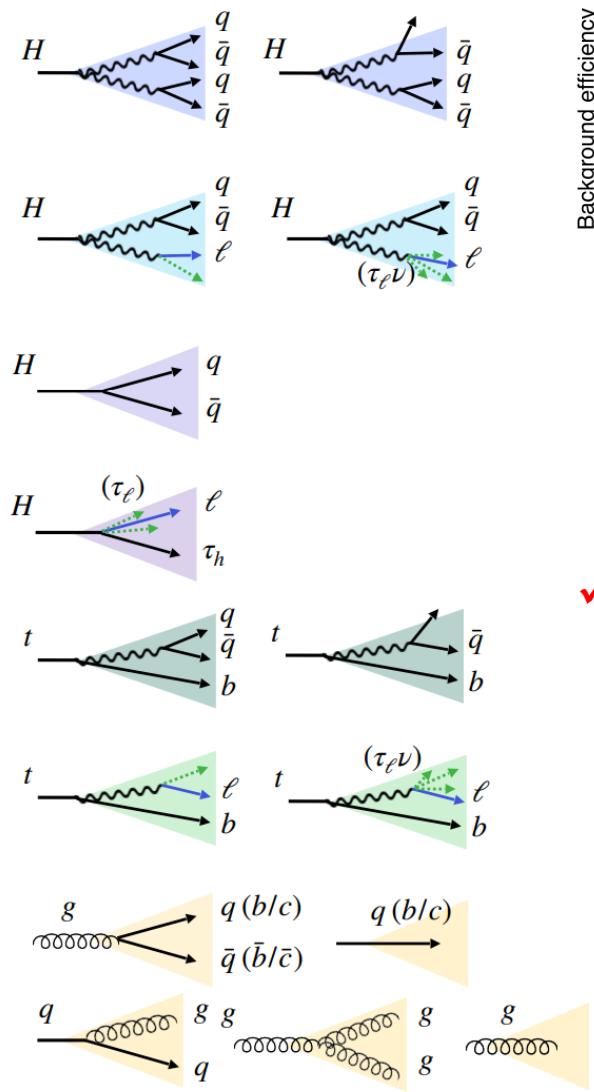
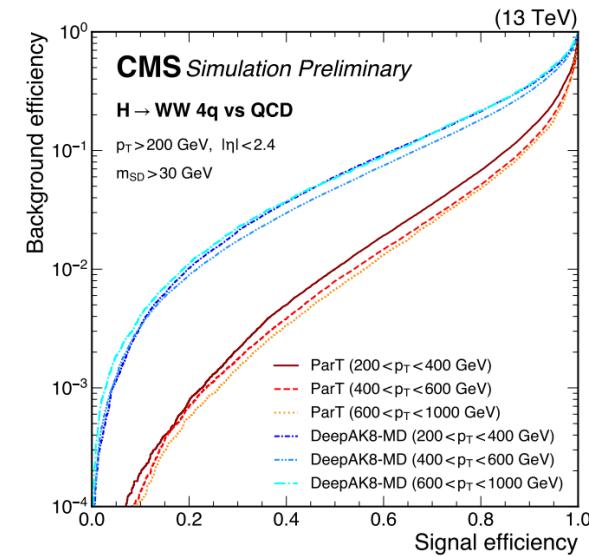
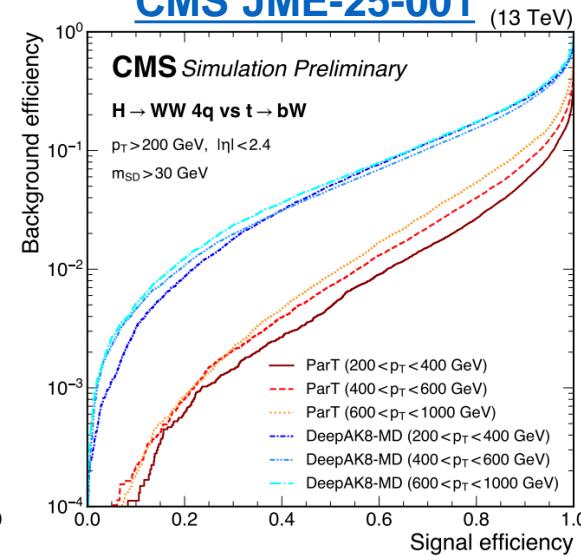
Better and More Robust Performance

Process	Final state	Flavor	# of classes
H \rightarrow WW (full-hadronic)	qqqq		0c / 1c / 2c
	qqq		3
H \rightarrow WW (semi-leptonic)	e ν qq		2
	μ ν qq		2
	τ_e ν qq		0c / 1c
	τ_μ ν qq		2
	τ_h ν qq		2
	bb		1
H \rightarrow qq	cc		1
	ss		1
	qq (q=u/d)		1
	$\tau_e \tau_h$		1
H \rightarrow $\tau\tau$	$\tau_\mu \tau_h$		1
	$\tau_h \tau_h$		1
	bqq		1b + 0c / 1c
t \rightarrow bW (hadronic)	bq		2
	be ν		1
	b μ ν		1
	b τ_e ν		1b
	b τ_μ ν		1
t \rightarrow bW (leptonic)	b τ_h ν		1
	b		1
	bb		1
	c		1
QCD	cc		1
	others (light)		1



Better and More Robust Performance

Process	Final state	Flavor	# of classes
H \rightarrow WW (full-hadronic)	qqqq		0c / 1c / 2c
	qqq		3
H \rightarrow WW (semi-leptonic)	e ν qq		2
	μ ν qq		2
	τ_e ν qq		0c / 1c
	τ_μ ν qq		2
	τ_h ν qq		2
	bb		1
H \rightarrow qq	cc		1
	ss		1
	qq (q=u/d)		1
	$\tau_e \tau_h$		1
H \rightarrow $\tau\tau$	$\tau_\mu \tau_h$		1
	$\tau_h \tau_h$		1
	bqq		1b + 0c / 1c
t \rightarrow bW (hadronic)	bq		2
	be ν		1
	b μ ν		1
	b τ_e ν		1b
	b τ_μ ν		1
	b τ_h ν		1
t \rightarrow bW (leptonic)	b		1
	bb		1
	c		1
	cc		1
	others (light)		1

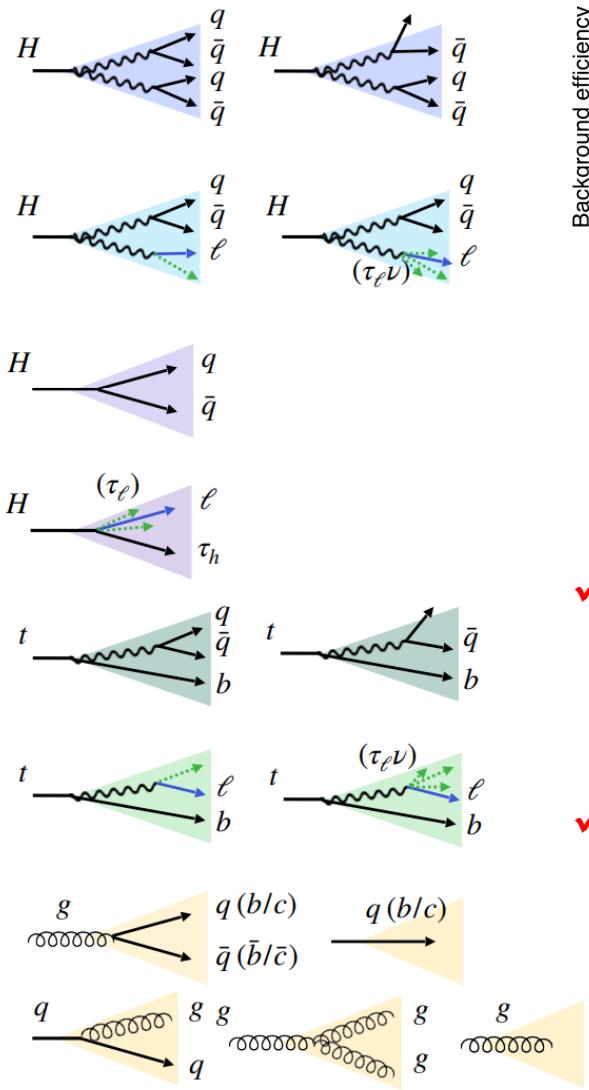
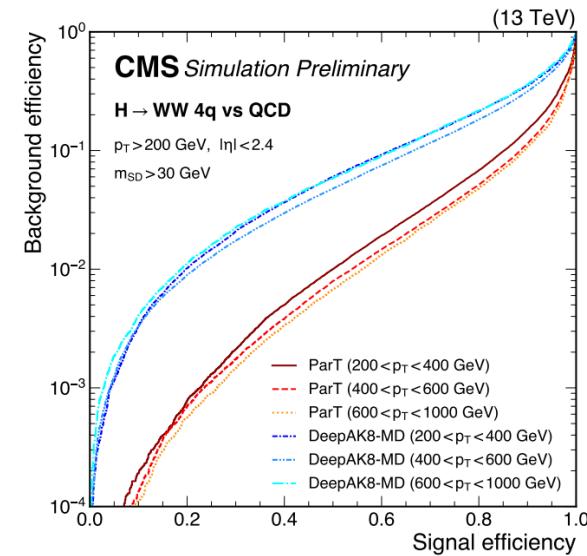
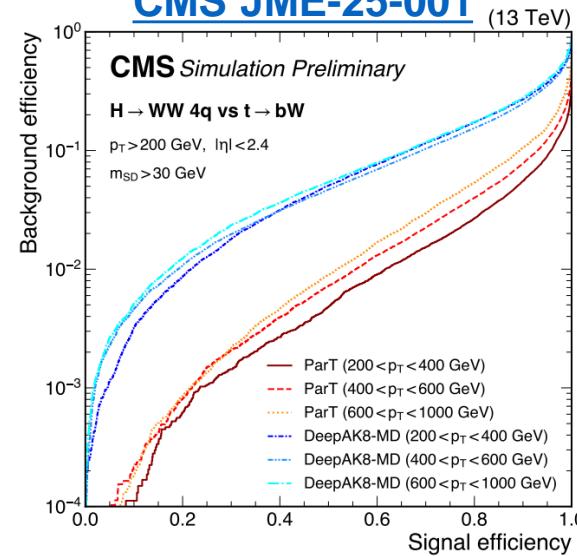


✓ **Highly granular multi-classifier gives 6-20 fold improvement in background rejection rate on H \rightarrow WW* \rightarrow 4j vs. QCD/top jets**

- Compared with early DeepAK8-MD tagger

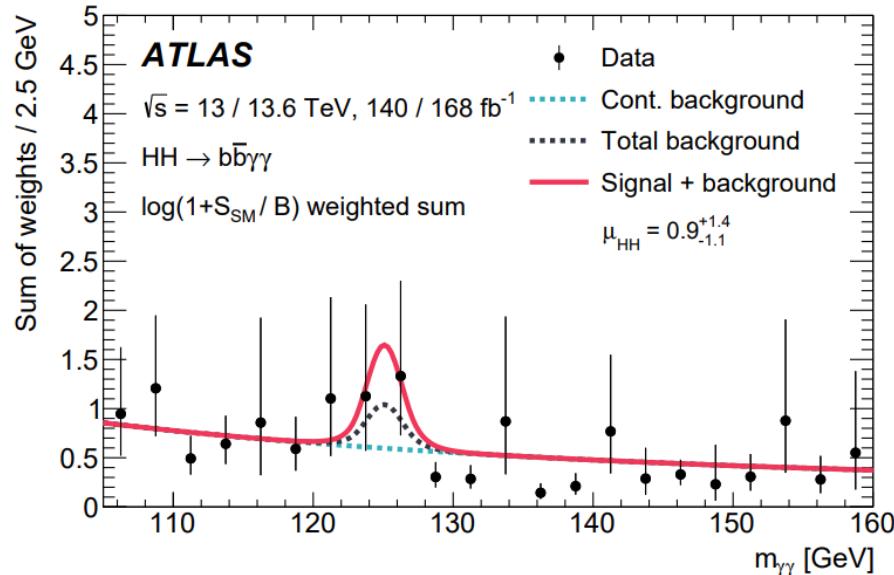
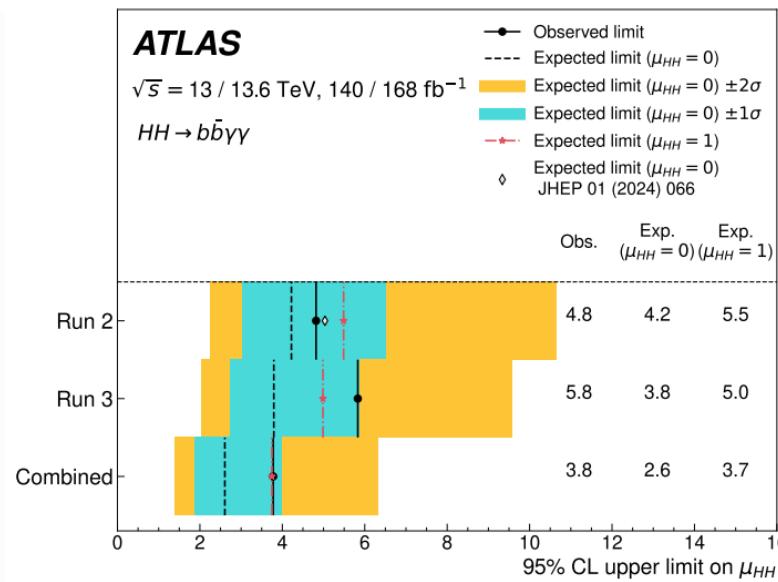
Better and More Robust Performance

Process	Final state	Flavor	# of classes
H \rightarrow WW (full-hadronic)	qqqq		0c / 1c / 2c
	qqq		3
H \rightarrow WW (semi-leptonic)	e ν qq		2
	μ ν qq		2
	τ_e ν qq		0c / 1c
	τ_μ ν qq		2
	τ_h ν qq		2
	bb		1
H \rightarrow qq	cc		1
	ss		1
	qq (q=u/d)		1
	$\tau_e \tau_h$		1
H \rightarrow $\tau\tau$	$\tau_\mu \tau_h$		1
	$\tau_h \tau_h$		1
	bqq		1b + 0c / 1c
t \rightarrow bW (hadronic)	bq		2
	be ν		1
	b μ ν		1
	b τ_e ν		1b
	b τ_μ ν		1
	b τ_h ν		1
t \rightarrow bW (leptonic)	b		1
	bb		1
	c		1
	cc		1
	others (light)		1



- ✓ **Highly granular multi-classifier gives 6-20 fold improvement in background rejection rate on H \rightarrow WW* \rightarrow 4j vs. QCD/top jets**
 - Compared with early DeepAK8-MD tagger
- ✓ **Challenge for tagger calibrations**
 - Hard to find SM events in similar topology
 - New technique uses Lund jet plane
 - Effectively measure scale factors per quark sub-jet

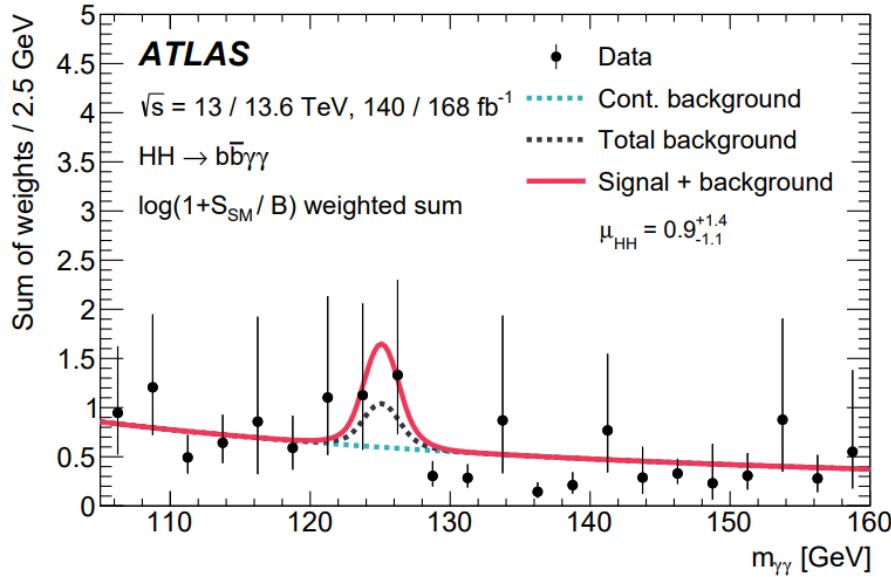
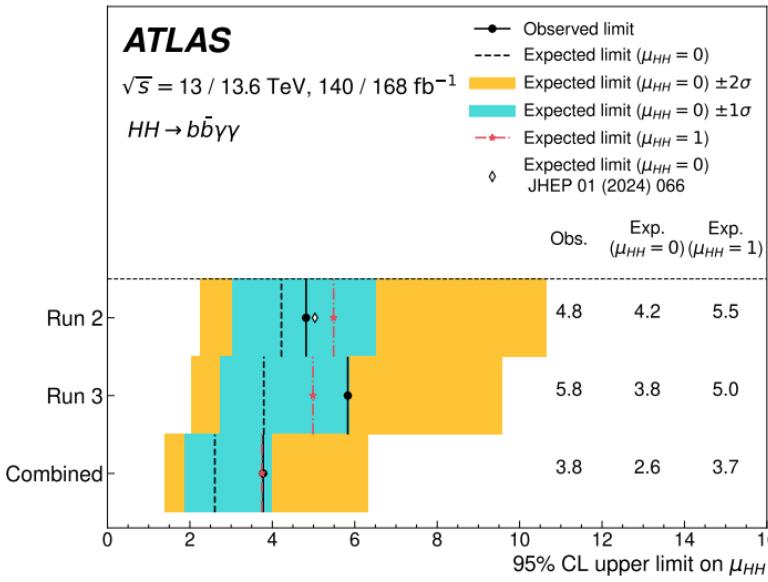
Impact on Physics



**GN2 alone brings
20% improvement for
 $HH \rightarrow b\bar{b}\gamma\gamma$ analysis**

[arXiv:2507.03495](https://arxiv.org/abs/2507.03495)

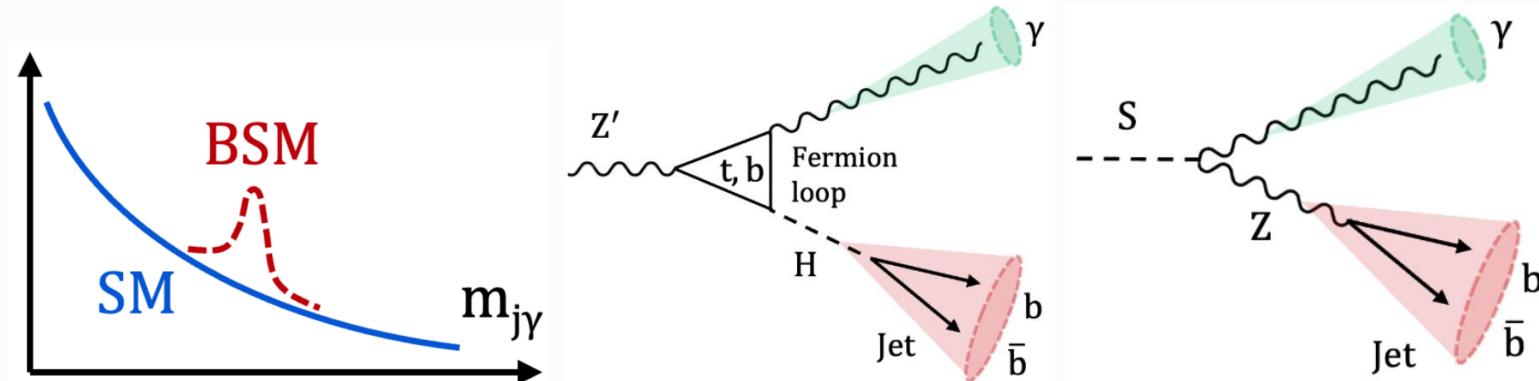
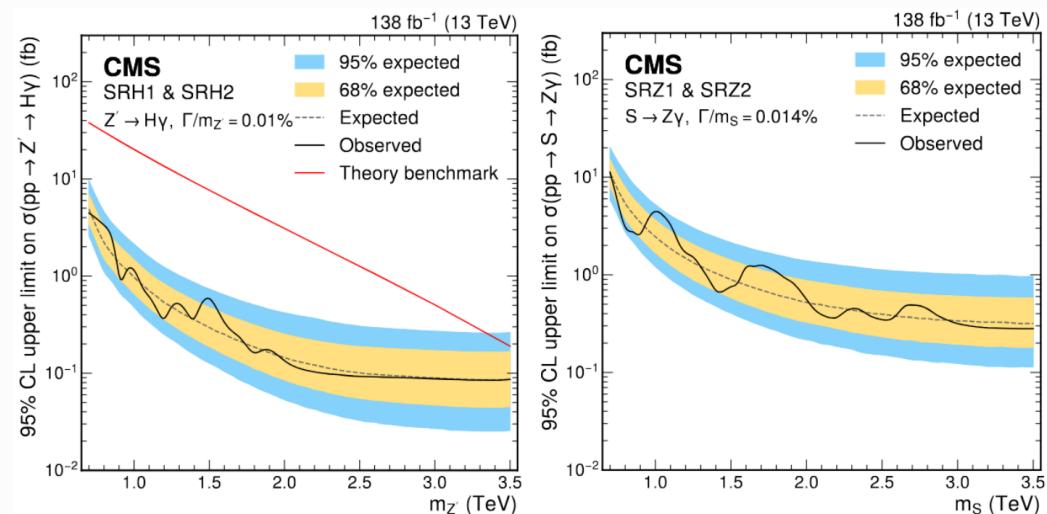
Impact on Physics



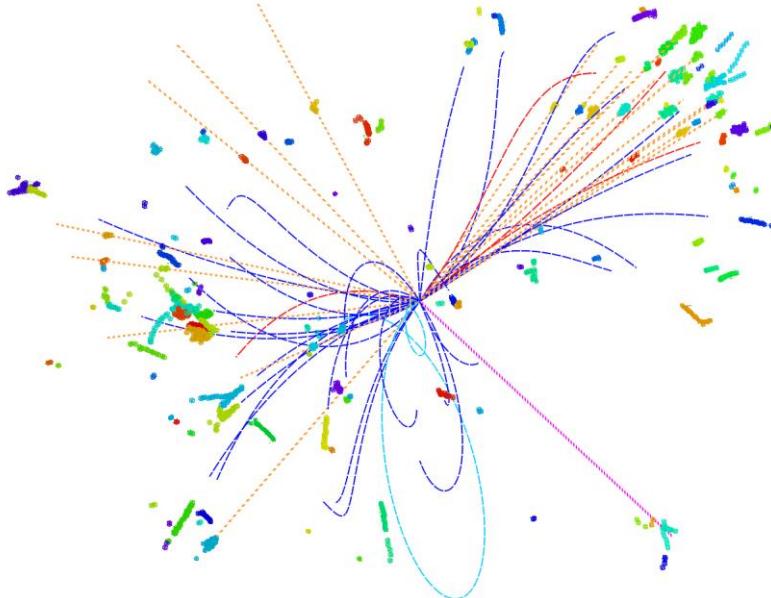
**GN2 alone brings
20% improvement for
 $HH \rightarrow b\bar{b}\gamma\gamma$ analysis**

[arXiv:2507.03495](https://arxiv.org/abs/2507.03495)

High-mass resonances in $H/Z(b\bar{b}) + \gamma$ final state



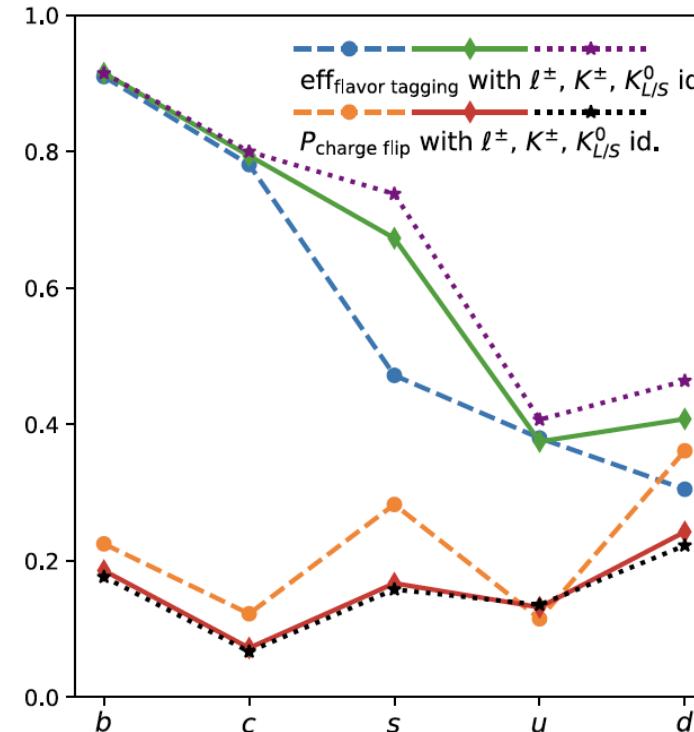
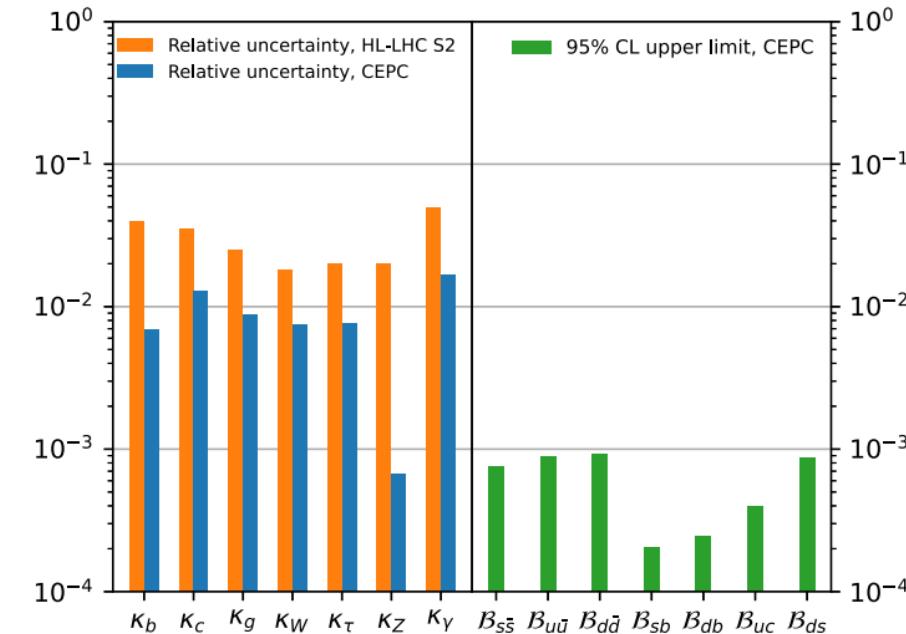
- ✓ **GloParT V2 used for $X \rightarrow b\bar{b}$ tagger**
 - $H/Z \rightarrow b\bar{b}$ vs. QCD jets
- ✓ **Most stringent limits for both channels**



$e^+e^- \rightarrow vv^-H \rightarrow vv^-gg$

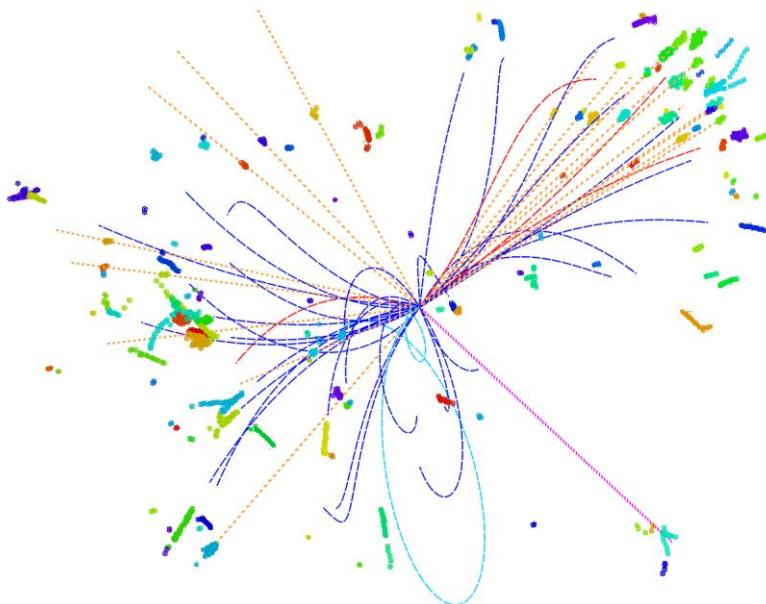
Jet Origin ID:

- 11 categories (5 quarks + 5 anti quarks + gluon) identification, realized at Full Simulated di-jet events at CEPC CDR baseline with Arbor + ParticleNet (GNN).
- Jet flavor tagging efficiencies ranging from 67% to 92% for b-, c-, and s-quarks and jet charge flip rates of 7%–24% for all quark species. Higgs decay BRs range from 2×10^{-4} to 1×10^{-3} (95% C.L.).



PRL 132, 221802 (2024)

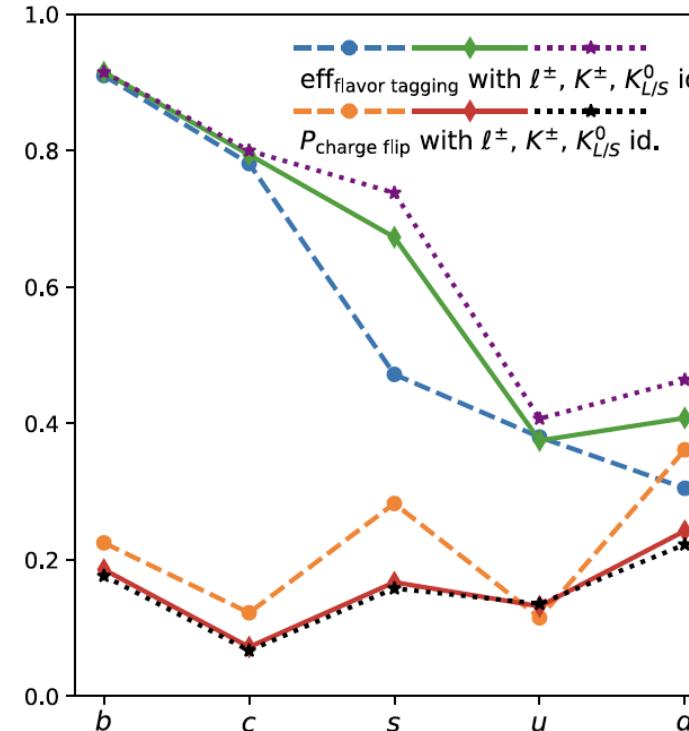
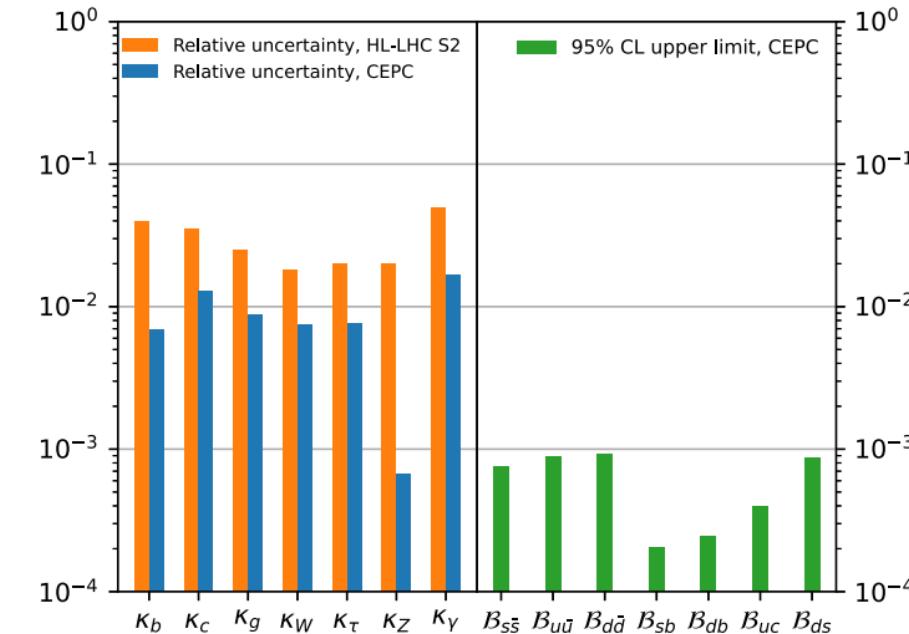
✓ See more in Manqi's talk on Friday



$e^+e^- \rightarrow vv^-H \rightarrow vv^-gg$

Jet Origin ID:

- 11 categories (5 quarks + 5 anti quarks + gluon) identification, realized at Full Simulated di-jet events at CEPC CDR baseline with Arbor + ParticleNet (GNN).
- Jet flavor tagging efficiencies ranging from 67% to 92% for b-, c-, and s-quarks and jet charge flip rates of 7%–24% for all quark species. Higgs decay BRs range from 2×10^{-4} to 1×10^{-3} (95% C.L.).



PRL 132, 221802 (2024)

Core Idea: One strong body + many small heads

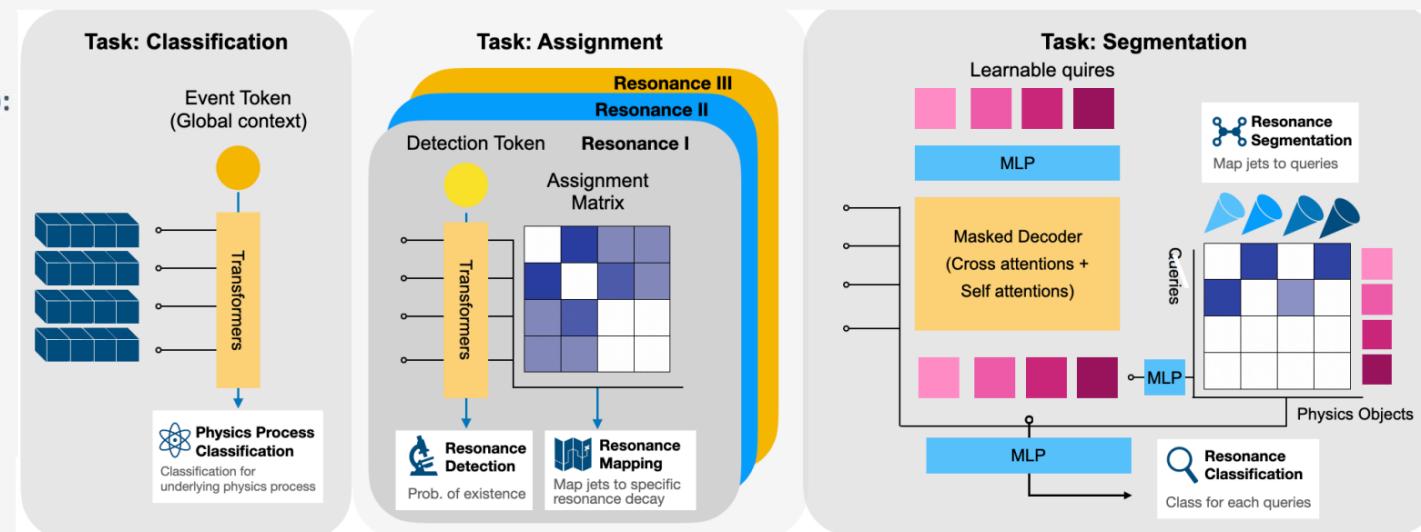
🧠 Decoder – Discriminative Heads:

Segmentation

- Inspired by Meta AI's segmentation networks
 - The model performs set prediction (queries → predict class & mask), preserving permutation symmetry.
 - Naturally extendable from objects to substituents without changing the model design.

12/34 Input Representation

- **Particle Cloud (Up to 18 Particles per Event):**
 - Each particle is encoded with 7 features: 4-momentum, isBjet, isLepton, and charge.
- **Global Features / Event Observables:**
 - Missing transverse energy
 - Number of leptons, number of jets
 - Invariant mass of visible objects
 - Scalar sums like HT, ST, etc.

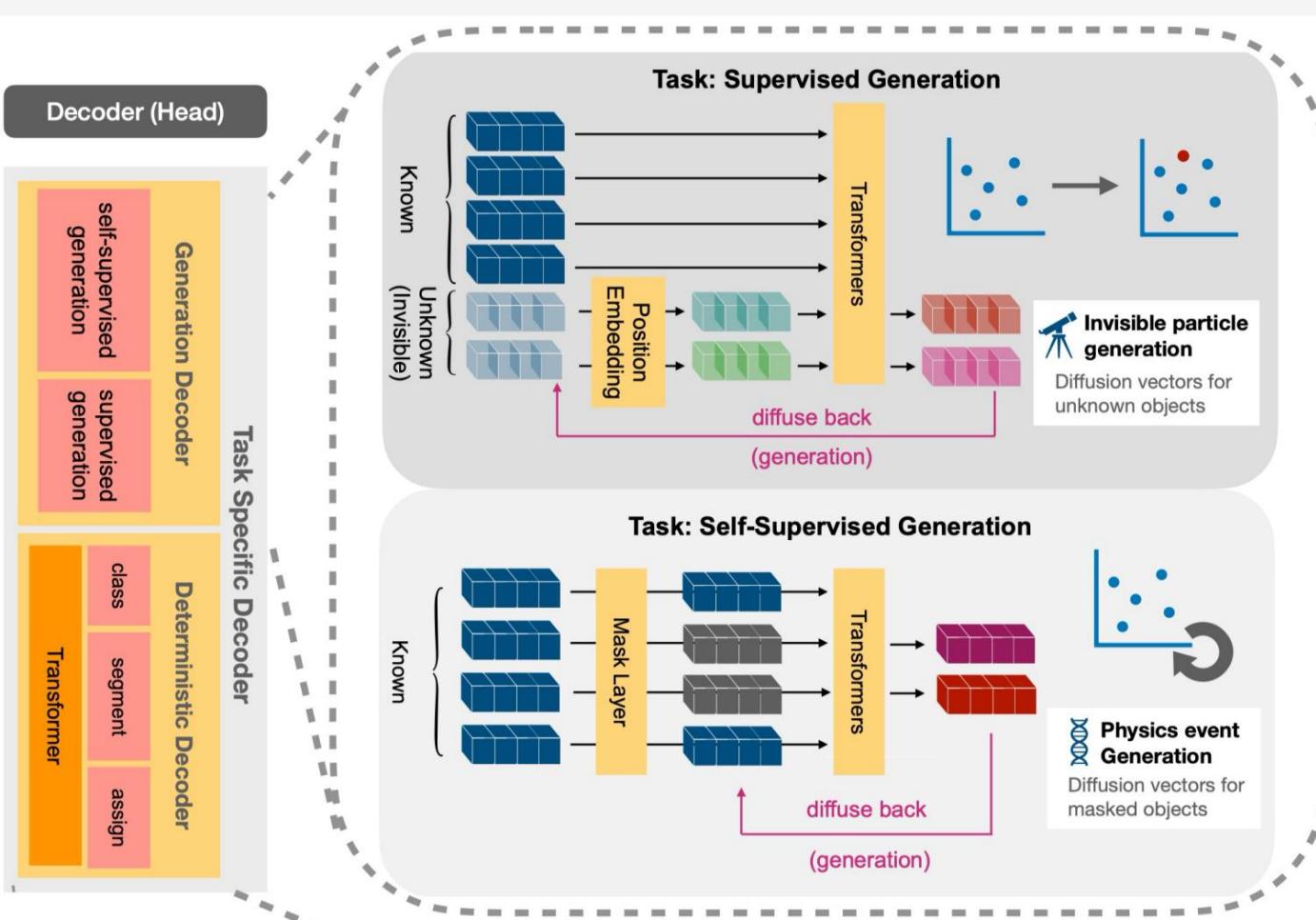


Classification

- Multi-Class event classifiers (with regression)

Assignment

- Symmetry-aware mapping of objects to truth partons (requires known decay topology).
- High accuracy for well-defined processes, but rigid, costly, not generalizable.



Core Idea: One strong body + many small heads

 Decoder – Generation Head:

Supervised Generation

- Use known objects as input to predict missing ones (e.g., neutrinos).
- Diffusion models capture high-dimensional probability densities → predict the most likely kinematics.

Self-supervised Generation

- Mask part/all of the inputs and reconstruct them with a diffusion model.
- Learns underlying event structure without requiring labels.

✓ **Jointly trained on the Assignment and Classification tasks**

- **Signal:** $H \rightarrow aa \rightarrow bbbb$

$(m_a = 30, 40, 60 \text{ GeV})$

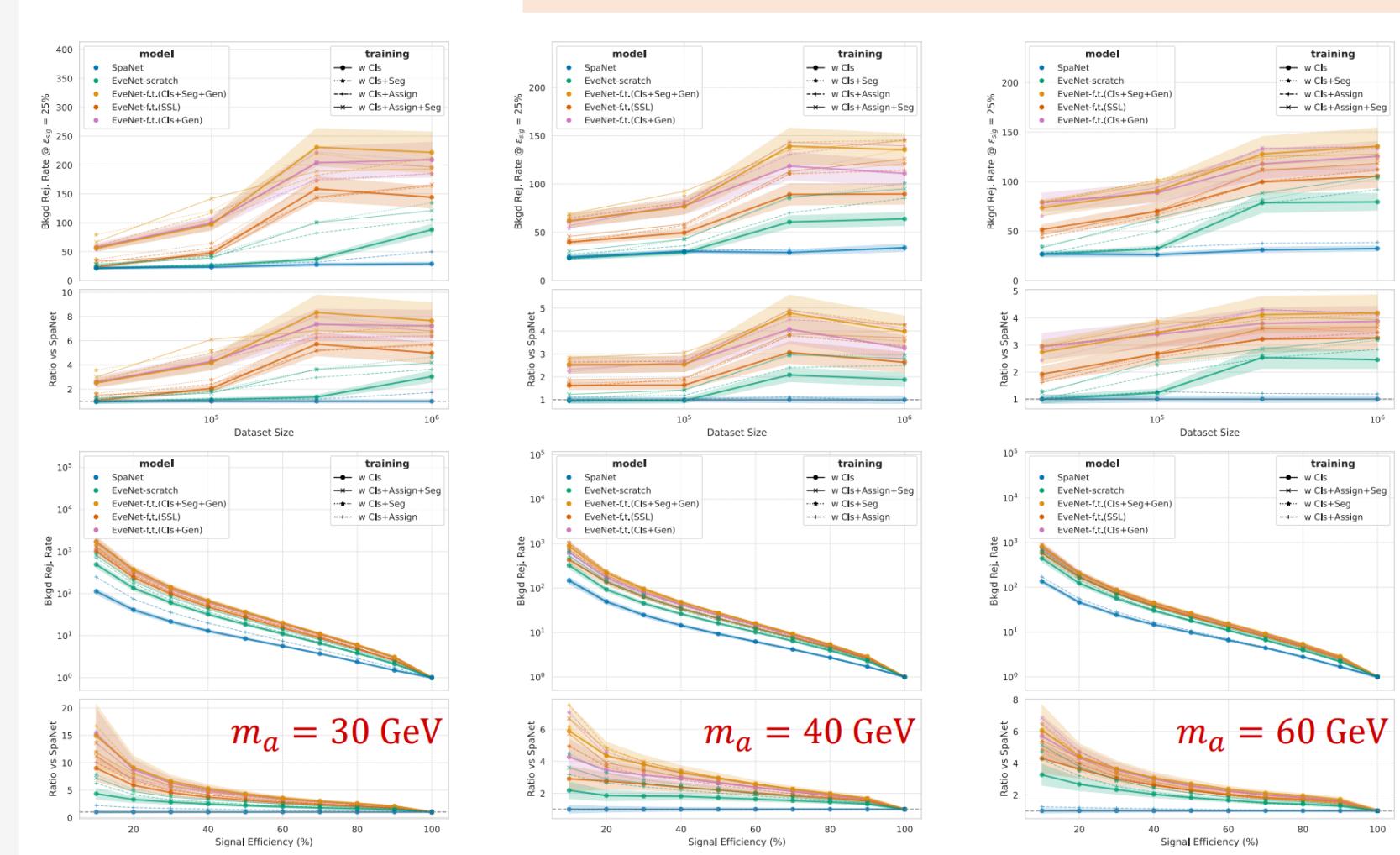
- **QCD:** $bbbb, bbbj, bbjj$

- **Reference Network:** SPANet
(same hidden dim)

Classification

1. Inversed ROC

2. Bkgd. Rejection rate @ signal efficiency of 25%



✓ **Jointly trained on the Assignment and Classification tasks**

- **Signal:** $H \rightarrow aa \rightarrow bbbb$

$(m_a = 30, 40, 60 \text{ GeV})$

- **QCD:** $bbbb, bbbj, bbjj$

- **Reference Network:** SPANet
(same hidden dim)

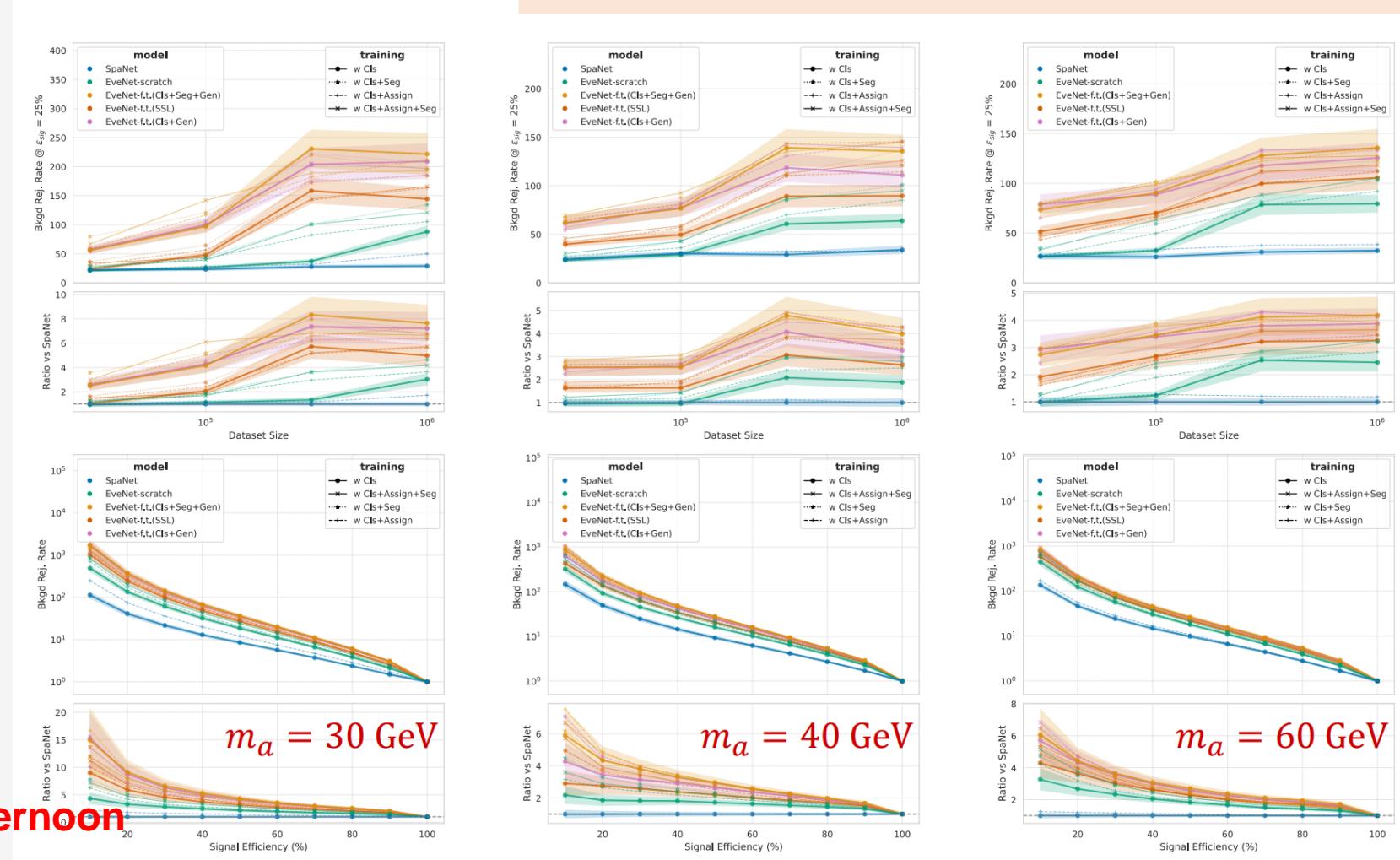
Classification

1. Inversed ROC

2. Bkgd. Rejection rate @ signal efficiency of 25%

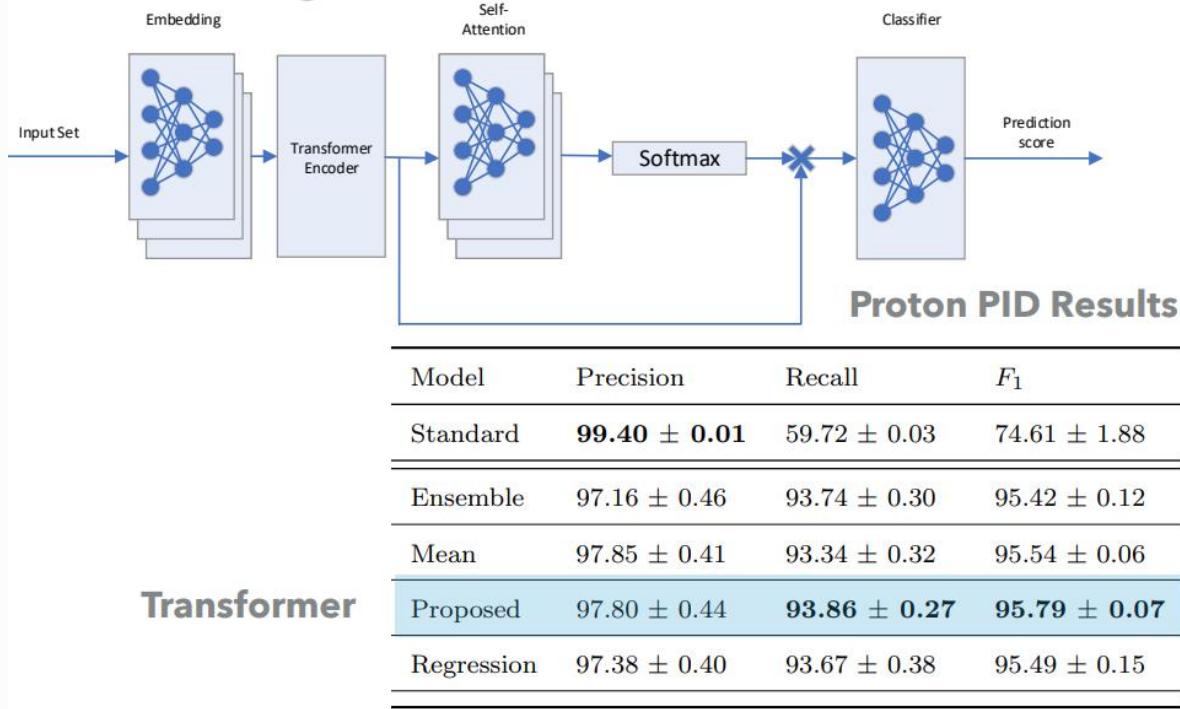
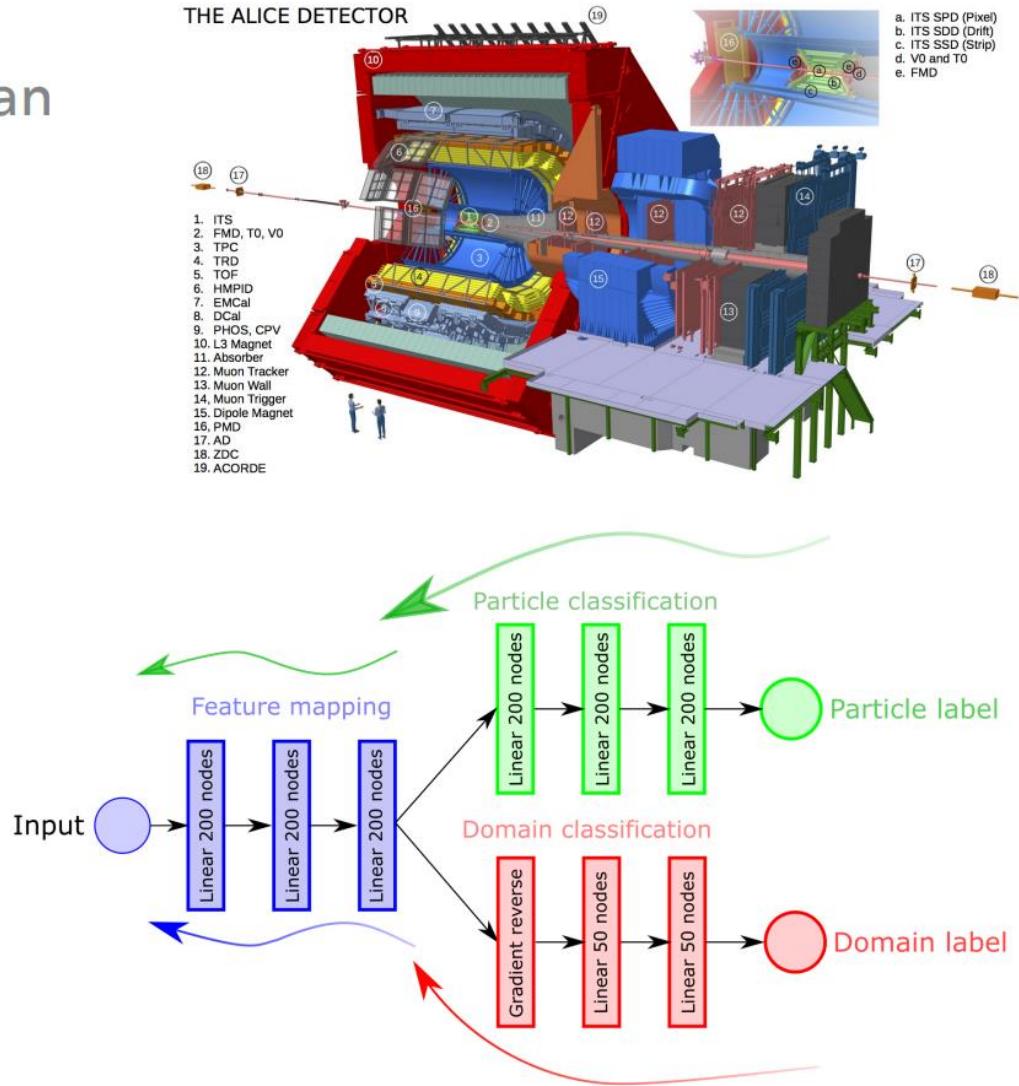
✓ **See more in Yulei's talk in the afternoon**

2-15x improvement on bkgd. rejection

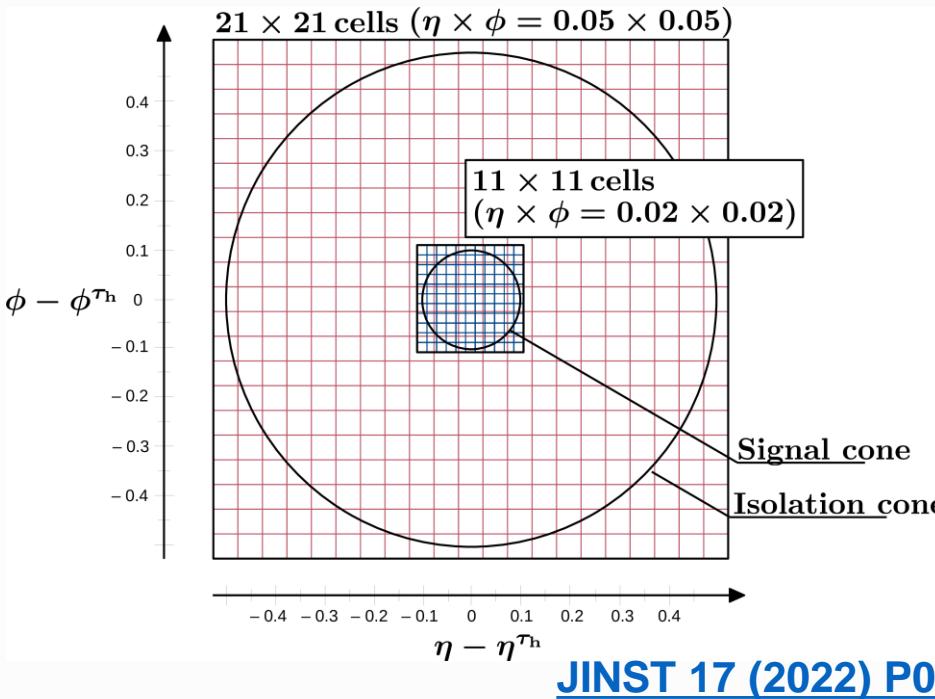


Reconstruction: PID

- ▶ **Transformer** for particle ID in ALICE can result in higher purity and efficiency than standard methods
- ▶ Use **domain adversarial neural networks** to mitigate data-simulation differences

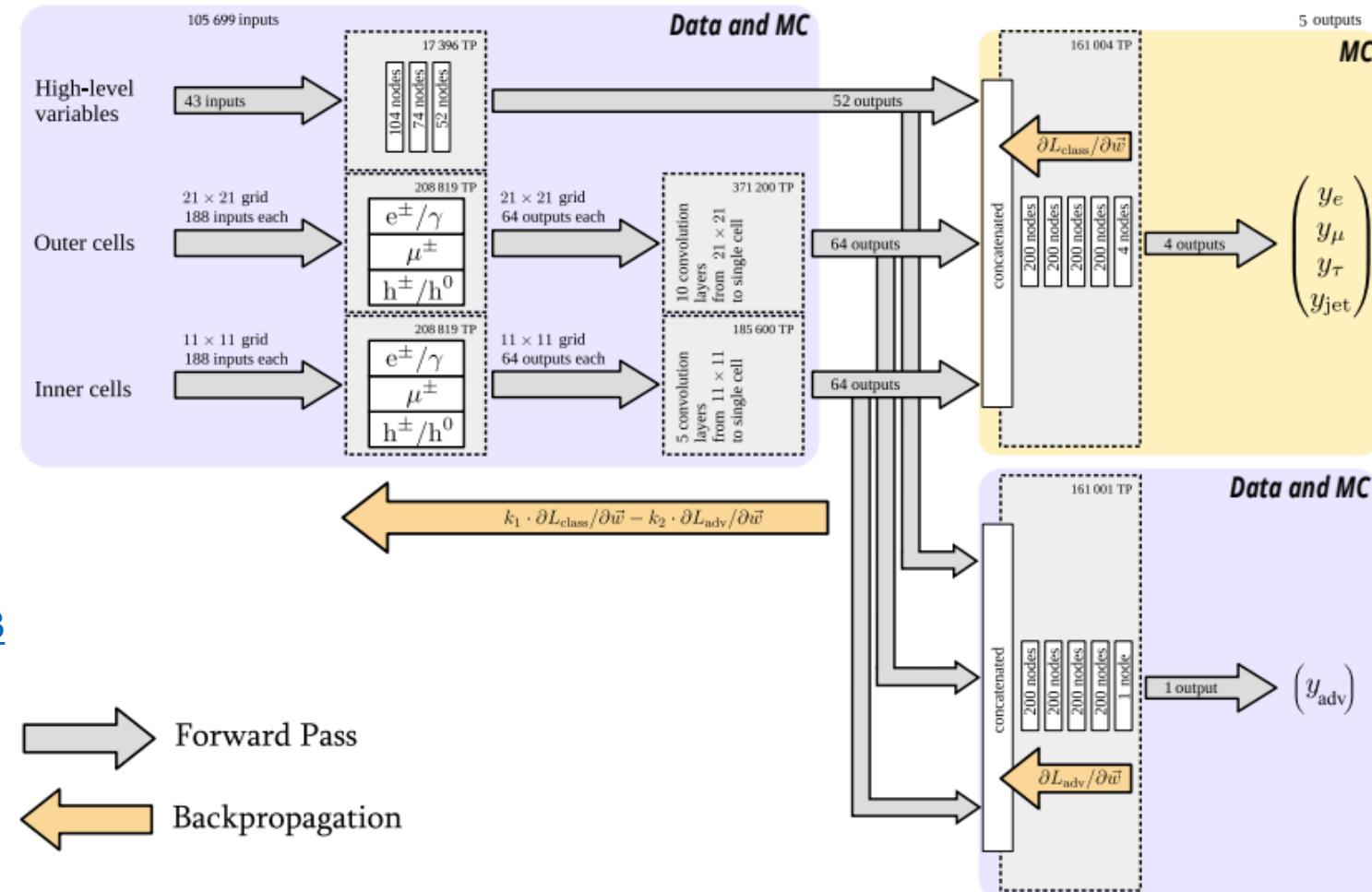


Reconstruction: Tau ID



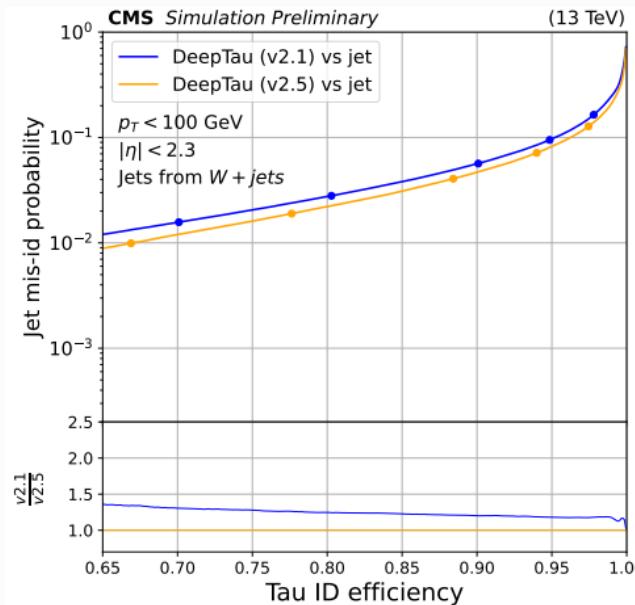
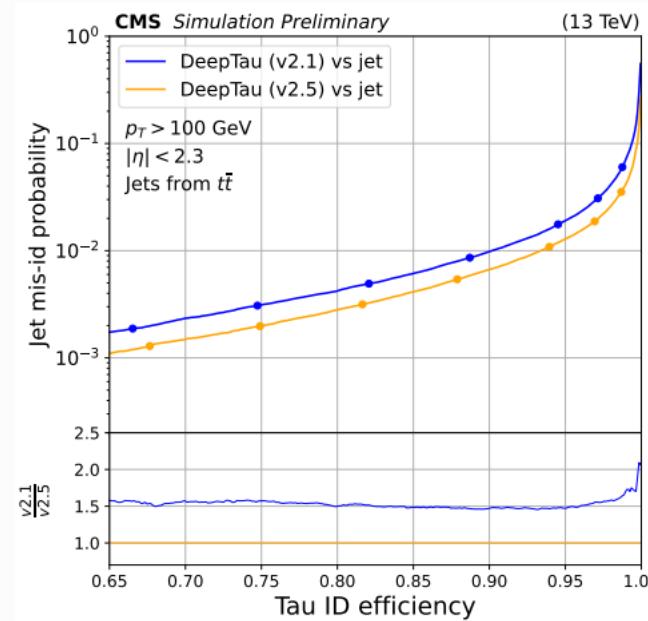
CMS DeepTau: multi-class tau identification algorithm based on CNN

- v2.5 adds domain adaptation subnetwork with adversarial training to deal with MC mismodelling in the high-purity region
- Better data handling
- Feature standardization, hyperparameter optimization



Reconstruction: Tau ID

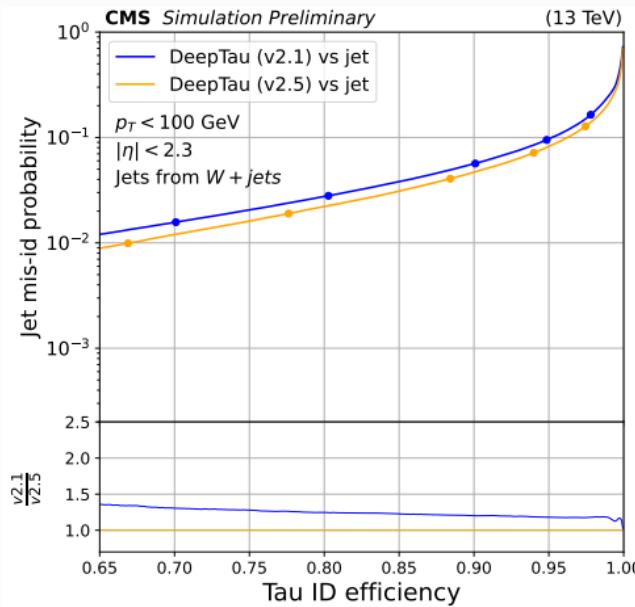
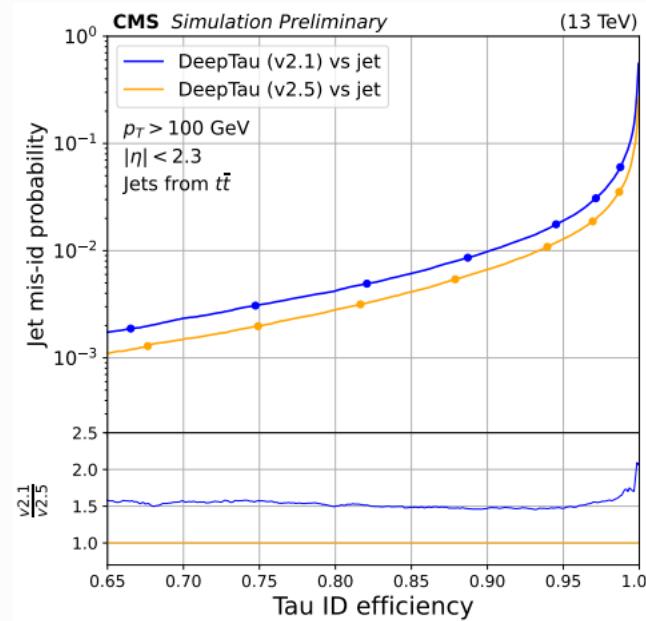
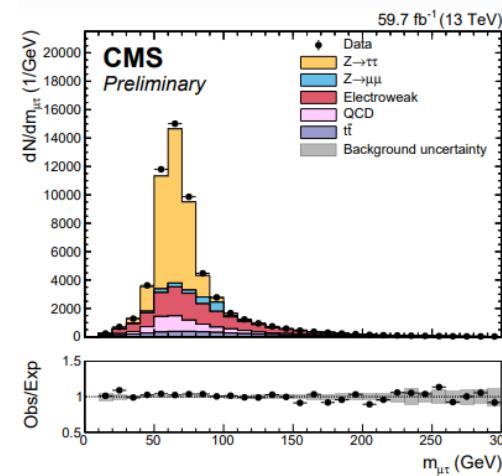
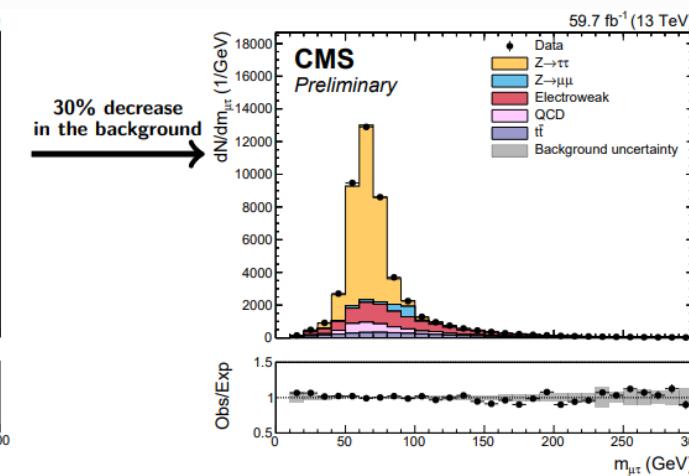
Reconstruction: Tau ID



DeepTau v2.5 significant improvement compared to v2.1

- Jet misidentification reduced by $\approx 50\%$

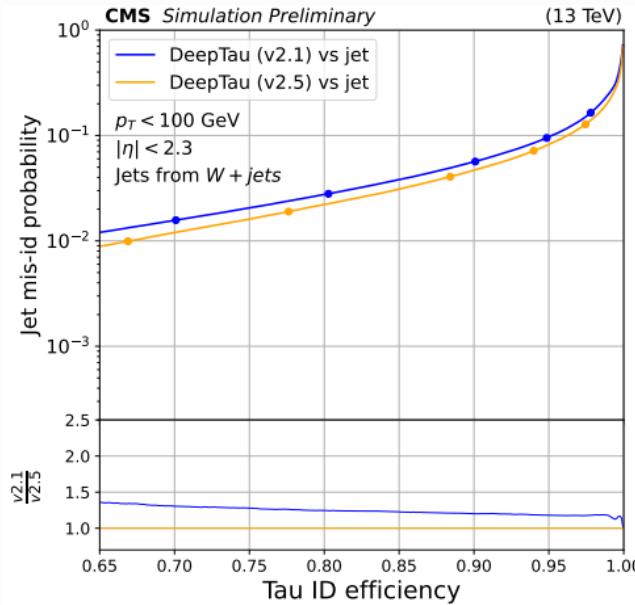
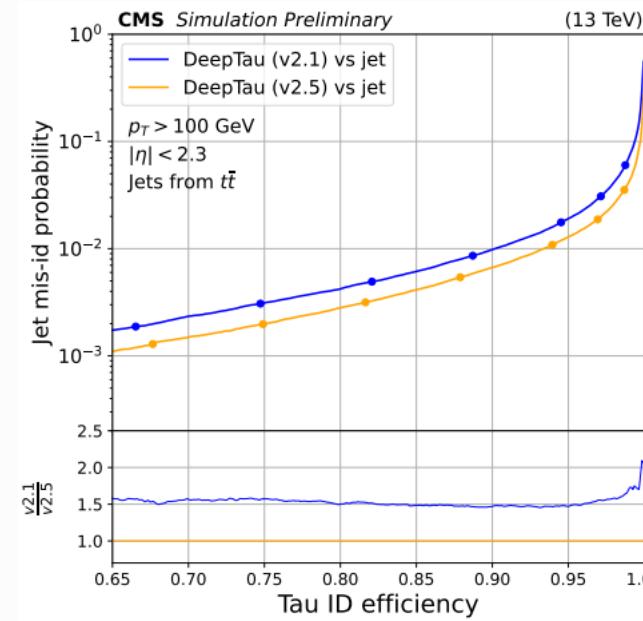
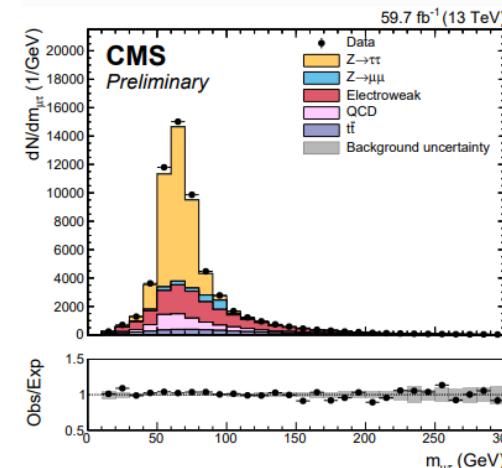
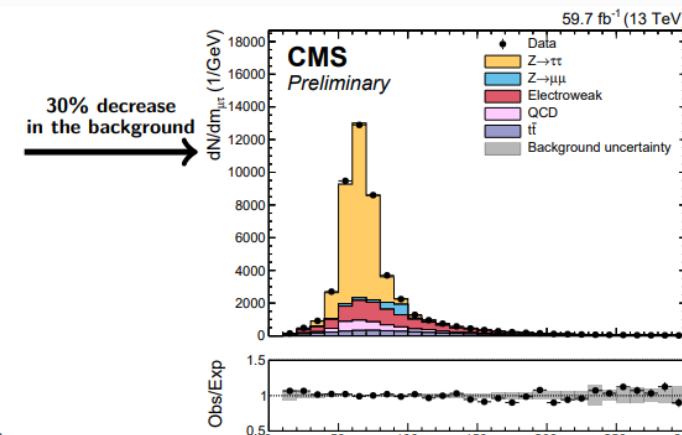
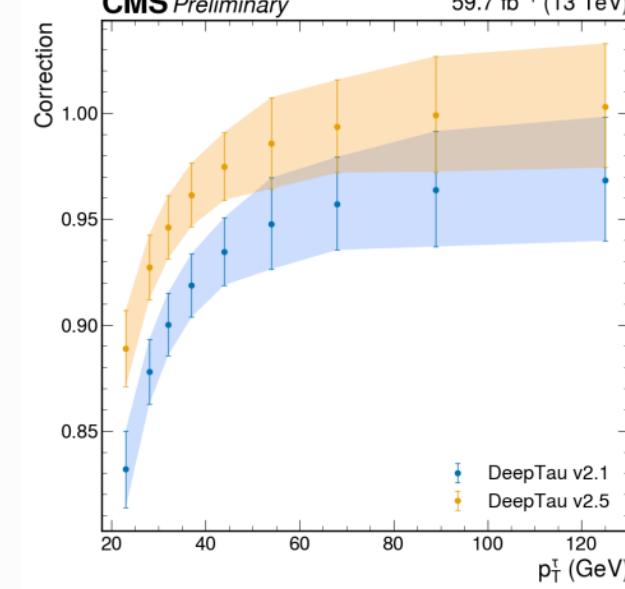
Reconstruction: Tau ID



DeepTau v2.5 significant improvement compared to v2.1

- Jet misidentification reduced by $\approx 50\%$
- 30% decrease in the background

Reconstruction: Tau ID



[CMS-DP-2024-063](#)

DeepTau v2.5 significant improvement compared to v2.1

- Jet misidentification reduced by $\approx 50\%$
- 30% decrease in the background
- Data vs. MC scale corrections are closer to 1
- Minimizing dependence on MC mismodelling

TRIDENT Experiment

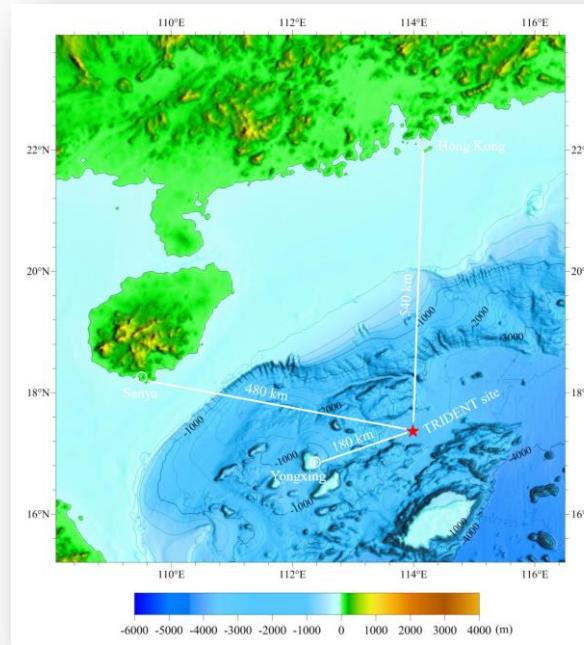
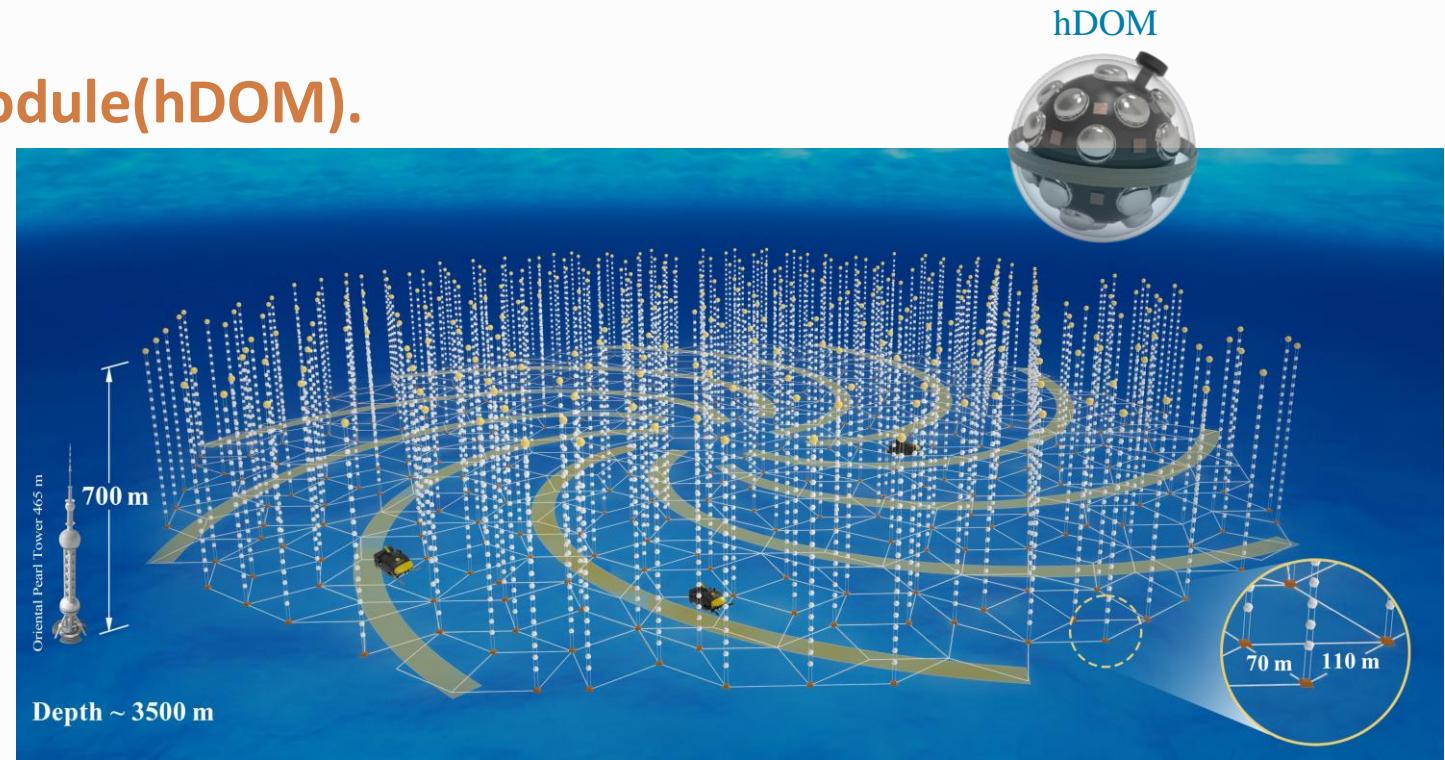
- **TRIDENT: TRopical DEep-sea Neutrino Telescope.**

A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean. [Nature Astronomy \(2023\)](#).

- **To be located in the South China Sea.**

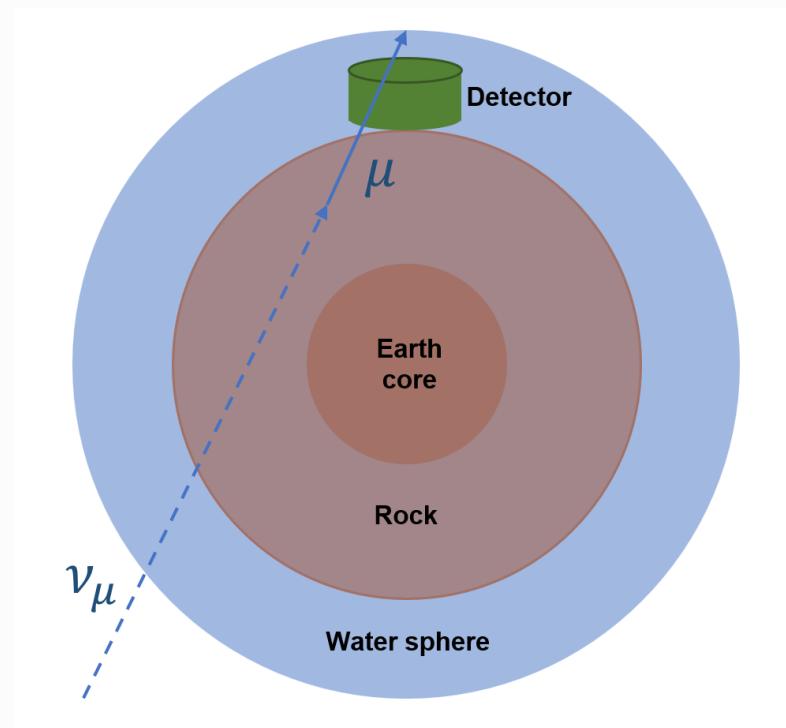
- **Penrose tiling structure with 2000m radius, 700m height (8.7 km³). 3500m deep under sea level.**

- **24220 hybrid Digital Optical Module(hDOM).**



TRIDENT: Neutrino Reconstruction

TRIDENT: Neutrino Reconstruction

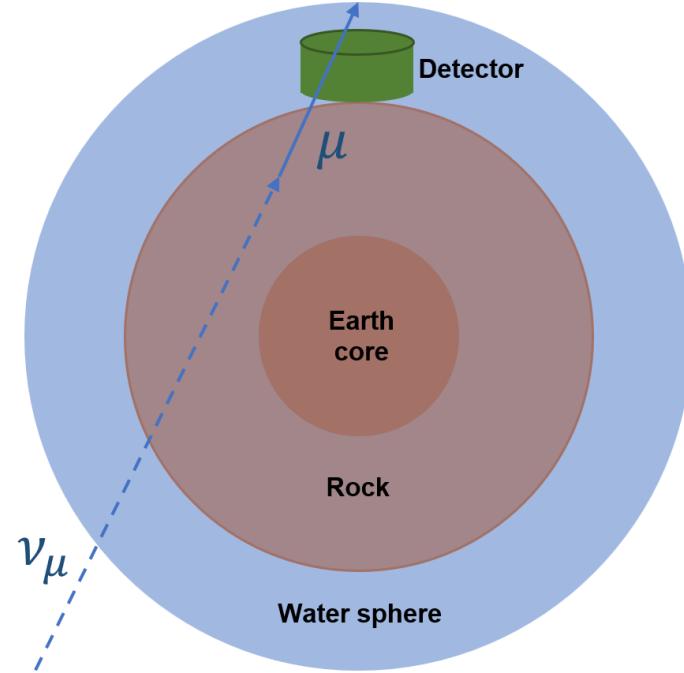


Preliminary earth model

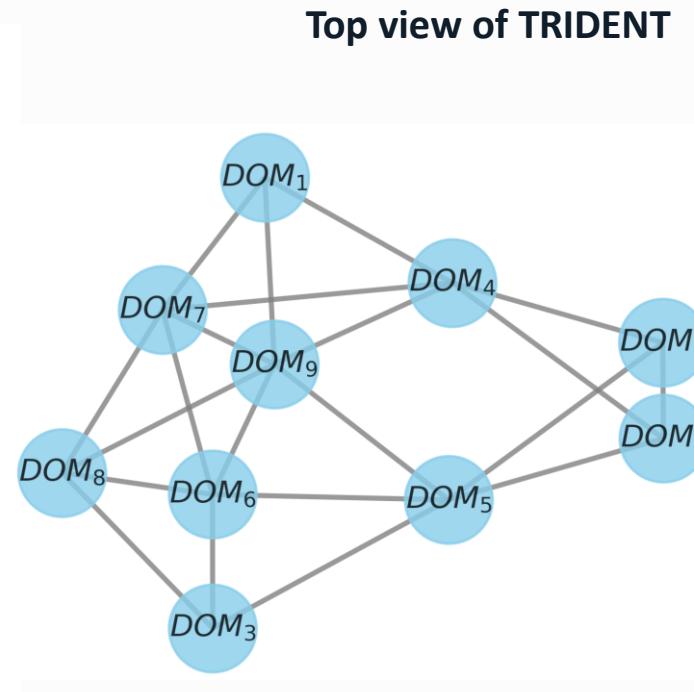
Neutrino event generator Based on CORSIKA8

Detector simulation based on Geant4

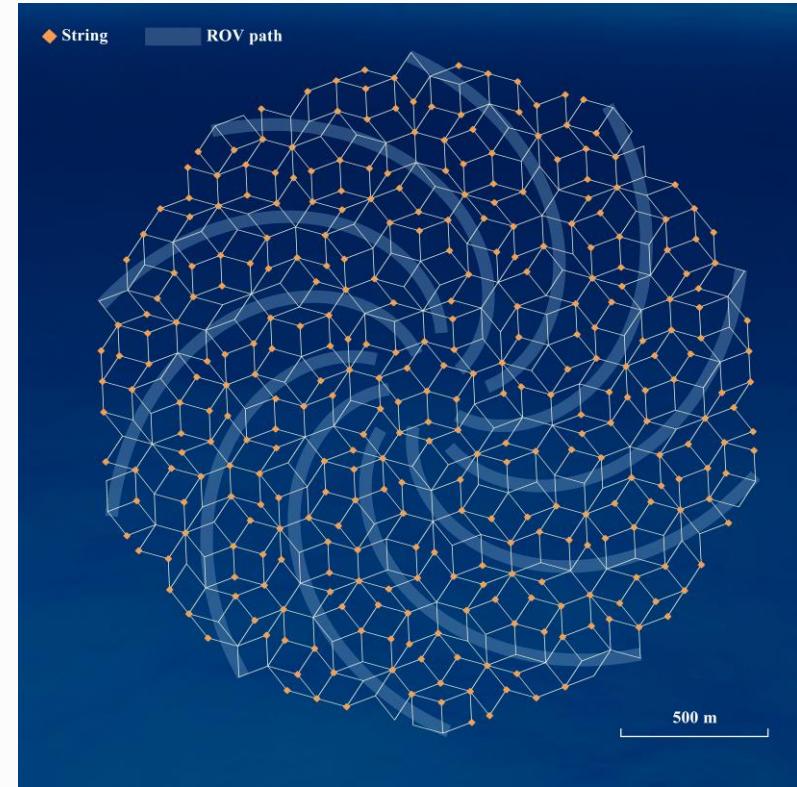
TRIDENT: Neutrino Reconstruction



Preliminary earth model



Top view of TRIDENT



Neutrino event generator Based on CORSIKA8

Detector simulation based on Geant4

Use **point cloud** to represent neutrino events:

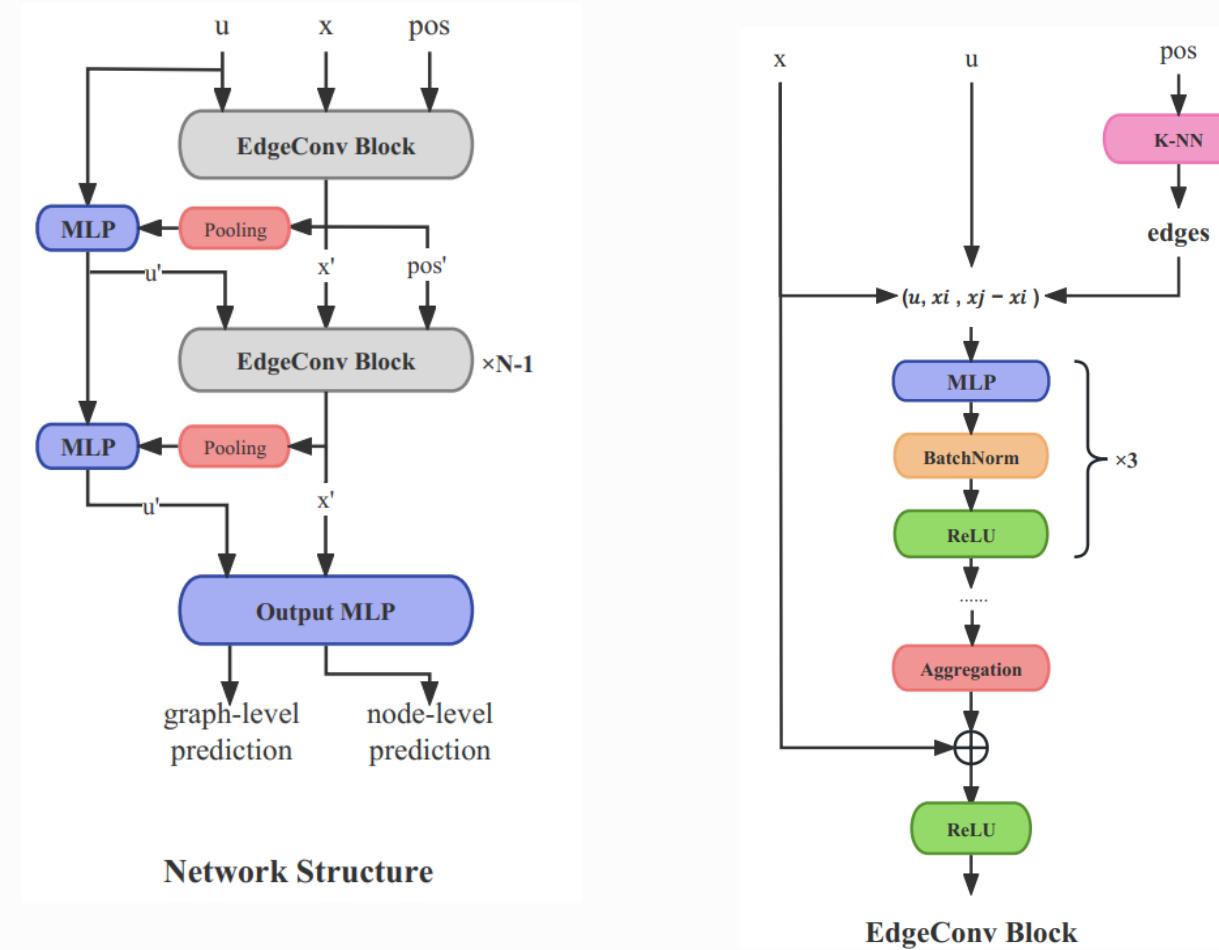
- Triggered DOMs
- Location of DOMs
- DOM-measured time

→ **Nodes** of point cloud

→ Coordinate of nodes, pos_i .

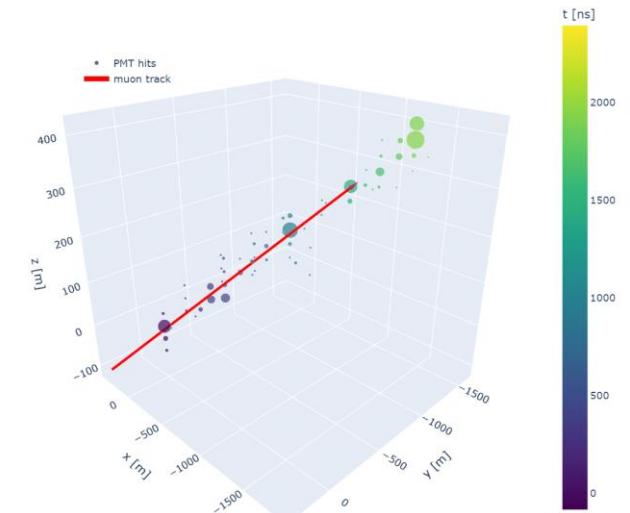
→ Features of nodes, x_i .

- GNN is built based on **EdgeConv** block: modified block as in ParticleNet
- Both **graph-level** and **node-level** target can be predicted.



ν_μ Direction reconstruction

train : validation : test = 900k : 70k : 100k

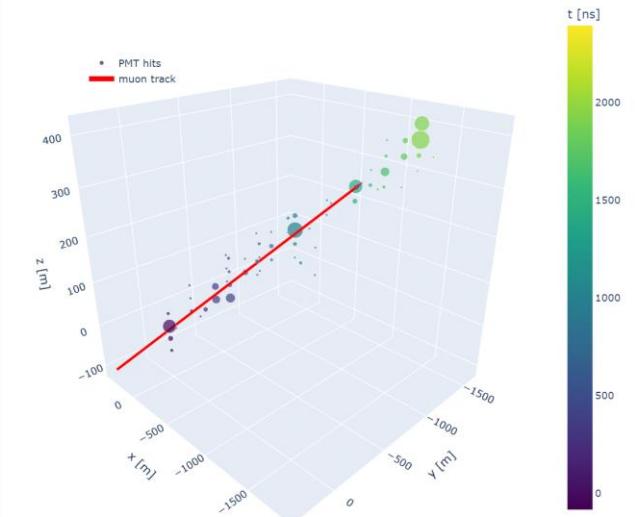


Track-like event display

ν_μ Direction reconstruction

train : validation : test = 900k : 70k : 100k

- **Input features:** location \vec{D}_i , first photon arrival time T_i and number of photo hits n_i .

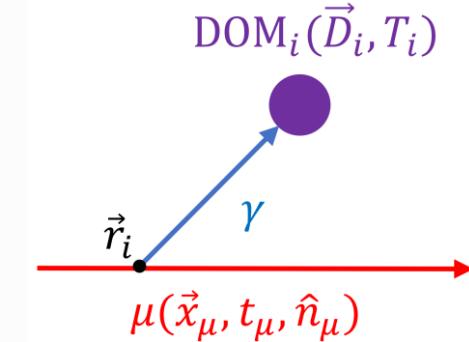
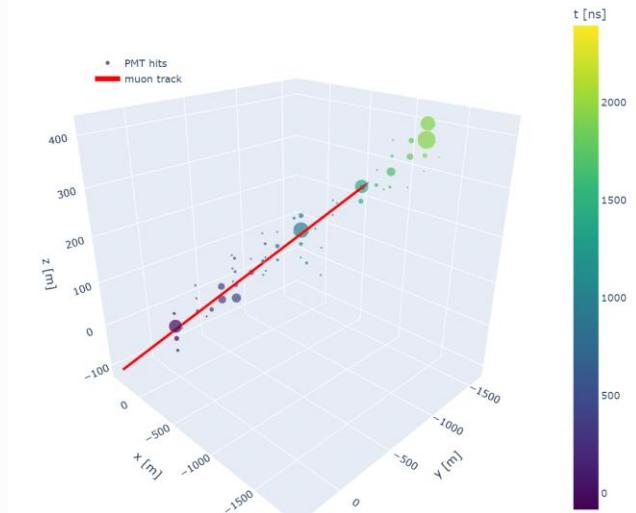


Track-like event display

ν_μ Direction reconstruction

train : validation : test = 900k : 70k : 100k

- **Input features:** location \vec{D}_i , first photon arrival time T_i and number of photo hits n_i .

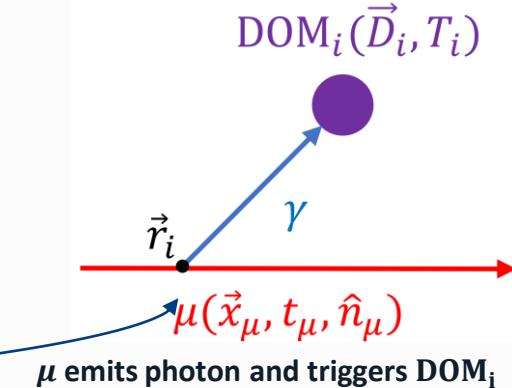
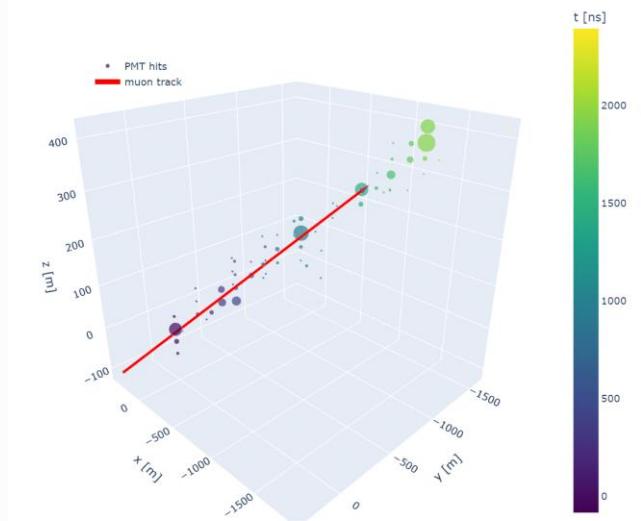


Track-like event display

ν_μ Direction reconstruction

- **Input features:** location \vec{D}_i , first photon arrival time T_i and number of photo hits n_i .
- To make full use of the geometric feature of track-like events, the network is trained to predict \vec{r}_i for each DOM_i .

train : validation : test = 900k : 70k : 100k

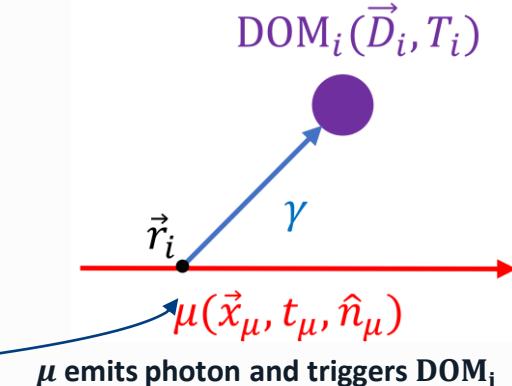
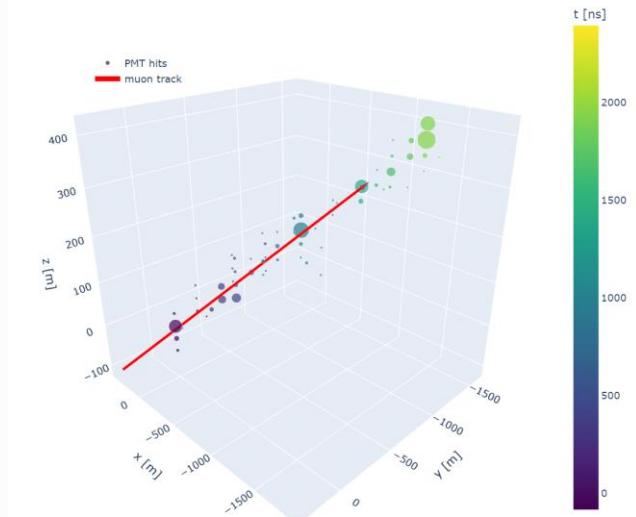


Track-like event display

ν_μ Direction reconstruction

- **Input features:** location \vec{D}_i , first photon arrival time T_i and number of photo hits n_i .
- To make full use of the geometric feature of track-like events, the network is trained to predict \vec{r}_i for each DOM_i .
- **Linear fit** on the predicted \vec{r}'_i to reconstructs \hat{n}_μ .

train : validation : test = 900k : 70k : 100k



Track-like event display

ν_μ Direction reconstruction

train : validation : test = 900k : 70k : 100k

- **Input features:** location \vec{D}_i , first photon arrival time T_i and number of photo hits n_i .

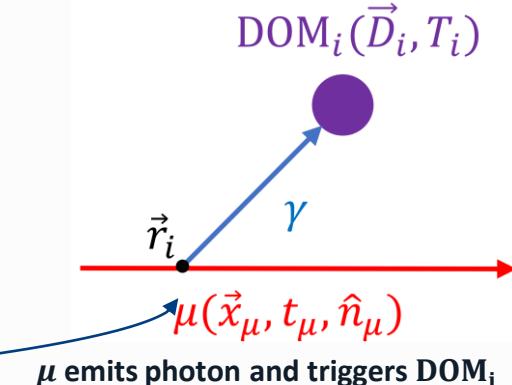
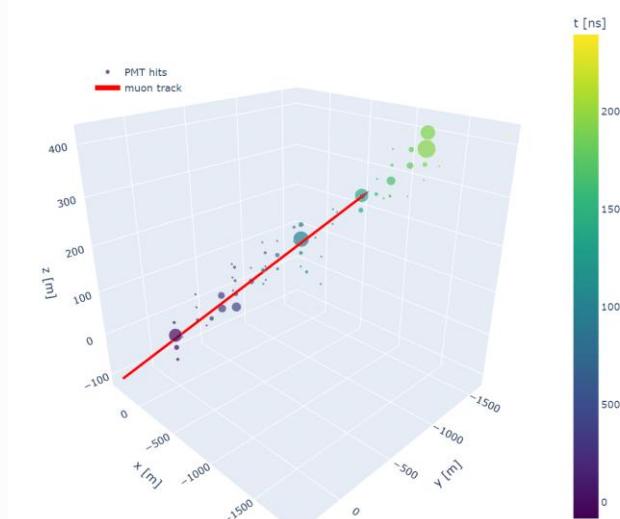
- To make full use of the geometric feature of track-like events, the network is trained to predict \vec{r}_i for each DOM_i .

- **Linear fit** on the predicted \vec{r}'_i to reconstructs \hat{n}_μ .

- **Loss function:** mean square error (MSE) with weight proportional to n_i :

$$Loss = \sum_i n_i \times \left| \overrightarrow{output}_i - \vec{r}_i \right|^2 / \sum_i n_i$$

- **Hybrid-GNN models: LITE, LARGE**



Track-like event display

TRIDENT: Neutrino Reconstruction

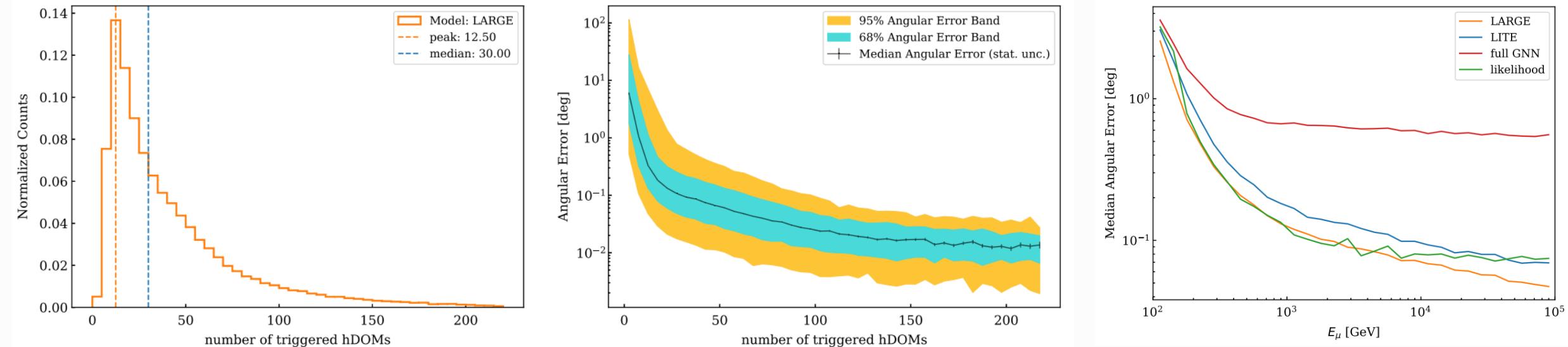


TABLE I. Mean run-time cost per inference.

Method	Time (0.1–1 TeV) (ms)	Time (1–10 TeV) (ms)	Time (10–100 TeV) (ms)
Likelihood	1552.30	1259.86	919.14
GNN light (GPU)	0.19	0.21	0.29
GNN large (GPU)	0.38	0.78	2.37
GNN light (CPU)	5.05	12.53	30.44
GNN large (CPU)	54.71	152.48	181.80

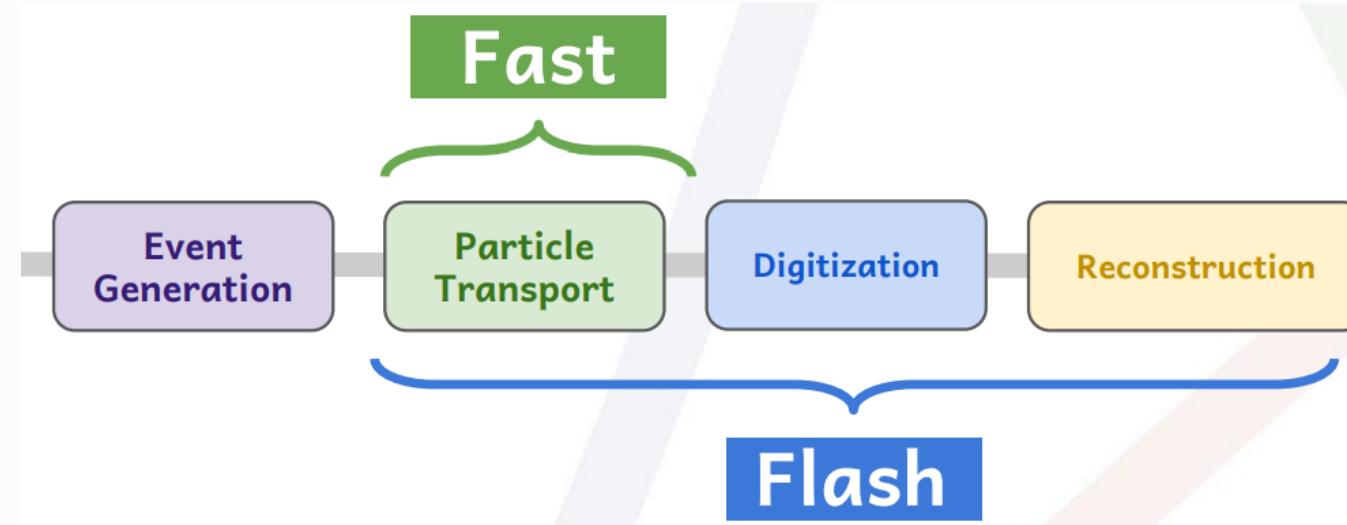
Phys. Rev. D 112, 072012

- Median angular error decreases from 1 degree to 0.1 degree as the energy of ν_μ increases
- Light hybrid-GNN model (LITE) runs 0.19–0.29 ms per event on GPUs, 1000 times faster than traditional likelihood fitting method --- **real time** processing
- Large hybrid-GNN model (LARGE) takes longer but with more precision --- **offline** processing

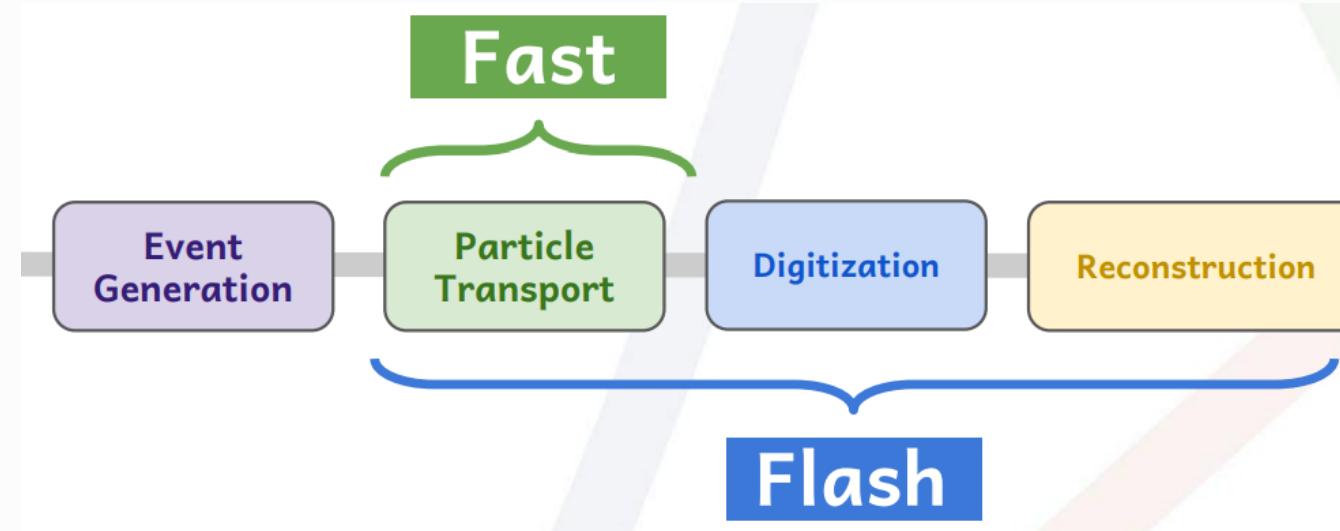
Fast and Flash Simulations at LHCb

Fast and Flash Simulations at LHCb





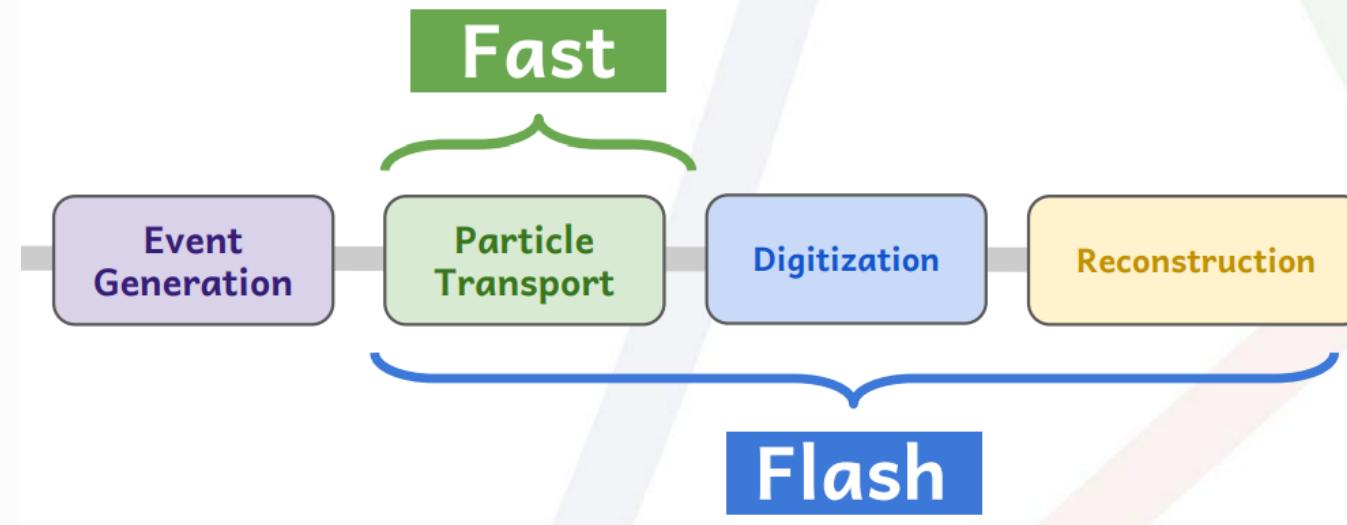
Why simulation matters?



Why simulation matters?

- 90% of computing resources are used for simulations at LHCb
- Calorimeter simulation is the most computationally intensive part of the simulation process
- 60% of the total CPU time is used for calorimeter simulations

[arXiv:2511.02020](https://arxiv.org/abs/2511.02020)



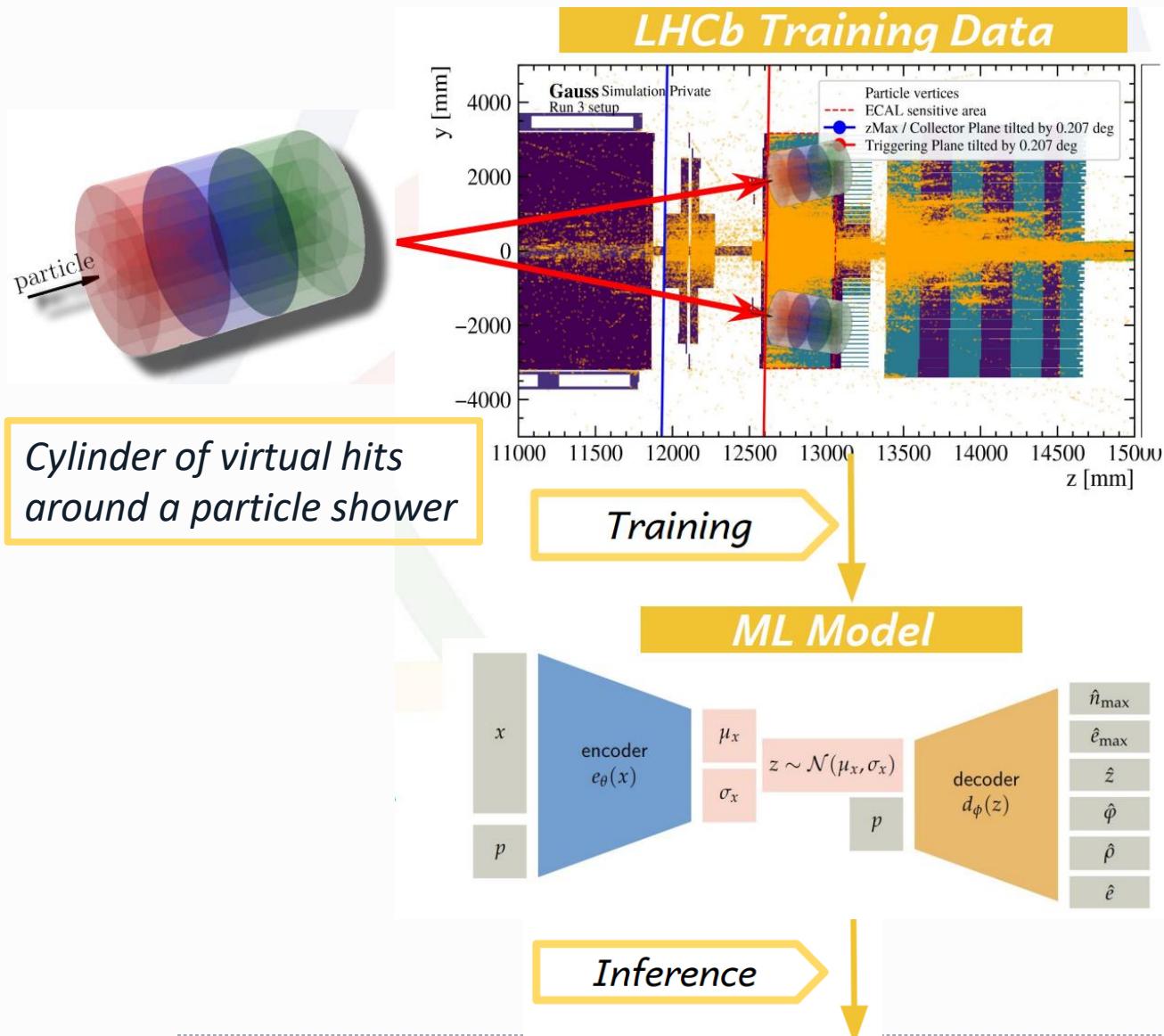
Why simulation matters?

- 90% of computing resources are used for simulations at LHCb
- Calorimeter simulation is the most computationally intensive part of the simulation process
- 60% of the total CPU time is used for calorimeter simulations

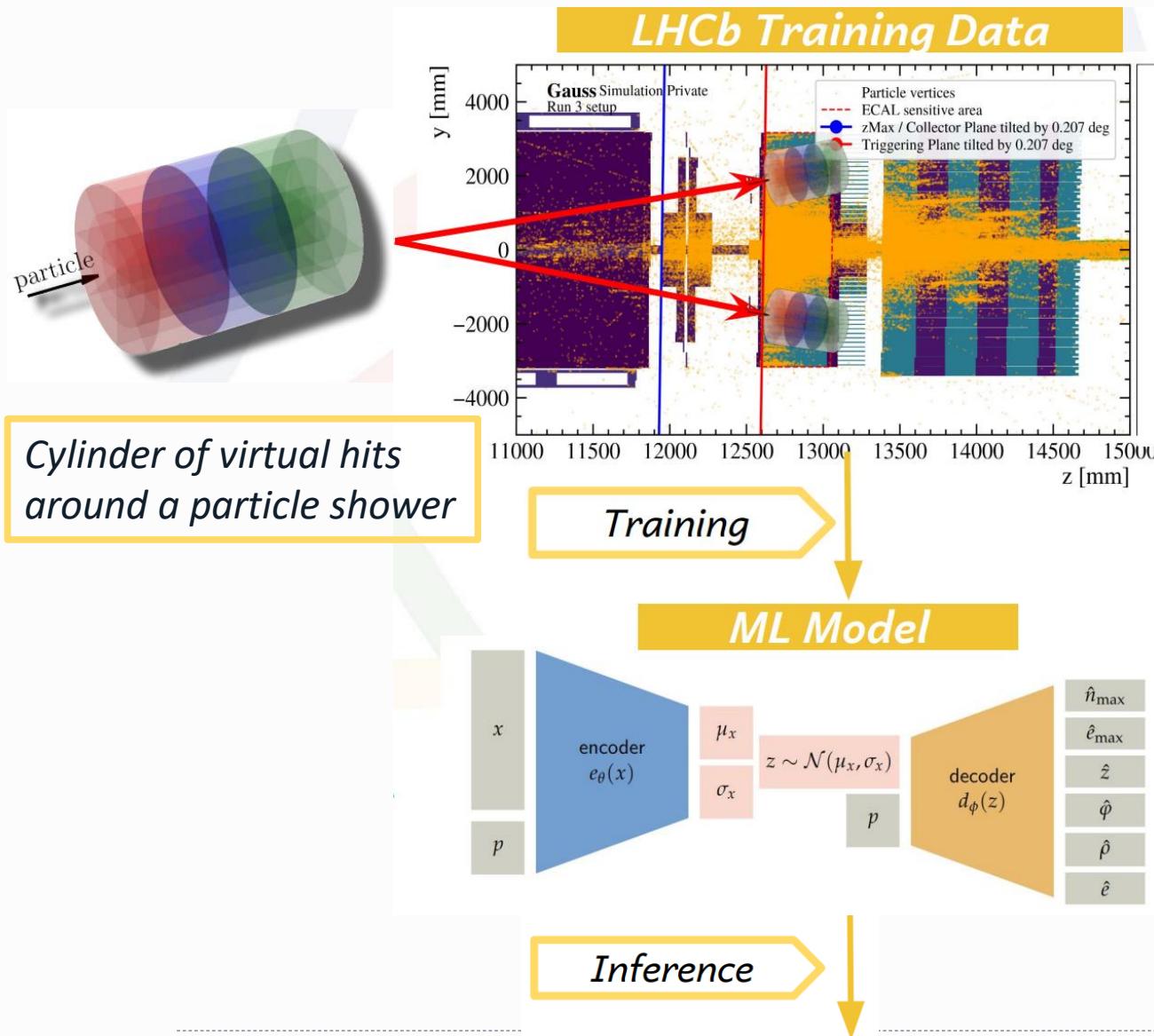
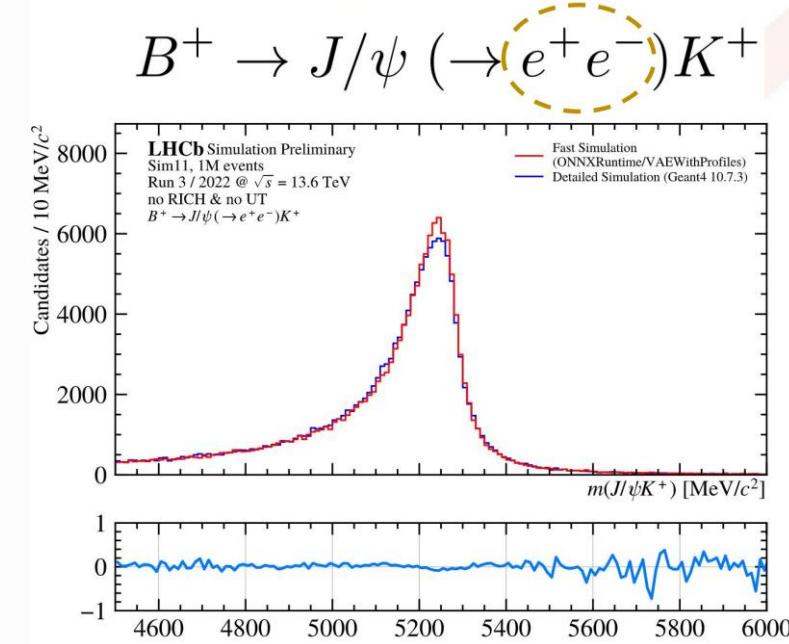
CaloML based on CaloChallenge

- CaloML is the first production-ready option with generative models

Fast Simulation at LHCb



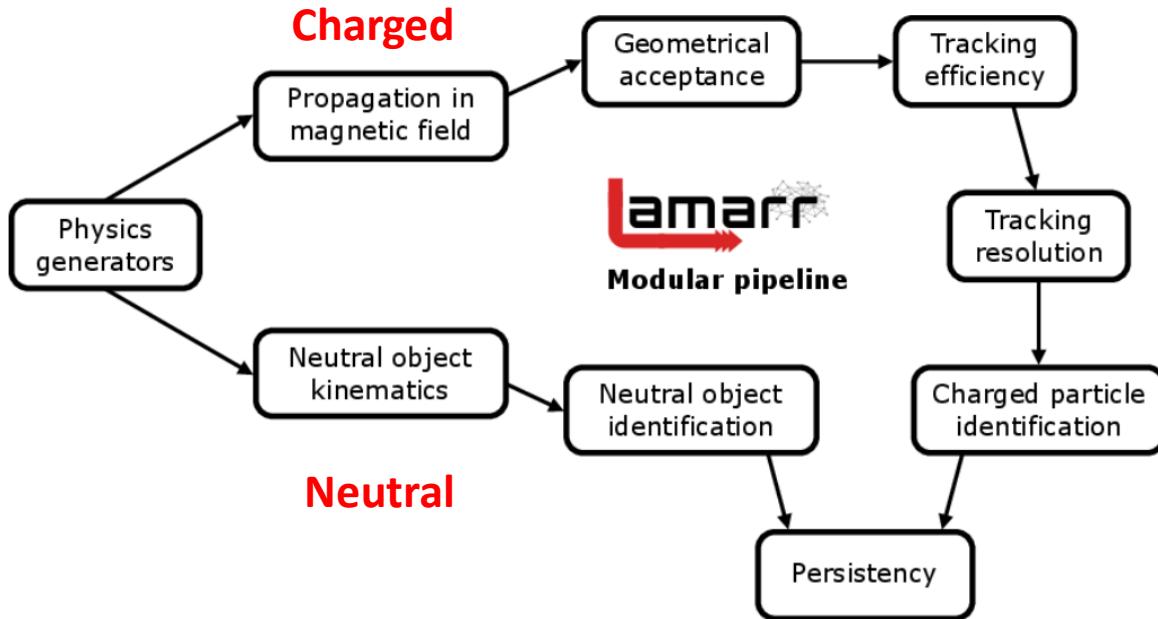
Fast Simulation at LHCb



Modified Variational autoencoders (VAE) predict spatial and energy profiles of the cylinders, improving both accuracy and training speed

- **~100x times faster for electrons and photons in ECAL**
- **~0.01% energy difference on reconstructed objects**
- **Ongoing efforts to include hadrons**
- **Good agreement with physics observables**

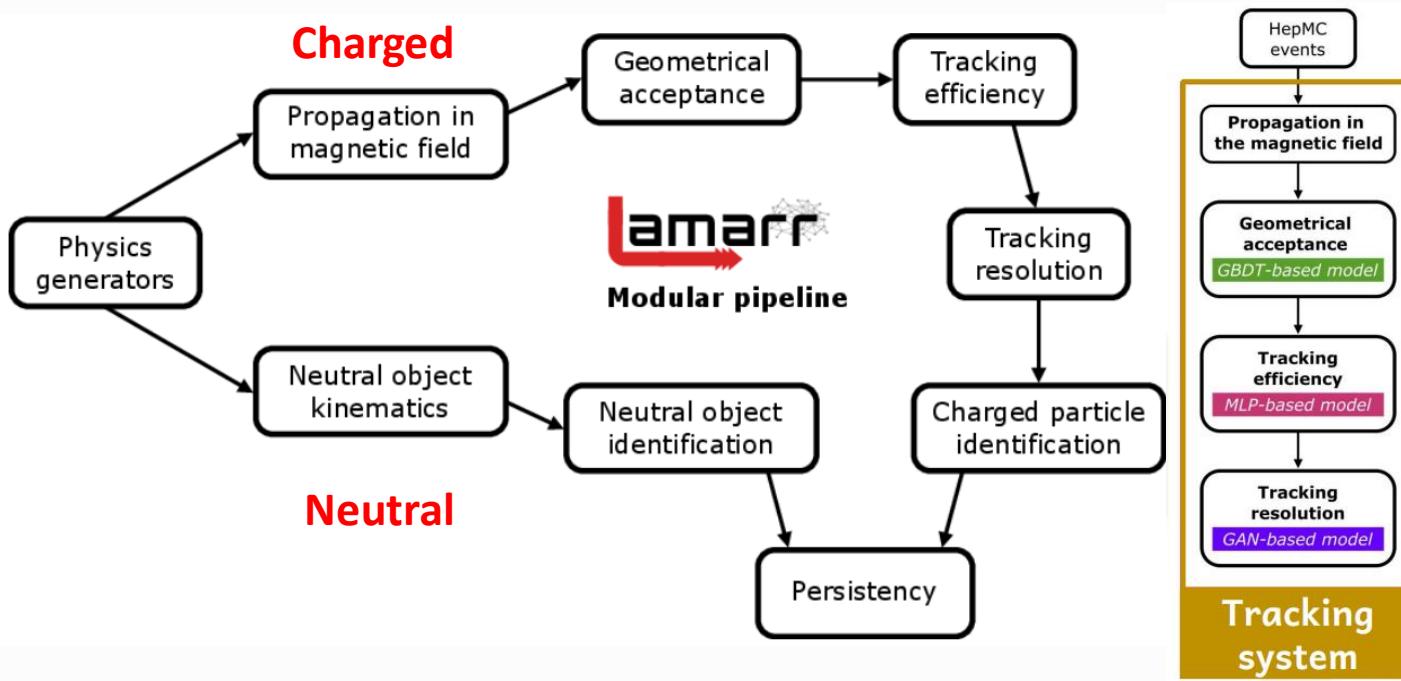
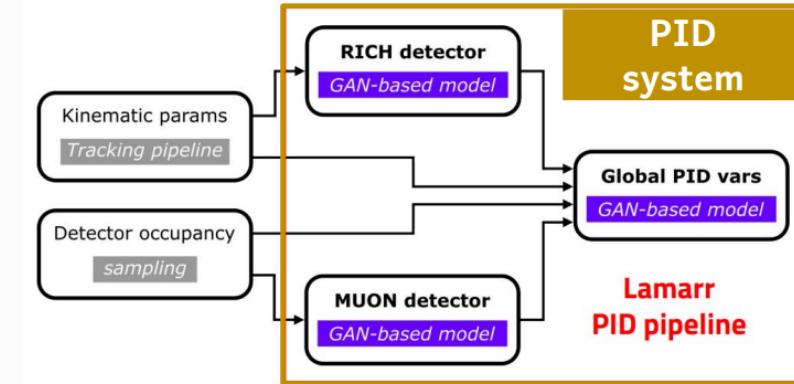
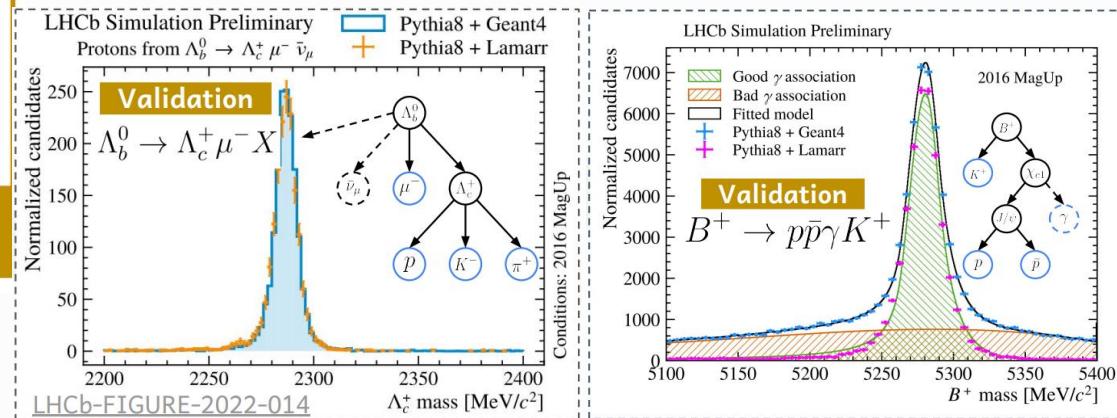
Flash Simulation at LHCb



Two branches approach

- **Charged:** branch treating charged particles relying on tracking and particle identification parameterizations
- **Neutral:** branch treating neutral particles that require an accurate parameterization of the calorimeter

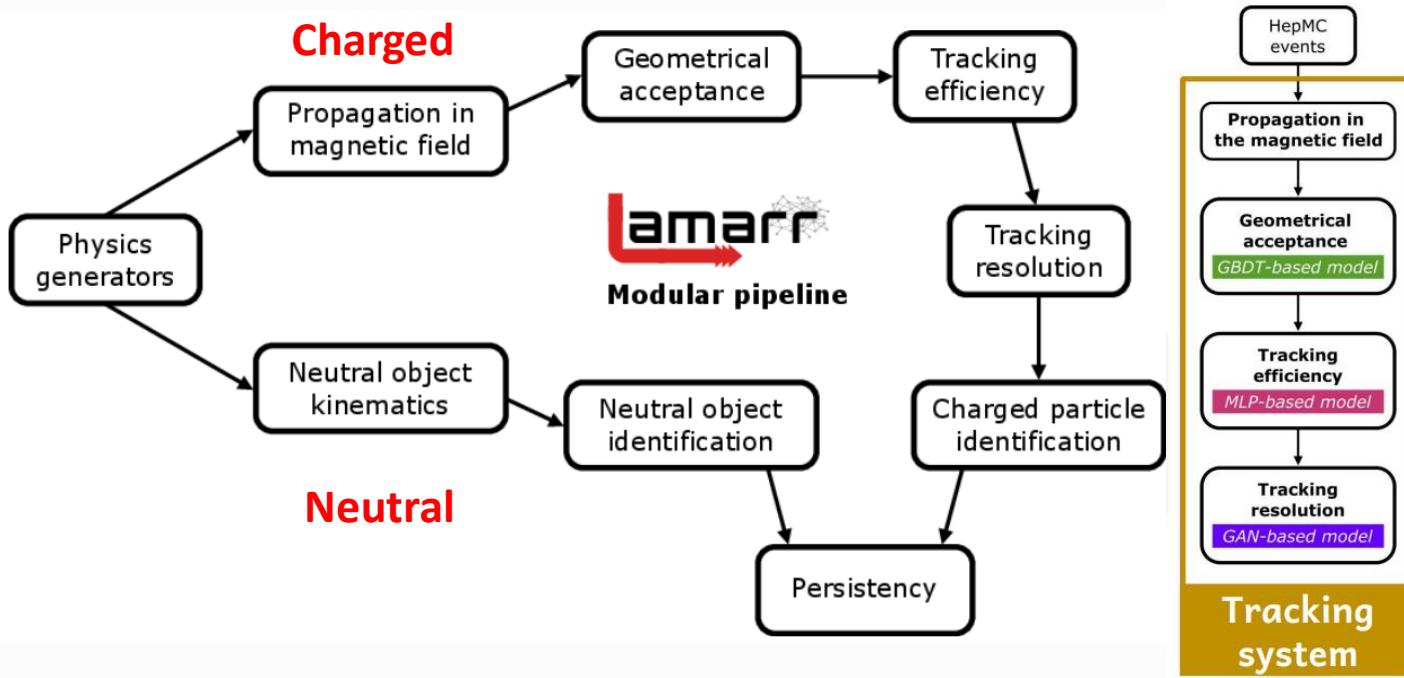
Flash Simulation at LHCb



Two branches approach

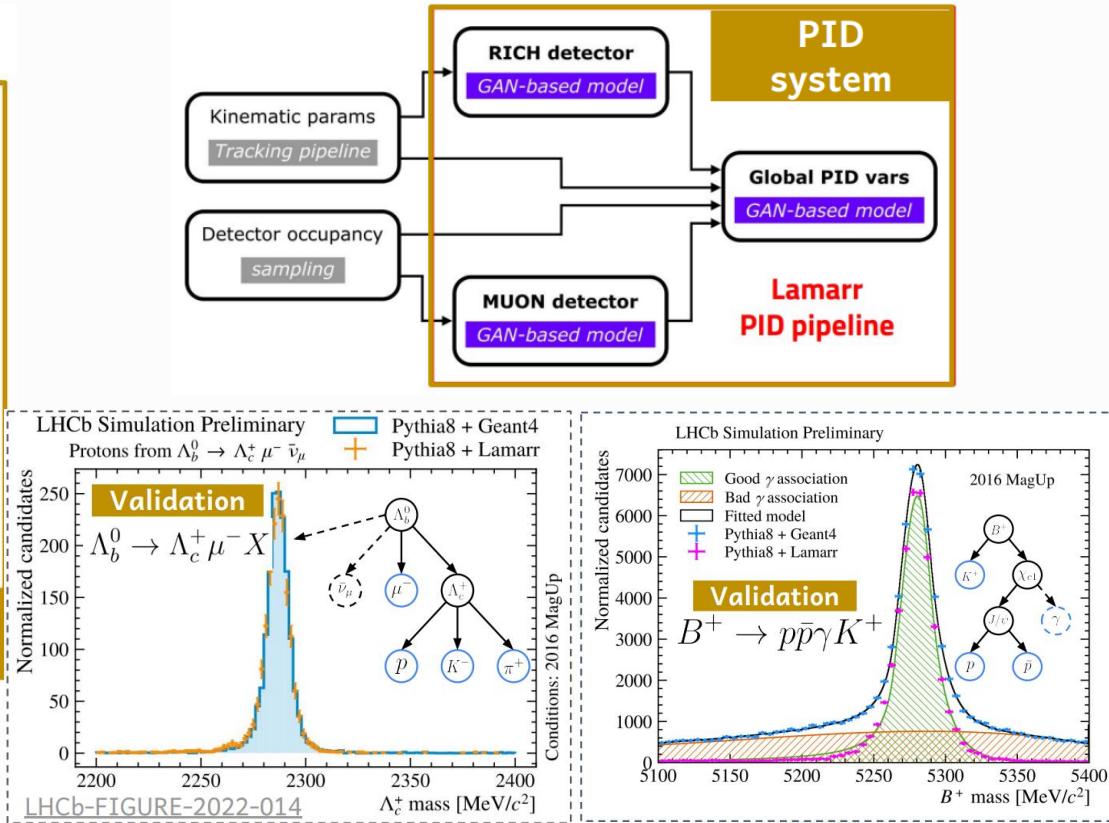
- **Charged:** branch treating charged particles relying on tracking and particle identification parameterizations
- **Neutral:** branch treating neutral particles that require an accurate parameterization of the calorimeter

Flash Simulation at LHCb



Two branches approach

- **Charged:** branch treating charged particles relying on tracking and particle identification parameterizations
- **Neutral:** branch treating neutral particles that require an accurate parameterization of the calorimeter



- **Lamarr** accelerates detector simulation and reconstruction by 2-3 orders of magnitude compared to **GEANT4** full simulation
- **Validation for LHCb analyses, neutral sector needs more work**

Large Language Models for Design

Motivation

- Physics instruments (e.g., collider detectors) require long, expensive design cycles.
- ML optimization exists (Trust-region (TR) optimizer, differentiable surrogates, RL), but humans still craft action spaces, rewards, and workflows.

Can LLMs propose physically meaningful designs with *only prompting*?

- Keep simulator + reward fixed, swap proposal mechanism (e.g. RL → LLM prompting).

Motivation

- Physics instruments (e.g., collider detectors) require long, expensive design cycles.
- ML optimization exists (Trust-region (TR) optimizer, differentiable surrogates, RL), but humans still craft action spaces, rewards, and workflows.

Can LLMs propose physically meaningful designs with ***only prompting***?

- Keep simulator + reward fixed, swap proposal mechanism (e.g. RL → LLM prompting).

Benchmarks reused from RL study
(controlled testbeds)

A) Sampling calorimeter segmentation

Design variables

- layer positions z (mm)
- discrete layer thickness t
- global thickness/cost budget

Metric

Mean-corrected energy
resolution
(EM & hadronic @ 50/100 GeV)

B) Magnetic spectrometer layout

Design variables

- station positions z (m)
- granularity g (bins/side)
- total pixel budget

Metric

Tracking efficiency & momentum
resolution @ 10/100 GeV

Large Language Models for Design

Prompt

Problem spec

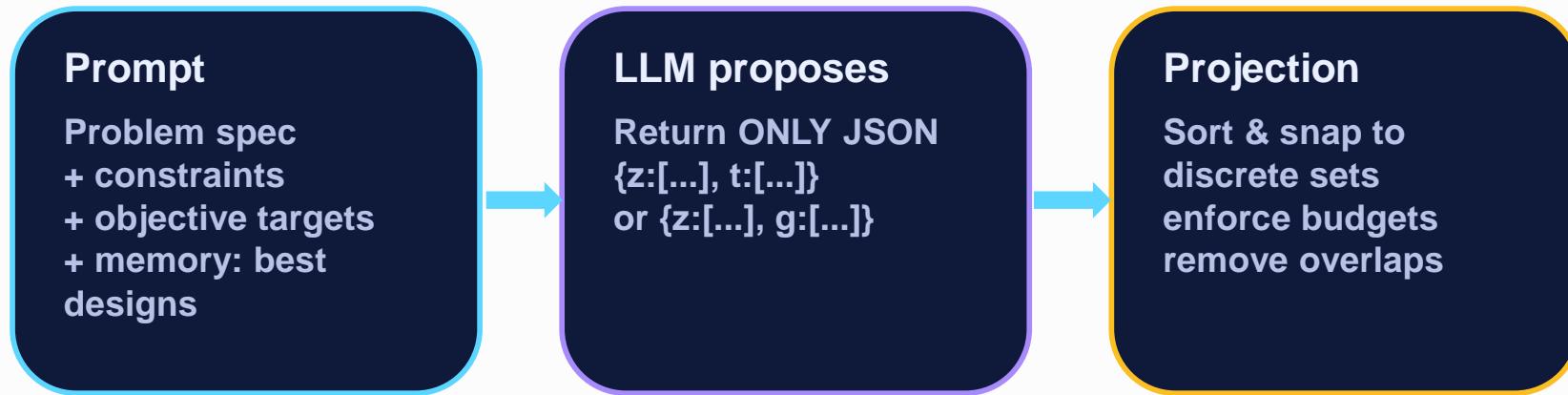
+ constraints

+ objective targets

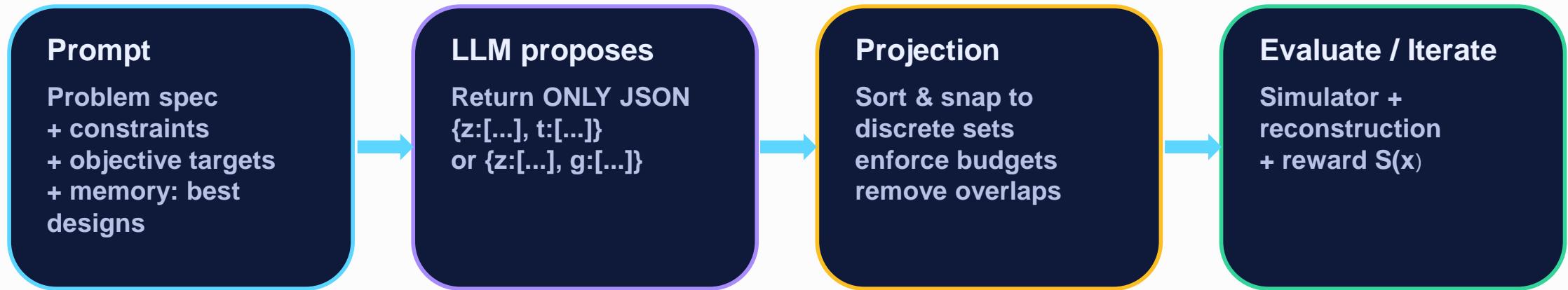
+ memory: best designs

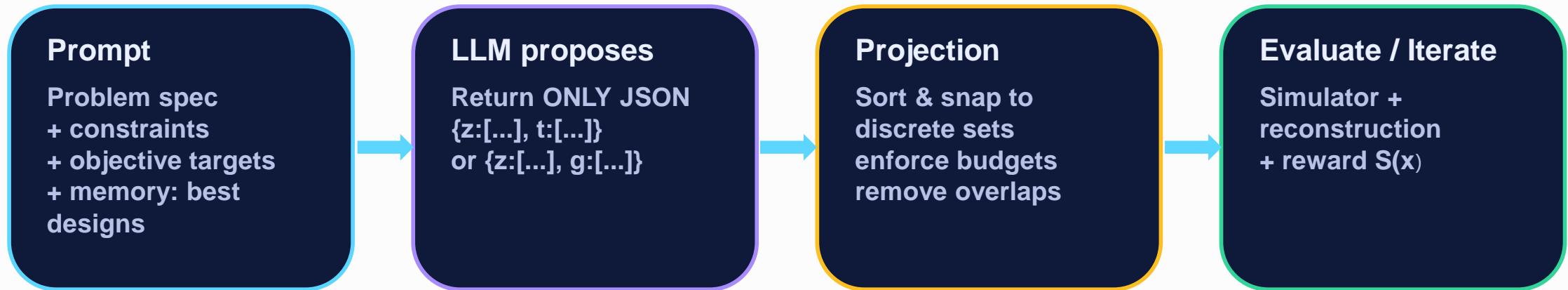


Large Language Models for Design



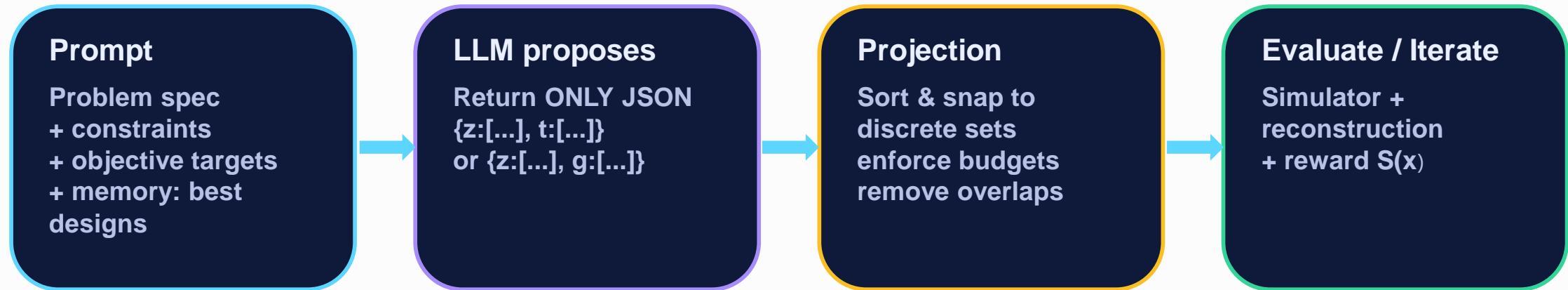
Large Language Models for Design





Optional hybrid step: Trust-Region (TR) refinement

- Keep discrete choices fixed
- Locally optimize continuous positions (z)
- Use black-box optimizer (BOBYQA) under hard constraints



What makes it interesting?

- No fine-tuning, no gradients, no simulator interaction by the model.
- LLM is used as a *proposal generator* using broad pretrained physics knowledge.
- Feasibility projection prevents wasting evaluations on invalid designs.
- Memory of best designs gives a compact “dataset” for in-context improvement.

Optional hybrid step: Trust-Region (TR) refinement

- Keep discrete choices fixed
- Locally optimize continuous positions (z)
- Use black-box optimizer (BOBYQA) under hard constraints

Models tested (350 proposal iterations each)

GPT-OSS-20B • GPT-OSS-120B • GPT-5 • Gemini 2.5 Pro

Calorimeter benchmark

Highlight (hadronic resolution dominates reward)

Baseline	Had 50 GeV: 32.13%	Had 100 GeV: 25.19%
RL best	Had 50 GeV: 24.29%	Had 100 GeV: 18.07%
Best LLM(+TR)	Had 50 GeV: 25.09%	Had 100 GeV: 18.06%

Observation: even without task-specific training, LLMs quickly find non-uniform layer layouts that improve hadronic performance.

Spectrometer benchmark

Highlight (100 GeV momentum resolution)

Baseline	Res@100 GeV: 13.27%	Eff@100 GeV: 99.17%
RL best	Res@100 GeV: 7.95%	Eff@100 GeV: 99.90%
Best LLM(+TR)	Res@100 GeV: 7.97%	Eff@100 GeV: 99.91%

Observation: open-weight GPT-OSS-20B performs strongly; TR improves z-placement and nearly matches RL at 100 GeV.

Large Language Models for Design

Main takeaways

LLMs can generate valid designs under hard constraints
Even with no task-specific training, prompting +
memory yields physically meaningful layouts.

RL remains the strongest end-to-end optimizer
But LLM+local refinement can recover much of the
performance.

Feasibility projection is crucial
Deterministic cleanup turns brittle generations into a
stable search process.

LLMs as meta-planners
They can help define search strategies, organize
experiments, and orchestrate optimization pipelines.

Main takeaways

LLMs can generate valid designs under hard constraints
Even with no task-specific training, prompting +
memory yields physically meaningful layouts.

RL remains the strongest end-to-end optimizer
But LLM+local refinement can recover much of the
performance.

Feasibility projection is crucial
Deterministic cleanup turns brittle generations into a
stable search process.

LLMs as meta-planners
They can help define search strategies, organize
experiments, and orchestrate optimization pipelines.

A practical hybrid workflow (toward “closed-loop” design)

LLM

Propose design hypotheses, constraints, and
evaluation plan

Optimization engine

RL / TR / differentiable surrogate refines designs
under reward

Simulation & validation

GEANT4-like simulation, reconstruction, system-
level checks

Human-in-the-loop

Review, constraint updates, safety & engineering
feasibility

Main takeaways

LLMs can generate valid designs under hard constraints
Even with no task-specific training, prompting +
memory yields physically meaningful layouts.

RL remains the strongest end-to-end optimizer
But LLM+local refinement can recover much of the
performance.

Feasibility projection is crucial
Deterministic cleanup turns brittle generations into a
stable search process.

LLMs as meta-planners
They can help define search strategies, organize
experiments, and orchestrate optimization pipelines.

Limitations & Outlook

- Benchmarks are simplified; real detector design adds more subsystems and constraints.
- LLMs need robust guardrails (projection, validation) to avoid invalid or misleading proposals.
- **Agent** that calls LLMs and tools to do optimization studies.

A practical hybrid workflow (toward “closed-loop” design)

LLM
Propose design hypotheses, constraints, and
evaluation plan

Optimization engine
RL / TR / differentiable surrogate refines designs
under reward

Simulation & validation
GEANT4-like simulation, reconstruction, system-
level checks

Human-in-the-loop
Review, constraint updates, safety & engineering
feasibility

Model-centric vs. Agent-centric

Model-centric vs. Agent-centric

Model-centric AI

Model-centric vs. Agent-centric

Model-centric AI

- Single inference

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response

Model-centric vs. Agent-centric

Model-centric AI

- **Single inference**
- **Passive response**
- **Stateless**

Model-centric vs. Agent-centric

Model-centric AI

- **Single inference**
- **Passive response**
- **Stateless**
- **Does not understand goals or objectives**

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Agent-centric AI

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Agent-centric AI

- Long-horizon with multiple tasks

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Agent-centric AI

- Long-horizon with multiple tasks
- Proactive planning

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Agent-centric AI

- Long-horizon with multiple tasks
- Proactive planning
- State memorized

Model-centric vs. Agent-centric

Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Agent-centric AI

- Long-horizon with multiple tasks
- Proactive planning
- State memorized
- Can understand goals and objectives

Model-centric vs. Agent-centric

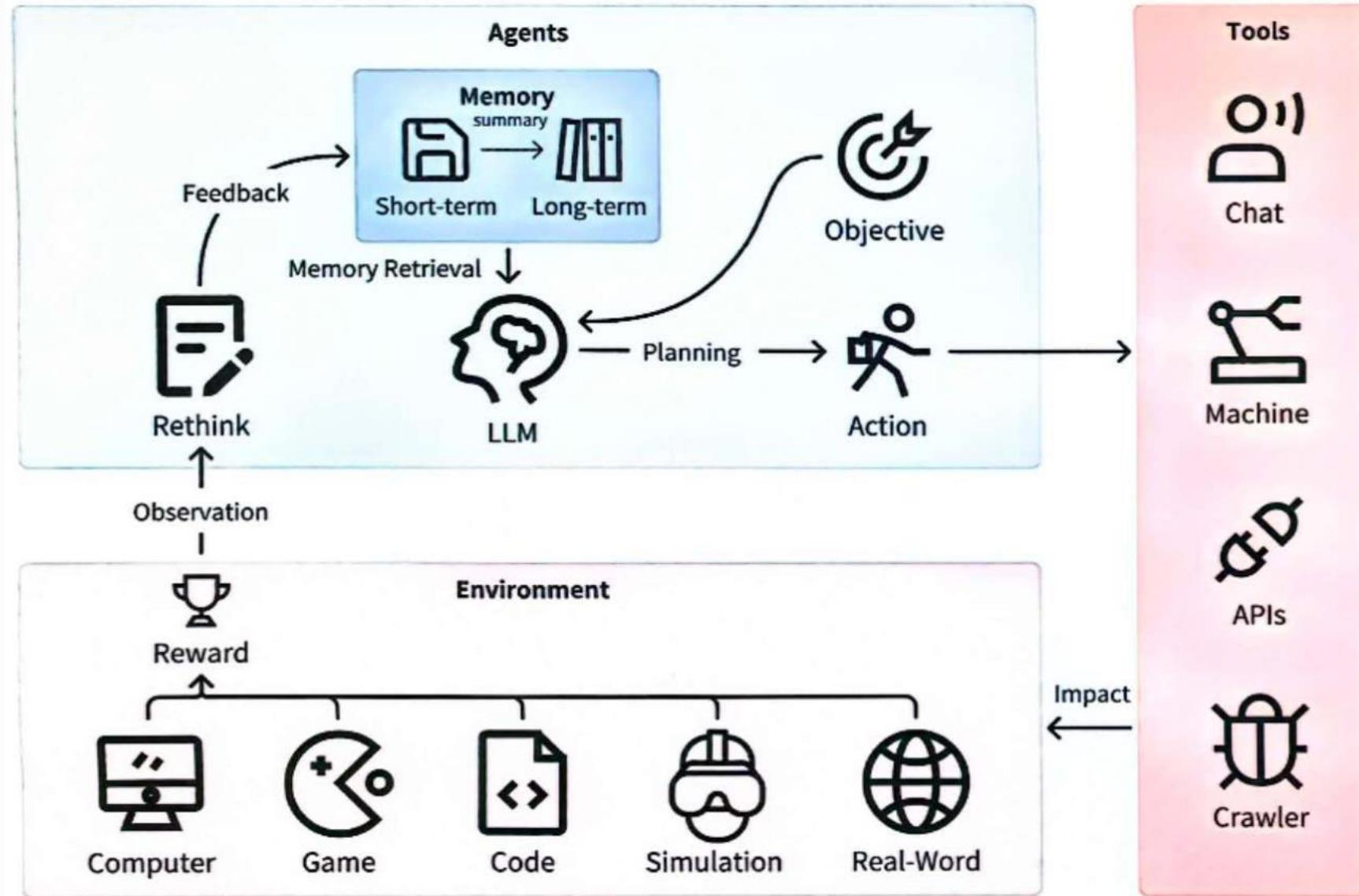
Model-centric AI

- Single inference
- Passive response
- Stateless
- Does not understand goals or objectives
- Does not execute actions

Agent-centric AI

- Long-horizon with multiple tasks
- Proactive planning
- State memorized
- Can understand goals and objectives
- Can execute actions and call (other) tools/agents

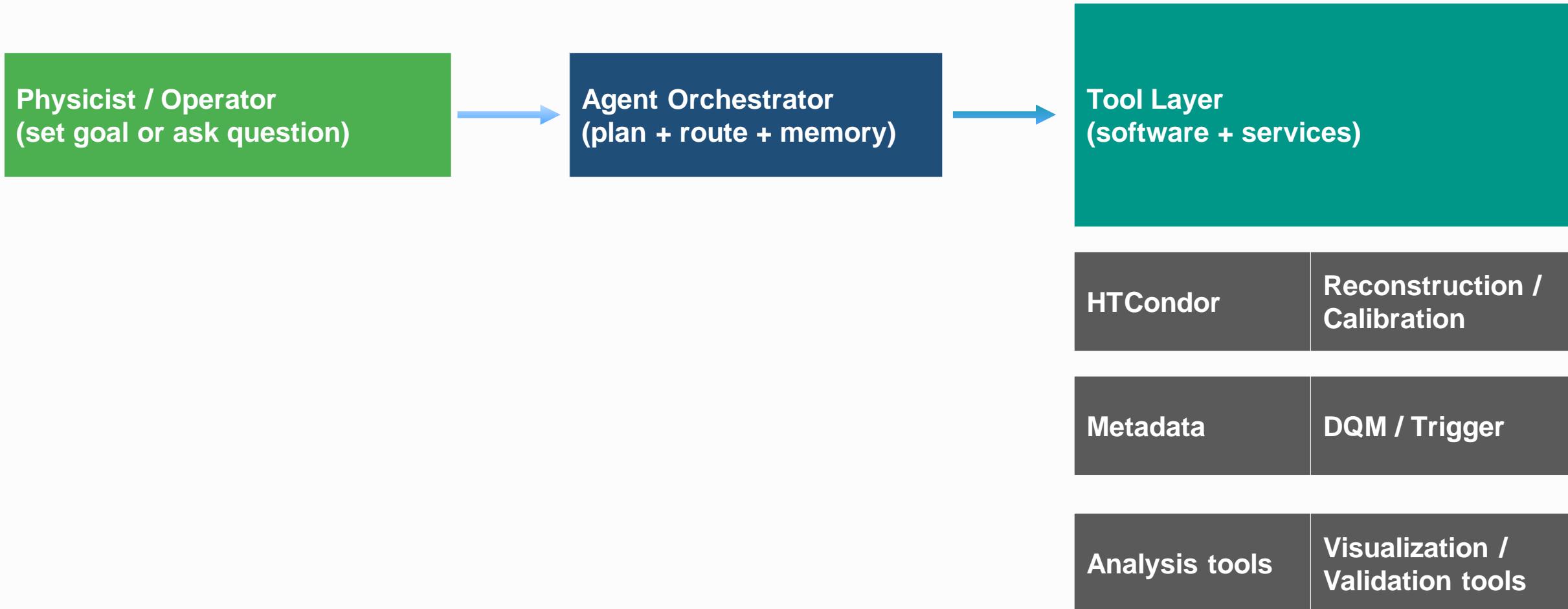
Agent: AI4Science



Physicist / Operator
(set goal or ask question)

Physicist / Operator
(set goal or ask question)

Agent Orchestrator
(plan + route + memory)



What does the Agent do?

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools

What does the Agent do?

- ✓ Task decomposition and tools selection

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools

What does the Agent do?

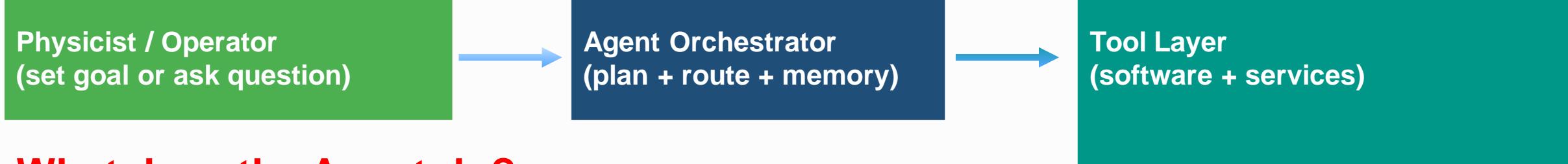
- ✓ Task decomposition and tools selection
- ✓ Iterative refinement

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools

What does the Agent do?

- ✓ Task decomposition and tools selection
- ✓ Iterative refinement
- ✓ Run monitoring: summarize alarms and propose checks

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools



What does the Agent do?

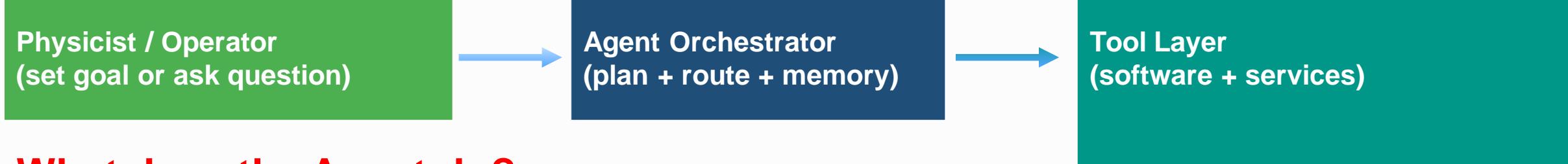
- ✓ Task decomposition and tools selection
- ✓ Iterative refinement
- ✓ Run monitoring: summarize alarms and propose checks
- ✓ Launch workflows: submit jobs, monitor DAGs, retry safely

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools

What does the Agent do?

- ✓ Task decomposition and tools selection
- ✓ Iterative refinement
- ✓ Run monitoring: summarize alarms and propose checks
- ✓ Launch workflows: submit jobs, monitor DAGs, retry safely
- ✓ Data discovery: locate datasets, validate schemas, track provenance

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools



What does the Agent do?

- ✓ **Task decomposition and tools selection**
- ✓ **Iterative refinement**
- ✓ **Run monitoring: summarize alarms and propose checks**
- ✓ **Launch workflows: submit jobs, monitor DAGs, retry safely**
- ✓ **Data discovery: locate datasets, validate schemas, track provenance**
- ✓ **Analysis assistance: produce plots and sanity checks with reproducible results**

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools

What does the Agent do?

- ✓ Task decomposition and tools selection
- ✓ Iterative refinement
- ✓ Run monitoring: summarize alarms and propose checks
- ✓ Launch workflows: submit jobs, monitor DAGs, retry safely
- ✓ Data discovery: locate datasets, validate schemas, track provenance
- ✓ Analysis assistance: produce plots and sanity checks with reproducible results

HTCondor	Reconstruction / Calibration
Metadata	DQM / Trigger
Analysis tools	Visualization / Validation tools

Goal: make agents useful by constraining them with tools, permissions, records, validation checks, and reproducible execution.

Conclusion and Outlook

✓ The field of (experimental) high energy physics is rapidly adopting ML and AI techniques leading to real impact on physics results

- ✓ The field of (experimental) high energy physics is rapidly adopting ML and AI techniques leading to real impact on physics results
- ✓ Diversified use case: classification with both supervised and weakly/self-supervised scheme, reconstruction, simulation and more

- ✓ The field of (experimental) high energy physics is rapidly adopting ML and AI techniques leading to real impact on physics results
- ✓ Diversified use case: classification with both supervised and weakly/self-supervised scheme, reconstruction, simulation and more
- ✓ Trend: bigger and more sophisticated, more generalized (foundation) model + fine tuning

- ✓ The field of (experimental) high energy physics is rapidly adopting ML and AI techniques leading to real impact on physics results
- ✓ Diversified use case: classification with both supervised and weakly/self-supervised scheme, reconstruction, simulation and more
- ✓ Trend: bigger and more sophisticated, more generalized (foundation) model + fine tuning
- ✓ Agent-centric AI is emerging as a potential game-changer

- ✓ The field of (experimental) high energy physics is rapidly adopting ML and AI techniques leading to real impact on physics results
- ✓ Diversified use case: classification with both supervised and weakly/self-supervised scheme, reconstruction, simulation and more
- ✓ Trend: bigger and more sophisticated, more generalized (foundation) model + fine tuning
- ✓ Agent-centric AI is emerging as a potential game-changer
- ✓ Regardless, human insight and expertise remain essential to success in the foreseeable future

Backup

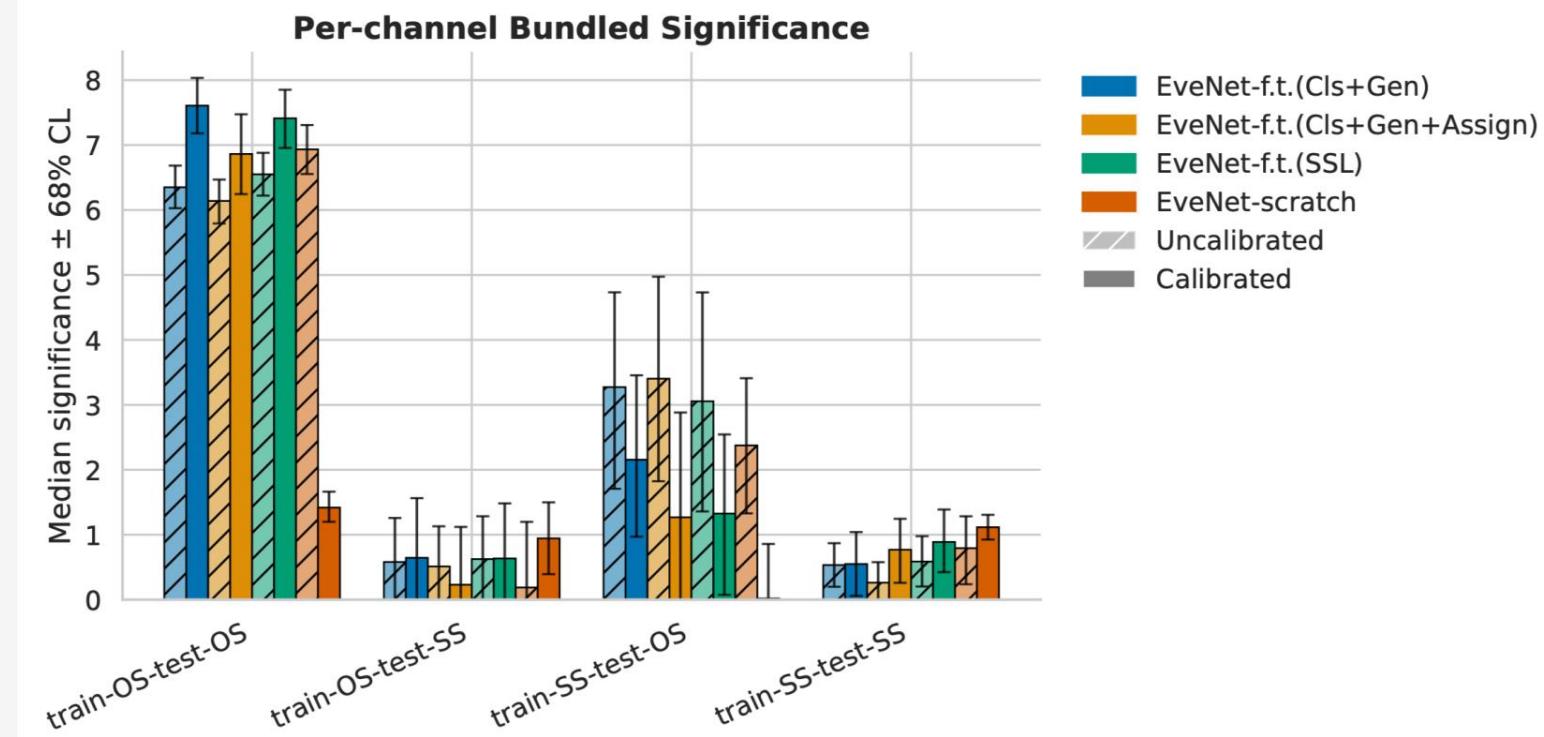
- **Reference paper:** [2502.14036](#) (To test EveNet's generative capability, we extend an existing anomaly detection method using normalizing flows by replacing it with diffusion-based generation of full 4-momentum)
- Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Υ resonances in di-muon final states.

Final Significance (ℓ -reweighting)

- paper: **6.4σ**
- EveNet-Pretrain: **7.5σ**
- ~~EveNet-Scratch~~: **$? \sigma$** (mass sculpting ~~✗~~)

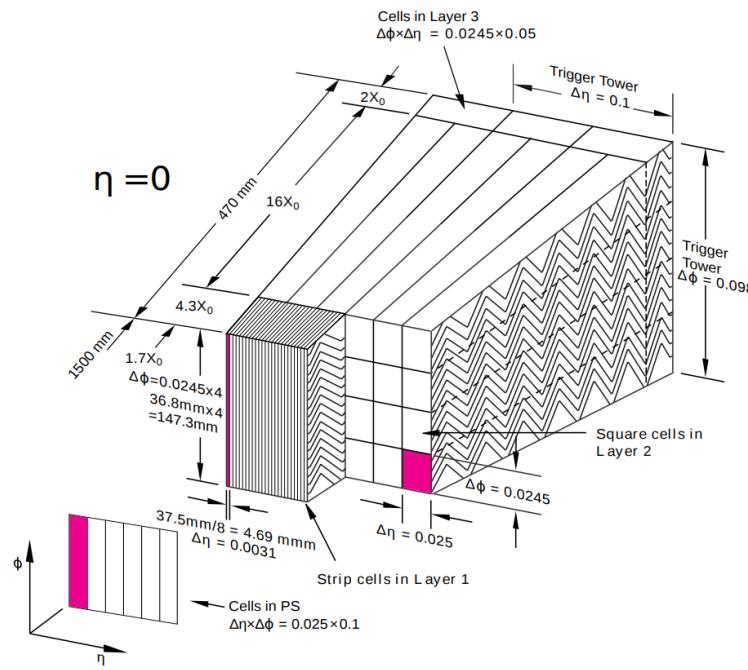
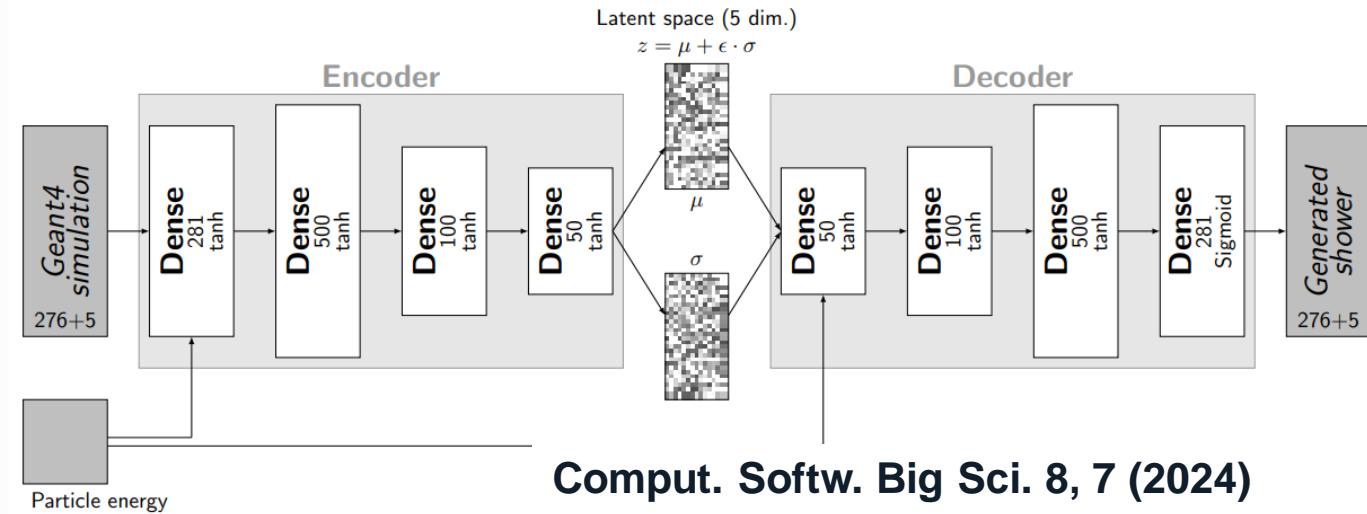
Note: the energy regime here is even different from the main samples in pretrain

1 σ improvement on significance

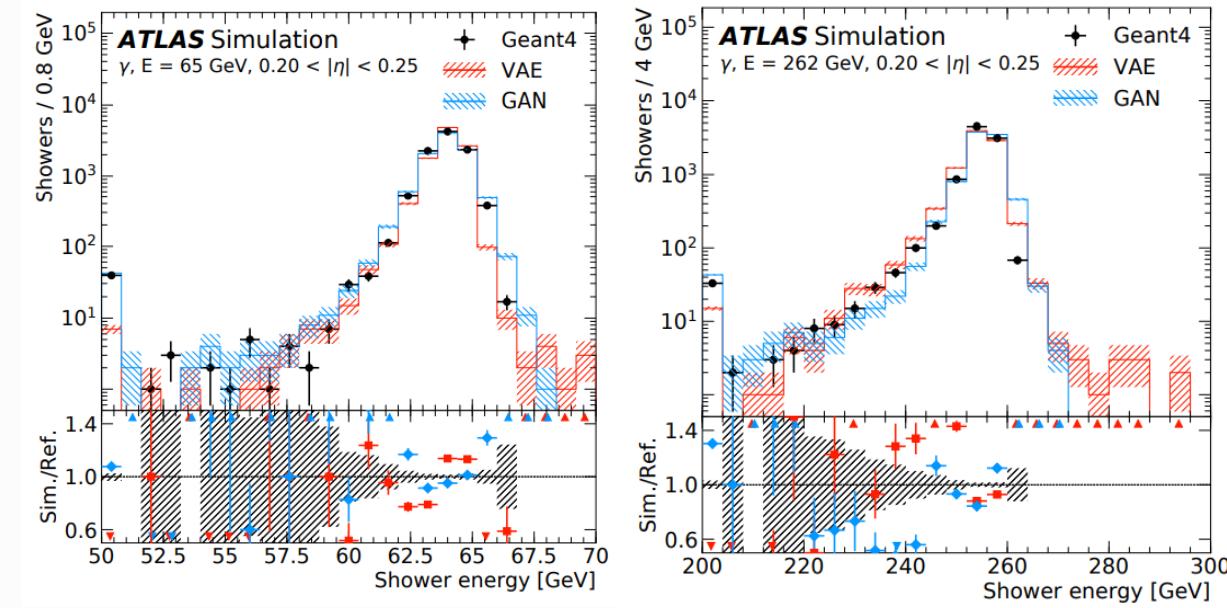


✓ Trained on Self-Supervised Generation task

Faster Simulation: Photon Showers



Comput. Softw. Big Sci. 8, 7 (2024)



Use Variational autoencoders (VAE) and generative adversarial networks (GAN) to simulation ATLAS photon showers

- VAE/GAN: x100 faster than GEANT4 full simulation
- Good agreement between GAN/VAE and Geant4 for EM showers of different energies
- GAN needs improvement in the longitudinal shower development