Kobayashi- Maskawa Instltute
Nagoya Uni

OmniLearn: A Method to
Simultaneously Facilitate All Jet
Physics Tasks and beyond

! ! vmikuni@hepl.phys.
Z_ N pagoya-u.ac.jp

m vinicius-mikuni

Vinicius M. Mikuni
. 4



Model starts with  Ask the model to solve Fine-tune the model on

random weights ~ important tasks using new datasets and tasks

particle collisions Jet
Tagging

S =

Anomaly
Detection




Jets

Jets are the most common signatures at

the LHC

e Complicated signature: O(10-100)
objects are clustered in each jet

e (hoice of data: Particle Flow objects

associated to jets i< acronian

- Fragmentation  hadrons @@ .
e partons @@ @ ...

e (hoice of data representation: Point
Clouds



See:

Option 1: Tokenization . Q;flwvlrgggc;gf)%%rmagal\/l Saito, M., & Tanaka, J. (2023).
' I Golling, T, Heinrich, L., Kagan, M., Klein, S., Leigh, M., Osadchy, M., &
o Inspired by LLMs, tokenize the  *  ganei oo wist s ossors

Birk, J., Hallin, A., & Kasieczka, G. (2024). MLST. 5 (2024) 3, 035031
Birk, J., Gaede, F, Hallin, A., Kasieczka, G., Mozzanica, M., & Rose, H.
(2025). arXiv:2501.05534.

e  Katel, S, Li,H., Zhao, Z., Kansal, R., Mokhtar, F., & Duarte, J. (2024).

information of input particles

arxiv:2412.05333.
Jet constituents with continuous features Constituents are tokenized with a VQ-VAE
(Similar to MPMv1 arXiv:2401.13537)
y Since we use a language-model like approach, where the

Jet = {p1,P2,...,D0n} \ data is represented as a sequence of integer tokens

pi = (pT,nrel, ¢rel
> Jet = {start-token, token,...,token,, end-token}
token; = integer value € [1,...,8192]

T

From Joschka's slides .



https://indico.cern.ch/event/1386125/contributions/6139690/attachments/2962681/5212112/OmniJet-alpha_Anna_Hallin.pdf

Option 2: Point Cloud
e Features given as is: avoid loss of
information, more natural for HEP

Is Tokenization Needed? 2409.12589

Tokenizing enables “binned” density estimation
* K-Means clustering (easier to train than VQ-VAE)

Can do continuous density estimation using
generative models conditioned on unmasked data

From Michael's slides

See:

Dillon, B. M., Kasieczka, G., Olischlager, H., Plehn, T,
Sorrenson, P, & Vogel, L. (2022). SciPost Physics, 12(6), 188.
Mikuni, V., & Nachman, B. (2024). arXiv:2404.16091.

Li, C., Agapitos, A, Drews, J., Duarte, J., Fu, D., Gao, L., ... & L,
Q. (2024). arXiv:2405.12972.

Harris, P, Kagan, M., Krupa, J., Maier, B., & Woodward, N.
(2024). arXiv:2403.07066.

Vigl, M., Hartman, N., & Heinrich, L. (2024). arXiv:2401.13536.


https://indico.cern.ch/event/1459124/contributions/6150087/attachments/2938370/5162044/Kagan_FMworkshop_2024.pdf

Point Clouds

[~ D Jet 0,

2 X

- pt =2.62 TeV

P\ \ eta = 0.357
A\ \ phi=0346 |

Particle collisions are
naturally represented as point
clouds: unordered set of
objects in a metric space

" 4 | : /»‘/
wa
/ 7 Jet 1,
74 pt =2.55 TeV

eta =-0.160
phi =-2.885
CMS Experiment at LHC, CERN
Data recorded: Sun Jul 12 01:52:51 2015 CDT
Run/Event: 251562 / 310157776
Lumi section: 347

Dijet Mass : 5.4 TeV



Tagging



How to teach Al about jets?




Encoding jet information

Create a neural network to accomplish 2 tasks:
i R Classify jets: learns the difference in
PET Body radiation signature between jet types
N P Generate jets: implicitly learn the likelihood of
e '. — jets for different initial partons
Classifier | | Generator
kHeadj i Head

(" )

Class Generator
Labels Outputs
(S S =

mEEEDm OO
O

V. Mikuni, B. Nachman, Phys. Rev. D 111, L051504



Encoding jet information

Point-Edge Transformer (PET)
i R Combine local information with graphs
PET Body Learn global information with Transformers:
N _ 3M parameters
N E— —
Classiﬁej Generator A\~
Head Head -
& - | D
= (=

EEEm OO
O



Encoding jet information

ABCNet application: classification of events

Higher background rejection for the
available signal thresholds compared to
other methods x
Acc AUC /ep (es =0.5) 1/ep (eg =0.3) Parameters <
PET Body ResNeXt-50 0.821 0.960 1 30.9 ‘ 80.8 1,46.\; g'
P-CNN 0.827  0.9002 34.7 91.0 348k
PFN - 0.9005 34.7£0.4 - 82k
ParticleNet-Lite  0.835  0.9079 37.1 94.5 26k
k J ParticleNet 0.840 0.9116 39.8+0.2 98.64+1.3 366k
I I ABCNet 0.840 0.9126 42.6+0.4 118.4+1.5 230k
2 (G = =
- Can we look at what ABCNet is learning? g
Classifier Generator Look at the self-attention coefficients o
Head Head Only show the top 5% particles with
highest self-attention coefficients
& - D 4
' Mod ion of ABCNet, the f “
e )
P R odern version o et, the first
| Labels | | outputs | transformer in HEP

mEEEDm OO
O

Mikuni, V., Canelli, F. Eur. Phys. J. Plus 135, 463 (2020)



JetClass dataset used for training
100M jets
10 different jet categories, AK8 jets simulated in pp collisions
with Madgraph + Pythia8 with CMS Delphes detector
simulation
Use the pre-trained model as the starting point and fine-tune using
different datasets

Huilin Qu, Conggiao Li, Sitian Qian, arXiv:2202.03772



https://arxiv.org/abs/2202.03772

OmniLearned: Combine Supervised and
Unsupervised Learning in the same model!

PET Body

-

f = S
Classifier | |Generator
3 Head Head

[ NEW

& 4 N\
Class Generator
U Labels L Outputs 0

mEEm OO
O

~

More details at: W. Bhimiji, C. Harris, V. Mikuni, B. Nachman, arXiv:2510.24066



1 Billion Dataset

We combine multiple open

Dataset Training Validation Test datasets in HEP in a single and
JetClass [14] 100M 20M 5M }

JetClass2 [33] 200M 600k  6ook ML-ready fO"T'a,t

Aspen Open Jets [34] 125M  25.7M  26.6M More than 1 Billion Jets are
ATLAS Top Tagging [35] 178M  20M  2.2M  ggcessible directly from the

H1 DIS 42.2M 872k 255k

CMS QCD a3oM  17.5M  16M  Software package

CMS BSM 173.5M 1™ 1™ e 210 Jet Classes

Total 1057.7M 101.8M 67.6M

e Mixture of simulations with
real experimental data


https://github.com/ViniciusMikuni/OmniLearned/tree/main

“* Application

Highlight
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Jet Classification: Top Tagging

Acc  AUC 1/ep
es = 0.5 es = 0.3

ResNeXt-50 [19] 0.936 0.9837 302 £5 1147 + 58
P-CNN [19] 0.930 0.9803 201 +£4 759 + 24
PFN [16] - 0.9819 247 £+ 3 888 + 17
ParticleNet [19] 0.940 0.9858 397 £ 7 1615 + 93
JEDI-net [18] 0.9300 0.9807 - 774.6
PCT [22] 0.940 0.9855 392 4+ 11 1559 4+ 98 F. h . d d I
LGN [63] 0.929 0.964 - 435 £+ 95 - -
rPCN [20] - 0.9845 364 =9 1642 + 93 ¢ Ine tune t e pre tralne mo e On
LorentzNet [64] 0.942 0.9868 498 4+ 18 2195 + 173 1 |
PELICAN [65] 0.9425 0.9869 - 2289 + 204 the TOp Tagglﬂg Commumty Dataset,
ParT [14] 0.940 0.9858 413 =16 1602 * 81 - .
ParT-£t. [14] 0.944 0.9877 691 + 15 2766 + 130 a traditional benchmark dataset in
Mixer [66] - 09859 416 -
MIParT [26] 0.942 0.9868 505 +8 2010 &+ 97 H E P
MIParT-f.t. [26] 0.944 0.9878 640 = 10 2789 + 133
L-GATr [67] 0.9423 0.9870 540 £ 20 2240 £ 70
L-GATr-f.t. [67] 0.9446 0.9879 651 = 11 2894 + 84
PET [11, 12] 0.938 0.9848 340 + 12 1318 4+ 39
OMNILEARN [11, 12] 0.942 0.9872 568 +9 2647 + 192
PET v2-s 0.9427 0.987 505 £ 14 2167 + 153
OMNILEARNED-S 0.944 0.9875 565 £ 12 2637 £ 128
PET v2-Mm 0.9423 0.987 482 £+ 11 1861 £ 61

OMNILEARNED-M 0.944 0.9880 656 = 12 3208 £ 176
OMNILEARNED-L 0.944 0.9880 688 + 9 3486 X 157 . 4



OmniLearned achieves SOTA performance

35001 e Non-pretrained e Non-equivariant @ Omnitiearmed:l
O Pre-trained A Equivariant © Omnilearned-m
3000 1 A L-GATr-fi.
o\o © ParTft. o MIFgI’I' ft. OmniLearned-s
{C\?j 2 5 O O | OmniLearn e
PELICAN
"01 ® ALorentzNet A L-GATr @® PETVv2s
‘E' 2 0 O O | @ MiIParT
ﬁ @® PETv2m
- @ ParticleNet ® PsT rPCN @ ParT
* 1500
& @ PET Classifier
— @ ResNeXt-50
(10 S
@ JEDInet
500 ® LGN
2018 2020 2022 2024 2026

Publication Year

From: A. Petitjean, T. Plehn, J. Spinner, U. Kothe: arXiv:2512.17011

S



FastSim to FullSim: Top Tagging

. . . AUC A 1
OmniLearn is trained on cheap - M-
Delphes simulations. Can we Roset 50 R O
fine-tune to Run 2 ATLAS Full hIDNN 0.938 0.863 515  10.5
mulation + R fruction? DNN 0.942 0.868 67.7  12.0
simulation econstruction: PFN 0.954 0.882 108.0  15.9
: 0 ParticleNet 0.961 0.894 153.7  20.4
¢ MatCheS SOTA Wlth 10% Of PET classifier (4M) 0.959 0.890 146.5 19.4
the data OMNILEARN (4M)  0.961 0.894 1721  20.8
. PET classifier (40M) 0.964 0.898 201.4  23.6
e Improves on SOTAif all OMNILEARN (40M) 0.965 0.899 207.30 24.10

events are used



Jet Classification: Flavor Tagging

0 _ATLIAS Simulation ﬁréllirﬁilnéfy' R Grl‘lz l—_ 2500  Fine-tune the pre-trained
O & e 3 model on the ATLAS Flavour
tt jets, ep =70% 12000 _ .
5 S0F ; I : Tagging Datgset |
8 4oF e 11500 @ Non-trivial transfer with
5 | DL1d Lo different detector and
" 20} 1 5 more realistic
1ol 500 simulation
0: :0

2017 2018 2019 2020 2021 2022 2023



OmniLearned achieves SOTA performance

10° 105
GN2 === OmniLearned-m GN2 === OmniLearned-m

g 4 : gﬁﬁ?Laamed-s : tij?::t-jet g 4 : f)frIl?Lﬂarned-s : L‘Zil:t'jet GN2 1 h
’J‘G‘ 10%; PETm et ..3 10%; PETm — Tiet |S t e Current
g T 2 . .
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What we want
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Natural

Synthetic

Detector-level

Particle-level

\
() &

Step 1:

Reweight Sim. to Data

Data
Un—1 — Wn

Simulation

L R

——

Pull Weights

—_—
e

Push Weights

Step 2:

Reweight Gen.

w’l].
Un—1 > Un

-

Generation

=

i

2-step iterative process

= Step 2: Convert learned weights
into functions of particle level
objects

See more details in Kyle's Talk!

Source: Andreassen et al. PRL 124,

182001 (2020) .



Normalized entries
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L3

OmniFold dataset
consisting of Z(wv) +
Jets events. Unfold the
particles directly and
then build the et
observables



Unfolding

[ Pythia Unfolded Omnilearn [ Pythia
[ Pythia Unfolded Data (Herwig)

N
o

Unbinned Unfolding using the OmniFold
workflow. More precise than traditional
unfolding and more efficient than previous
ML models

-
)]

Normalized entries
—_
o

e
o

o
o

Metric MvurtiFoup UniForLp IBU OmnNIFoLD -
DeepSets PET classifier| OMNILEARN | B 1.1

Jet mass 3.80 8.82 9.31 2.77 2.8+0.9 2.6+0.8 Elo

N 0.89 1.46 1.51 0.33 0.50+0.15 0.34+0.1 % 0.9

Jet Width 0.09 0.15 0.11 0.10 0.09+0.02 0.07+0.01 2

log p 0.37 0.59 0.71 0.35 0.23+0.07 0.14+0.03

T21 0.26 1.11 1.10 0.53 0.13+0.03 0.05+0.01

Zg 0.15 0.59 0.37  0.68 0.1940.03 0.21£0.04




Experimental setup

Using 228 pb™ of data collected i
by the H1 Experiment during — ’“ﬁfﬁ
2006 and 2007 at 318 GeV
center-of-mass energy

P: incoming proton 4-vector
k: incoming electron 4-vector
q=k-k’ : 4-momentum transfer

Goal: Include the
information of all
reconstructed
particles + scattered
lepton in the collision

|| Reconstructed hadrons using
| combined detector
information: energy flow
algorithm

~4, V4

1/ A

' £

l m
|



mu Cluster unfolded jets using kT algorithm with

radius of 1.0

We are able to re-derive past results
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H1 Preliminary note

.


https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-25-031.long.html

= Results

qH _|_ ZL’P“

<€—— struck quark

L.

proton 0

>

—
PH

Breit Frame provides a natural frame to
study ep collisions, where the struck quark
forms a jet opposite from the proton beam:
useful for jet and TMD studies
Starting from the Lab frame, we need
to boost the system: not trivial in
terms of unfolding

S



Cluster jets using kT algorithm with radius of 1.0
We can study observables in different frames!

= 10'F — < 10'g —
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EE 10° ¢ Data Unfolded (inc. stat uncertainty) fals Frama 3 iop-— 100k ¢ Data Unfolded (inc. stat uncertainty) Brait Frame h H 1 P rel | m | n a rv n Ote
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o 3 E O sy
= =107 E

1072 E r ]
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1073 n E ]
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<—— struck quark q
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https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-25-031.long.html
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https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

Anomaly Detection

@ A

Bump-hunting using ML: =
e Use the background in the sideband §

to estimate the background inthe  © bsckground

signal region |
e (Compare the estimated background S'gni ol

with the data . »

Mres



‘

Bump-hunting using ML: é !

e Generative Model 2 e

e Classifier - )y
S -



LHCO dataset

['m3

LHCO R&D dataset
e Resonant dijet final
state: A->B(qq)C(qq)

with m, mg, m.=3.5,
0.5, 0.1 TeV

Detector cross-section
image credit: ATLAS



Anomaly Detection

\ 8 177
R Lz
g

g’
S/\/9349 o
o e e——  ® Generate the full dijet system: 2*279*3
2 T s = e = 1674 numbers to generate
s . :_— Idealized (high level) PRD 106, 055006 1 ° Classify da-ta from backg rou nd

SIC = Significance Improvement Curve
(TPR/sqrt(FPR) vs TPR) “By how much can |
improve the significance of a particular
signal given an initial significance.”

40}
30}

20}

10}

|||
£ 1000 1500 2000 2500 3000
Injected Signal Events (nbkg = 100000) N 4




Anomaly Detection

Max. SIC

s/Vb
1.58 3.16 4.74 6.32 7.91 9.49

T T T ]

| — Flow Matching (low level) PRD 109, 055015  —— PET (low level) i

60 |_—— Diffusion (low level) —— |dealized PET (low level) ]
- —— Idealized (low level) PRD 109, 055015 ~— OmniLearn (low level)

CATHODE (high level) PRD 106, 055006 —— |dealized OmniLearn (low level) -

- — Idealized (high level) PRD 106, 055006 T
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10}
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— P I R S
1000 1500 2000 2500 3000
Injected Signal Events (nbkg = 100000)

e Generate the full dijet system: 2*279*3
= 1674 numbers to generate

e Classify data from background

Previous results were limited by the amount

of data in the SR: Only sensitive to NP when

S/B>3% ~ 4o

OmniLearn founds the NP with S/B = 0.7%

~ 20



Anomaly Detection

1R § Emuoeeze § Emsum Use experimental data
for this exercise

10°) \\ e Signal: top quarks,
corresponding to
o \ 0.1% of the data
e Model trained from

— scratch unable to
o1 find the anomaly

£ 0.2 1
[sa]

i 13 F3 z = &

0_0...."-.__..&_‘;_§_..v__n. _____ .‘...__'._:_."_ﬁ.‘._
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Jet Soft Drop mass [GeV]

Number of Events

Bkg.

|
©

t

©
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Anomaly Detection

§ Eff: 100.0%, 1.10 § Eff: 10.0%, 3.20 § Eff: 100.0%, 1.10 § Eff: 10.0%, 7.80 Use experlmental data

1034 Eff: 30.0%, 3.20 Eff: 5.0%, 0.30 1054 Eff: 30.0%, 9.50 Eff: 5.0%, 10.00

PET v2-s CATHODE OmniLearned-s CATHODE fo r .th | S exe rC | S e

104_\\ 104_N‘\\\ e Signal: top quarks,

corresponding to

- o /\\\ 0.1% of the data

e OmnilLearned finds
the signal!

Number of Events
Number of Events

e (O 4 0.4

Z|. 2|

1120.2 ' 120.2

o |0 © (0

® s & @ e . . I g E 8 ]

a 0_0__.n____..r\._‘;_g_%_.._._:_.g._-_5._;_.~__}_;._ o 0.0__.F\.T_n._;,_.._.n._‘.-._.l_.'..l._!._;_!_.;;..i._
100 125 150 175 200 225 250 100 125 150 175 200 225 250

Jet Soft Drop mass [GeV] Jet Soft Drop mass [GeV]



Anomaly Detection

$ Eff 100.0%, 1.10 $ Eff 10.0%, 0.00 § Eff 100.0%, 1.10 § Eff 10.0%, 15.30 U H t Id t
1034 Eff; 30.0%,02.40 Eff: 5‘0%,00.00 1054 Eff: 30.0%,09.60 Eff: 5‘0%,015.90 Se experlmen a a a

8 e o, |
En fo \\ e Signal: top quarks,
: ; e corresponding to
Z : /\\\ 0.1% of the data

e OmnilLearned finds
the signal!

0.4 L 04 .
g e Bigger model even
L1202 i L1202 Sl .
& golerseygytpposvyiit] Eoolepeediiiisiyail more sensitive
100 125 150 175 200 225 250 100 125 150 175 200 225 250
Jet Soft Drop mass [GeV] Jet Soft Drop mass [GeV]



e (Can we go beyond Collider Physics®

e [Expensive to generate multiple universes

e Adapt OmniLearned to predict cosmological parameters and dark
matter halo velocities: OmniCosmos

[

J

OmniLearned

V. Mikuni, |. Elsharkawy, B. Nachman arXiv:2512.24422

Adapt
—_—

)

D High Learning Rate
(O Low Learning Rate


https://arxiv.org/abs/2512.24422
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O ©os }

0.5 0.70
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== 11§ Scratch ’ ——- LLS Scratch --- LLS Scratch --- LLS Scratch
0.4 —:- GNN ¢ OmniCosmos —:= GNN ¢ OmniCosmos —'= GNN ¢ OmniCosmos 0.65 —:= GNN ¢ OmniCosmos
100 200 300 400 500 600 100 200 300 400 500 600 102 103 10* 102 103 104
Number of Examples Number of Examples Number of Examples Number of Examples

e Transfer learning benefits using different types of simulators
e Improve upon previous Al methods for cosmology

V. Mikuni, |. Elsharkawy, B. Nachman arXiv:2512.24422



https://arxiv.org/abs/2512.24422

MAE Energy (meV/Atom)

OmniMol: Validation MAE Energy (meV/Atom) vs Number of oMol25 Examples
T

MAE Force (meV/A)

400 ¢
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e Use OmnilLearned to learn Molecular Dynamics: OmniMol
[ ]

Strong scaling with model and data size: Best performing transformer model in the

Open Molecules dataset

V. Mikuni, |I. Elsharkawy, B. Nachman, W. Bhimji arXiv:2601.10791
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https://arxiv.org/abs/2601.10791

OmniLearn(ed): learn a rich
representation of jets

Improvements in jet tagging, unfolding,
and anomaly detection in a single
model

Going beyond: Train models on large
HEP data and adapt to data limited fields

https:/qithub.com/ViniciusMikuni/Omni
| earned



https://github.com/ViniciusMikuni/OmniLearned
https://github.com/ViniciusMikuni/OmniLearned
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THANKS!

Any questions?
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ATLAS Loss Curves BERKELEY LAB
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J OmniLearn for reweighting BERKELEY LAB
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J OmniLearn for Unfolding BERKELEY LAB
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BERKELEY LAB
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Train one model that learns to classify and generate jets
Combine both local and global information using local edges
and a transformer: Point-Edge Transformer

More details at: https://arxiv.orq/abs/2404.16091



https://arxiv.org/abs/2404.16091
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Diffusion Generative Models BERKELEY LAB

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

X
score function

dx = [f(x,t) — & log p¢ (x)|| dt + g(t)dw

Reverse SDE (noise — data)

Source:
https://yang-song.net/blog/2021/score/ D 4



https://yang-song.net/blog/2021/score/

BERKELEY LAB

L= Eclass + Egen T Eclass smear
2 A
= CE(, Yprea) + [V = Vpreal|” + ¢*CE(y, fprea)

Straightforward loss function:
Cross entropy for each class
Perturbed data prediction from the diffusion loss
Classification over perturbed inputs: data augmentation!

More details at: https://arxiv.orq/abs/2404.16091



https://arxiv.org/abs/2404.16091

