

Kobayashi-Maskawa Institute
Nagoya University

OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks and beyond

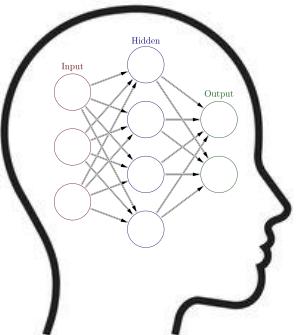
 [vmikuni@hepl.phys.
nagoya-u.ac.jp](mailto:vmikuni@hepl.phys.nagoya-u.ac.jp)

 [vinicius-mikuni](https://www.linkedin.com/in/vinicio-mikuni)

Vinicio M. Mikuni

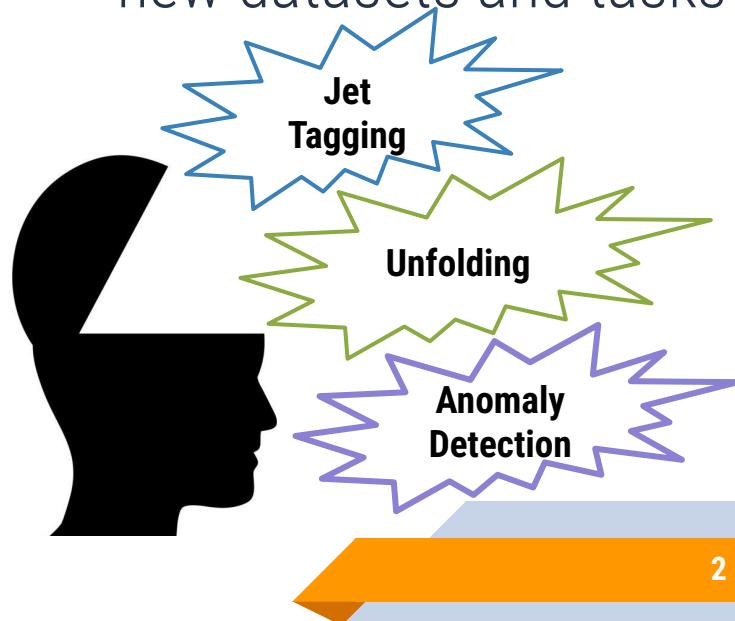
Strategy

Model starts with random weights

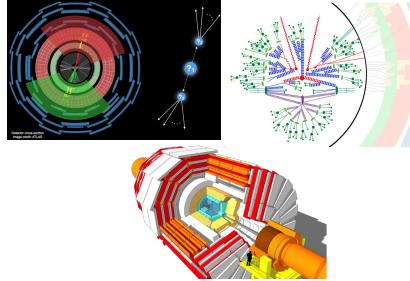


Ask the model to solve important tasks using particle collisions

Fine-tune the model on new datasets and tasks

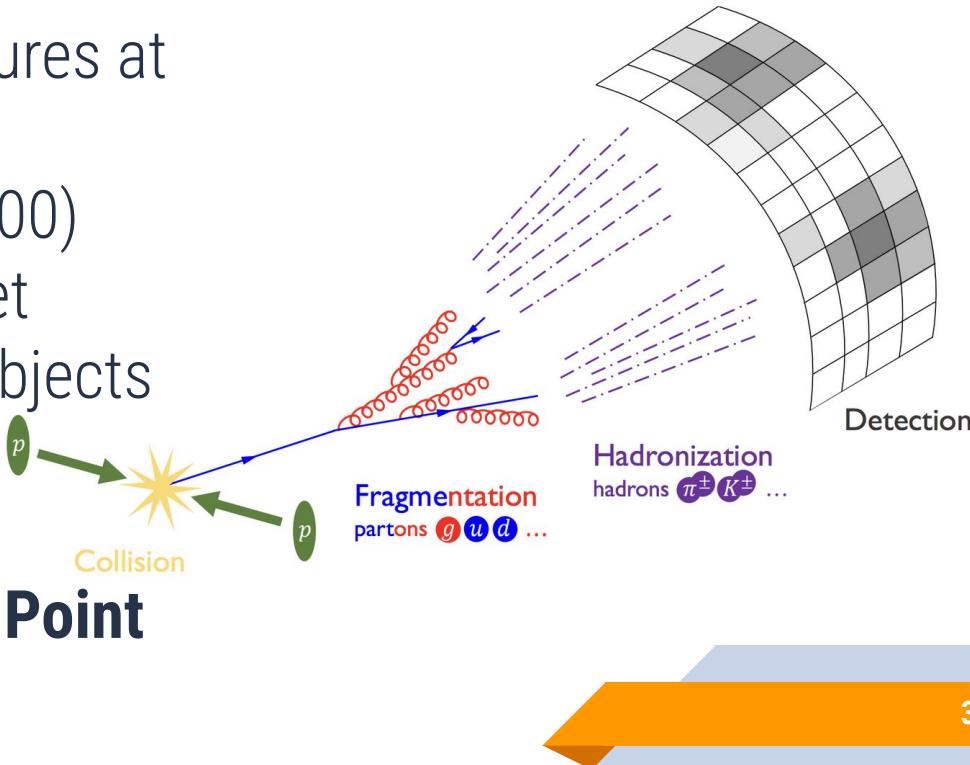


Jets



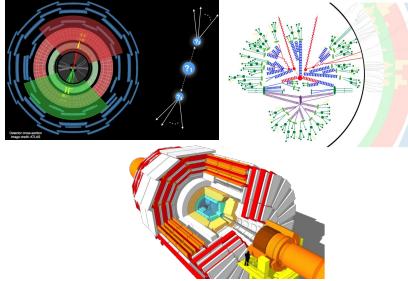
Jets are the most common signatures at the LHC

- Complicated signature: $O(10-100)$ objects are clustered in each jet
- Choice of data: Particle Flow objects associated to jets



- Choice of data representation: **Point Clouds**

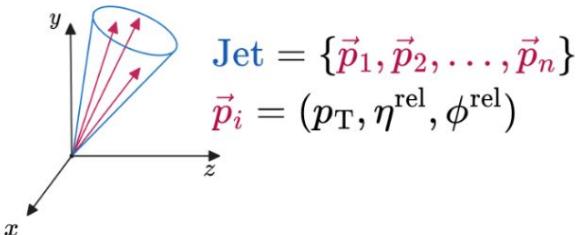
Data



Option 1: Tokenization

- Inspired by LLMs, tokenize the information of input particles

Jet constituents with **continuous features**



See:

- Kishimoto, T., Morinaga, M., Saito, M., & Tanaka, J. (2023). arXiv:2312.06909.
- Golling, T., Heinrich, L., Kagan, M., Klein, S., Leigh, M., Osadchy, M., & Raine, J. A. (2024). MLST, 5(3), 035074.
- Birk, J., Hallin, A., & Kasieczka, G. (2024). MLST. 5 (2024) 3, 035031
- Birk, J., Gaede, F., Hallin, A., Kasieczka, G., Mozzanica, M., & Rose, H. (2025). arXiv:2501.05534.
- Katel, S., Li, H., Zhao, Z., Kansal, R., Mokhtar, F., & Duarte, J. (2024). arXiv:2412.05333.

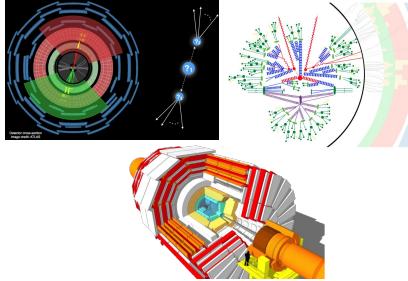
Constituents are tokenized with a VQ-VAE

(Similar to MPMv1 [arXiv:2401.13537](https://arxiv.org/abs/2401.13537))

Since we use a language-model like approach, where the data is represented as a sequence of integer tokens

Jet = {start-token, **token₁**, ..., **token_n**, end-token}
token_i = integer value $\in [1, \dots, 8192]$

Data



Option 2: Point Cloud

- Features given as is: avoid loss of information, more natural for HEP

Is Tokenization Needed?

[2409.12589](https://arxiv.org/abs/2409.12589)

Tokenizing enables “binned” density estimation

- K-Means clustering (*easier to train than VQ-VAE*)

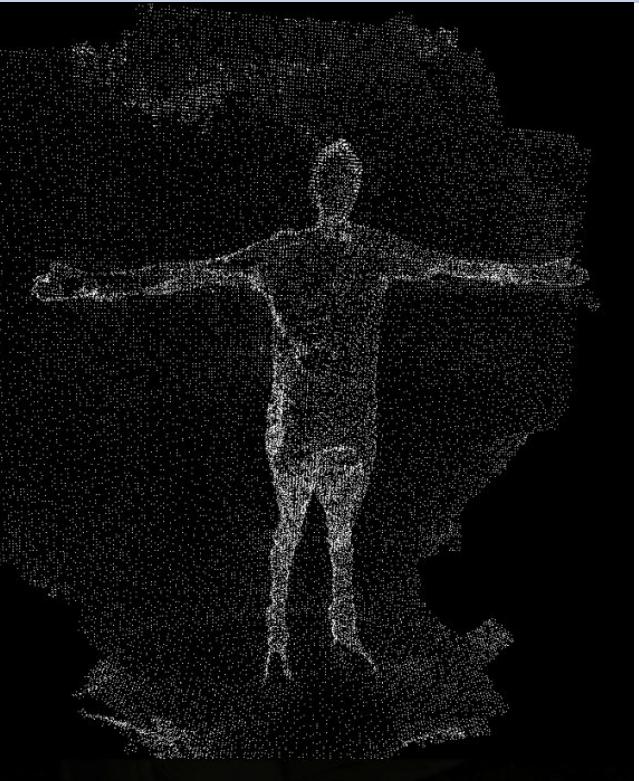
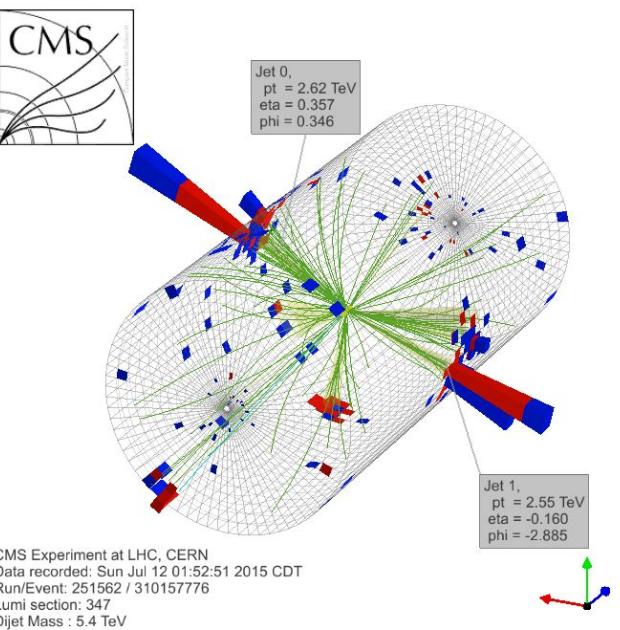
Can do **continuous density estimation** using
generative models conditioned on unmasked data

From [Michael's slides](#)

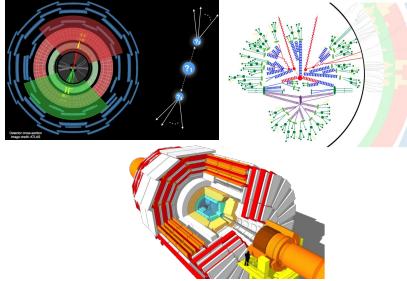
See:

- Dillon, B. M., Kasieczka, G., Olischlager, H., Plehn, T., Sorrenson, P., & Vogel, L. (2022). *SciPost Physics*, 12(6), 188.
- **Mikuni, V.**, & Nachman, B. (2024). *arXiv:2404.16091*.
- Li, C., Agapitos, A., Drews, J., Duarte, J., Fu, D., Gao, L., ... & Li, Q. (2024). *arXiv:2405.12972*.
- Harris, P., Kagan, M., Krupa, J., Maier, B., & Woodward, N. (2024). *arXiv:2403.07066*.
- Vigl, M., Hartman, N., & Heinrich, L. (2024). *arXiv:2401.13536*.

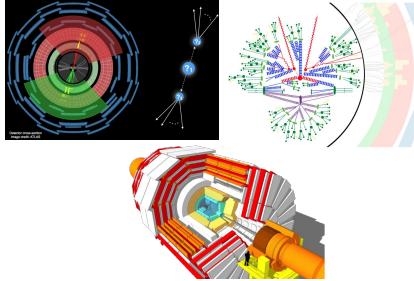
Point Clouds



Particle collisions are naturally represented as **point clouds**: unordered set of objects in a metric space

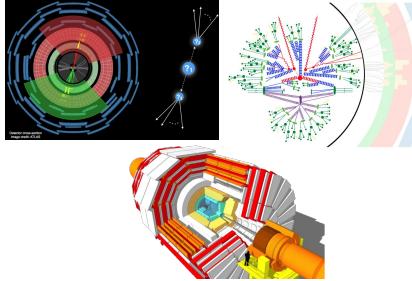
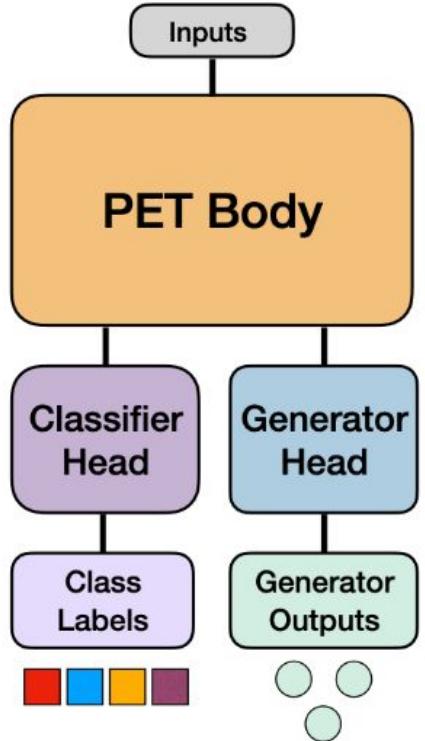


Jets



How to teach AI about jets?

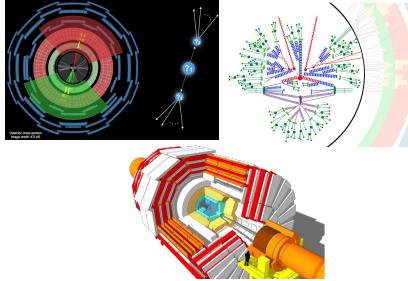
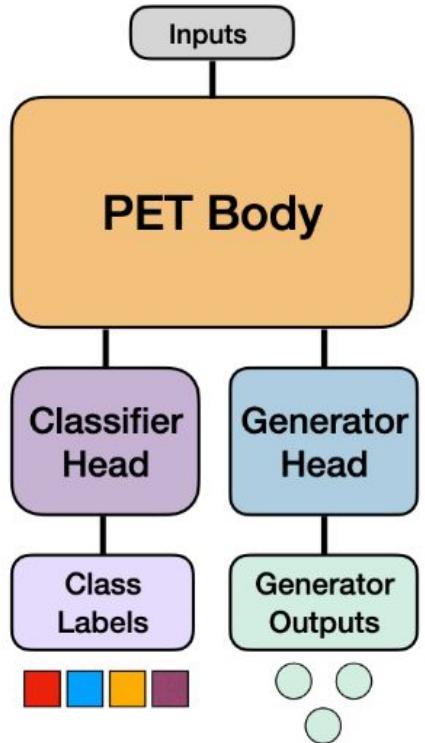
Encoding jet information



Create a neural network to accomplish 2 tasks:

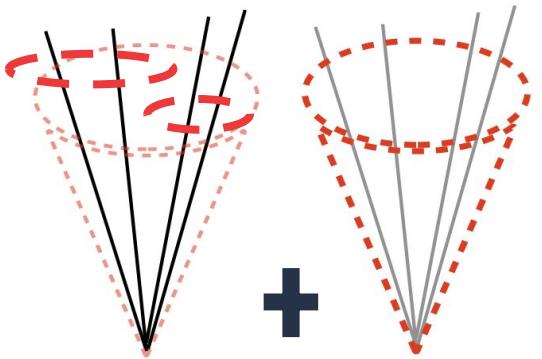
- **Classify jets**: learns the difference in radiation signature between jet types
- **Generate jets**: implicitly learn the likelihood of jets for different initial partons

Encoding jet information

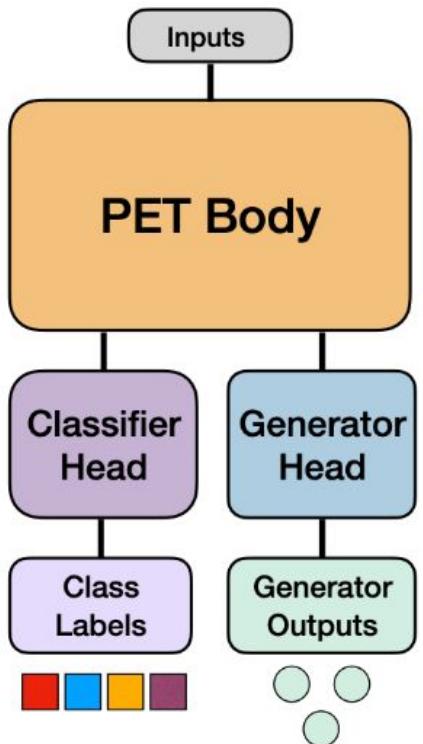


Point-Edge Transformer (PET)

- Combine local information with graphs
- Learn global information with Transformers:
3M parameters



Encoding jet information

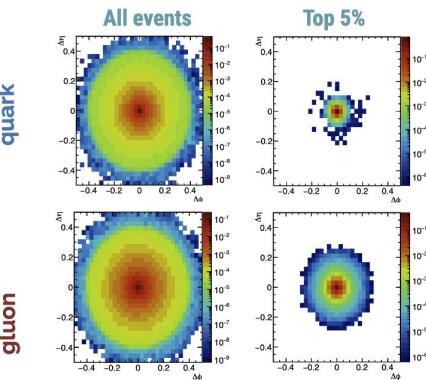


ABCNet application: classification of events

- Higher background rejection for the available signal thresholds compared to other methods

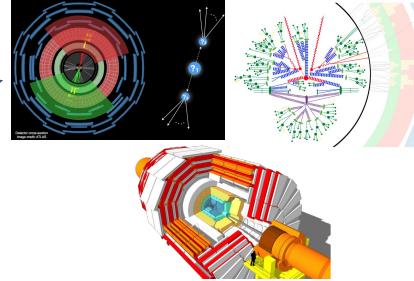
	Acc	AUC	$1/\epsilon_B$ ($\epsilon_S = 0.5$)	$1/\epsilon_B$ ($\epsilon_S = 0.3$)	Parameters
ResNeXt-50	0.821	0.960	30.9	80.8	1.46M
P-CNN	0.827	0.9002	34.7	91.0	348k
PFN	-	0.9005	34.7 ± 0.4	-	82k
ParticleNet-Lite	0.835	0.9079	37.1	94.5	26k
ParticleNet	0.840	0.9116	39.8 ± 0.2	98.6 ± 1.3	366k
ABCNet	0.840	0.9126	42.6 \pm 0.4	118.4 \pm 1.5	230k

- Can we look at what ABCNet is learning?
 - Look at the **self-attention coefficients**
 - Only show the **top 5% particles** with **highest self-attention coefficients**



Modern version of ABCNet, **the first transformer in HEP**

Training

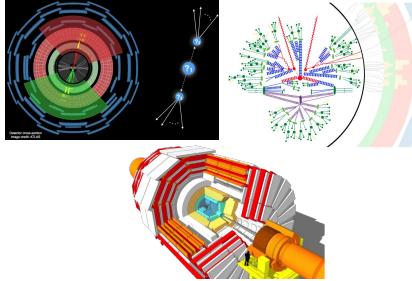
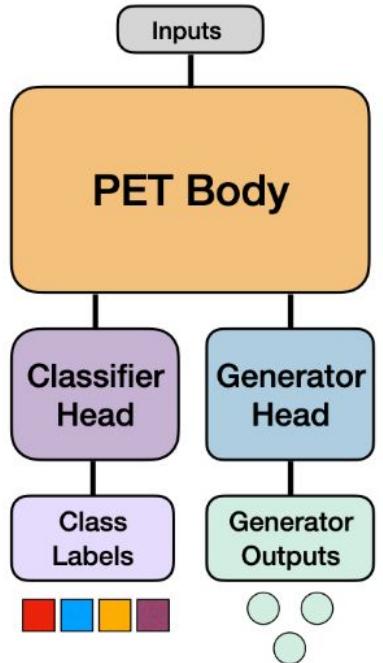


JetClass dataset used for training

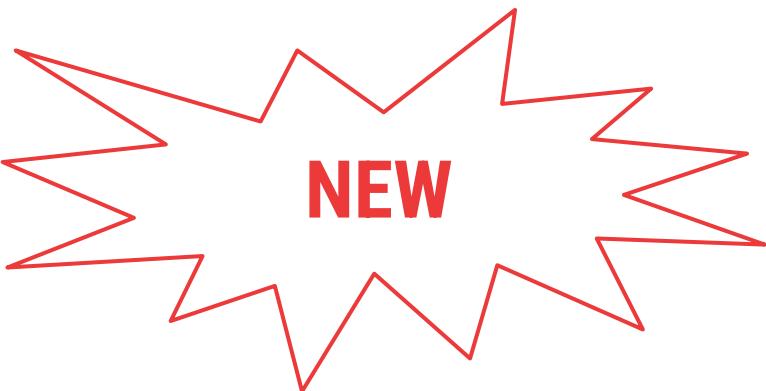
- 100M jets
- **10 different jet categories, AK8 jets simulated in pp collisions with Madgraph + Pythia8 with CMS Delphes detector simulation**

Use the pre-trained model as the starting point and fine-tune using different datasets

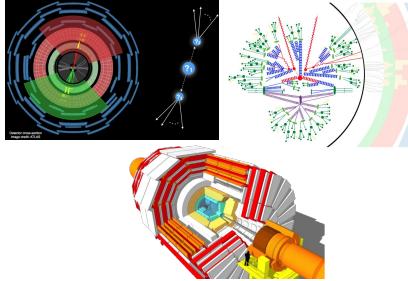
OmniLearned



OmniLearned: Combine **Supervised** and **Unsupervised** Learning in the same model!



1 Billion Dataset



Dataset	Training	Validation	Test
JetClass [14]	100M	20M	5M
JetClass2 [33]	200M	600k	600k
Aspen Open Jets [34]	125M	25.7M	26.6M
ATLAS Top Tagging [35]	178M	20M	2.2M
H1 DIS	42.2M	872k	255k
CMS QCD	239M	17.5M	16M
CMS BSM	173.5M	17M	17M
Total	1057.7M	101.8M	67.6M

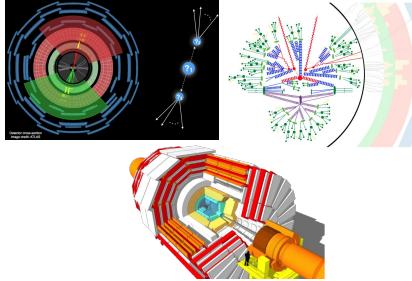
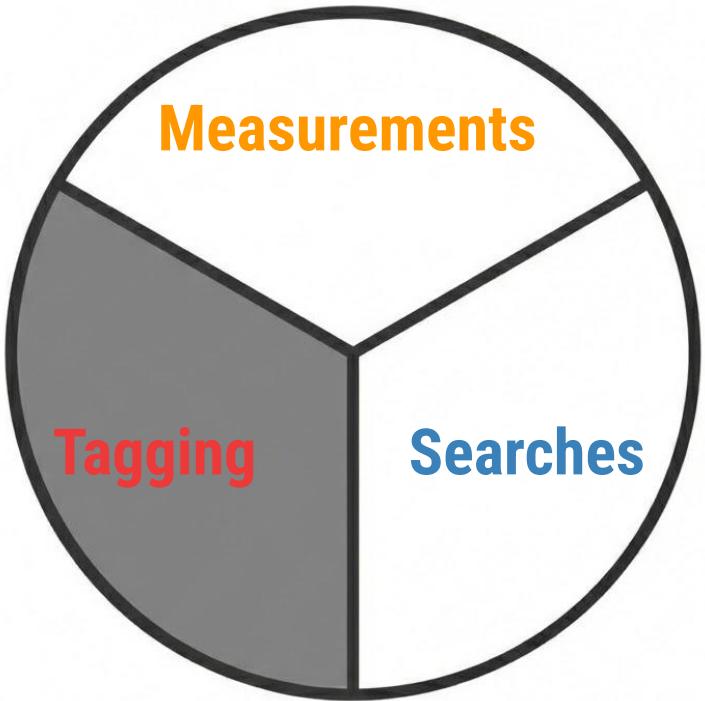
We combine multiple open datasets in HEP in a **single and ML-ready format**

More than **1 Billion Jets** are accessible directly from the software package

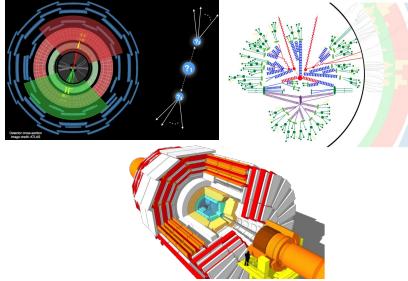
- 210 Jet Classes
- Mixture of simulations with real experimental data

“ Application
Highlight

Applications



Jet Classification: Top Tagging



	Acc	AUC	1/ ϵ_B	
			$\epsilon_S = 0.5$	$\epsilon_S = 0.3$
ResNeXt-50 [19]	0.936	0.9837	302 ± 5	1147 ± 58
P-CNN [19]	0.930	0.9803	201 ± 4	759 ± 24
PFN [16]	-	0.9819	247 ± 3	888 ± 17
ParticleNet [19]	0.940	0.9858	397 ± 7	1615 ± 93
JEDI-net [18]	0.9300	0.9807	-	774.6
PCT [22]	0.940	0.9855	392 ± 11	1559 ± 98
LGN [63]	0.929	0.964	-	435 ± 95
rPCN [20]	-	0.9845	364 ± 9	1642 ± 93
LorentzNet [64]	0.942	0.9868	498 ± 18	2195 ± 173
PELICAN [65]	0.9425	0.9869	-	2289 ± 204
ParT [14]	0.940	0.9858	413 ± 16	1602 ± 81
ParT-f.t. [14]	0.944	0.9877	691 \pm 15	2766 ± 130
Mixer [66]	-	0.9859	416	-
MIParT [26]	0.942	0.9868	505 ± 8	2010 ± 97
MIParT-f.t. [26]	0.944	0.9878	640 ± 10	2789 ± 133
L-GATr [67]	0.9423	0.9870	540 ± 20	2240 ± 70
L-GATr-f.t. [67]	0.9446	0.9879	651 ± 11	2894 ± 84
PET [11, 12]	0.938	0.9848	340 ± 12	1318 ± 39
OMNILEARN [11, 12]	0.942	0.9872	568 ± 9	2647 ± 192
PET v2-s	0.9427	0.987	505 ± 14	2167 ± 153
OMNILEARNED-s	0.944	0.9875	565 ± 12	2637 ± 128
PET v2-m	0.9423	0.987	482 ± 11	1861 ± 61
OMNILEARNED-m	0.944	0.9880	656 ± 12	3208 ± 176
OMNILEARNED-l	0.944	0.9880	688 \pm 9	3486 \pm 157

- **Fine-tune the pre-trained model** on the Top Tagging Community Dataset, a traditional benchmark dataset in HEP

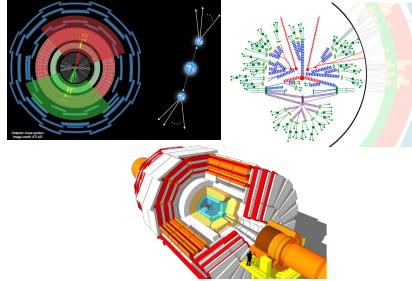
Jet Classification

OmniLearned achieves SOTA performance



From: A. Petitjean, T. Plehn, J. Spinner, U. Köthe: arXiv:2512.17011

FastSim to FullSim: Top Tagging

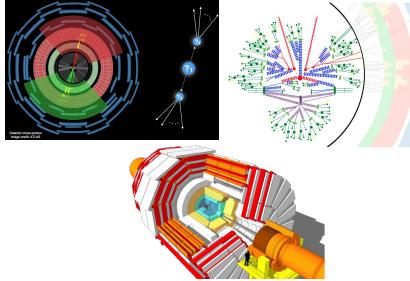
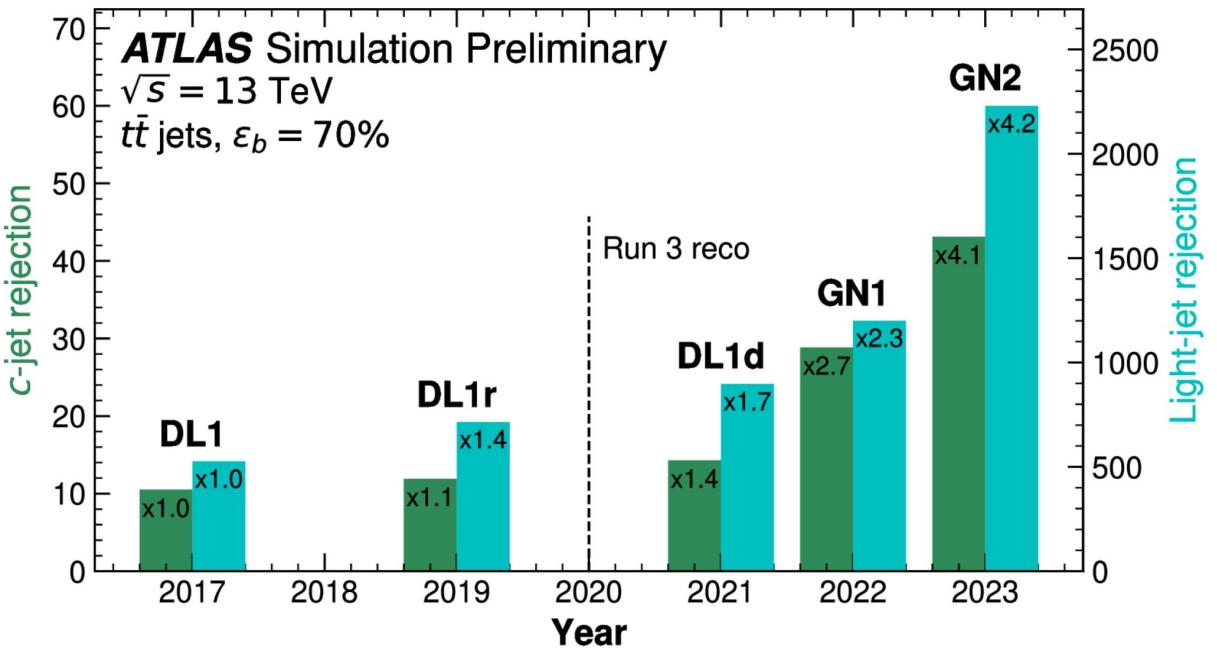


OmniLearn is trained on cheap Delphes simulations. Can we fine-tune to **Run 2 ATLAS** Full simulation + Reconstruction?

- Matches SOTA with **10%** of the data
- Improves on SOTA if all events are used

	AUC	Acc	$1/\epsilon_B$	
			$\epsilon_S = 0.5$	$\epsilon_S = 0.8$
ResNet 50	0.885	0.803	21.4	5.13
EFN	0.901	0.819	26.6	6.12
hIDNN	0.938	0.863	51.5	10.5
DNN	0.942	0.868	67.7	12.0
PFN	0.954	0.882	108.0	15.9
ParticleNet	0.961	0.894	153.7	20.4
PET classifier (4M)	0.959	0.890	146.5	19.4
OMNILEARN (4M)	0.961	0.894	172.1	20.8
PET classifier (40M)	0.964	0.898	201.4	23.6
OMNILEARN (40M)	0.965	0.899	207.30	24.10

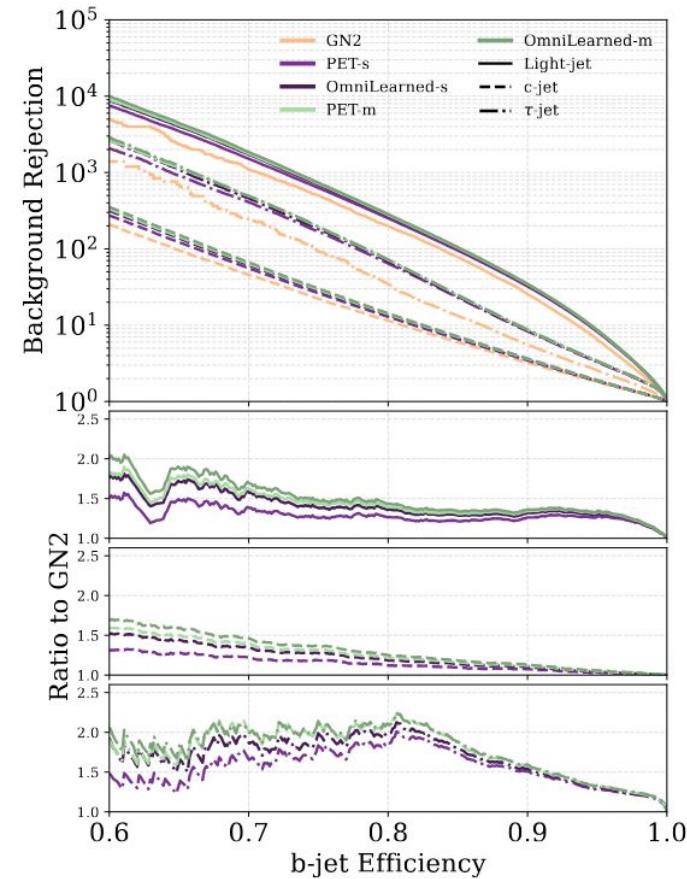
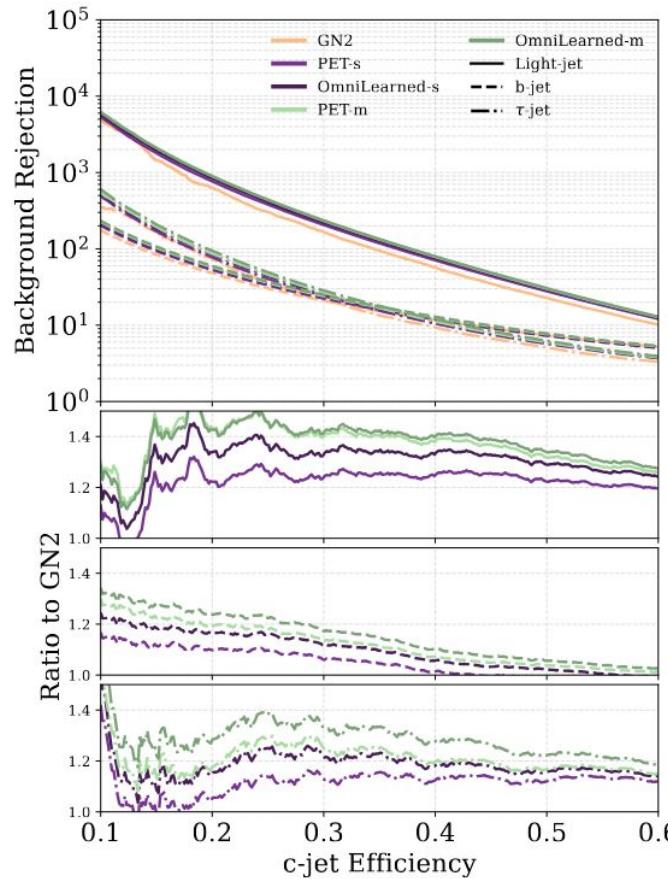
Jet Classification: Flavor Tagging



Fine-tune the pre-trained model on the ATLAS Flavour Tagging Dataset

- Non-trivial transfer with different detector and more **realistic simulation**

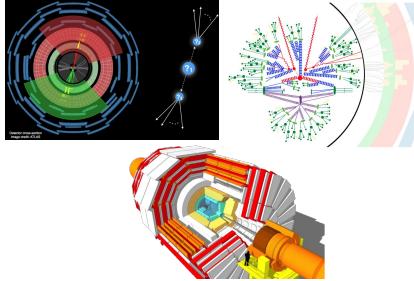
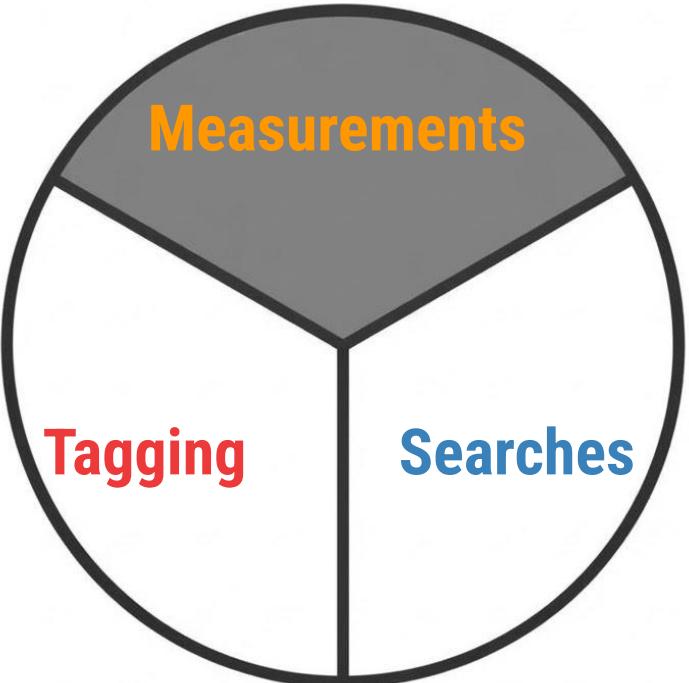
OmniLearned achieves SOTA performance



GN2 is the current algorithm used in ATLAS, trained on **168M Jets**

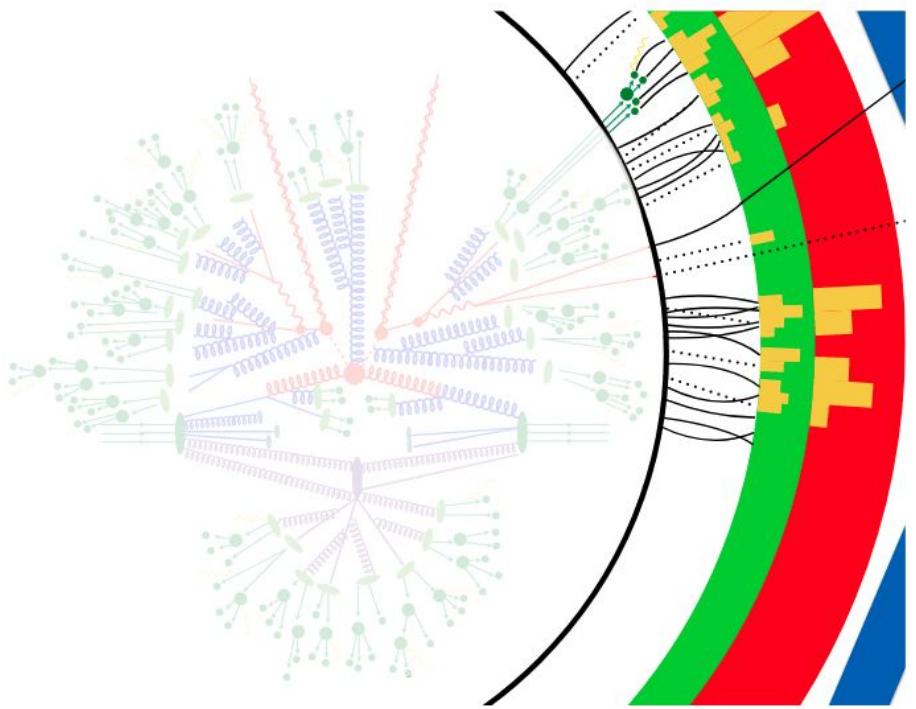
- **OmniLearned** still improves performance

Applications

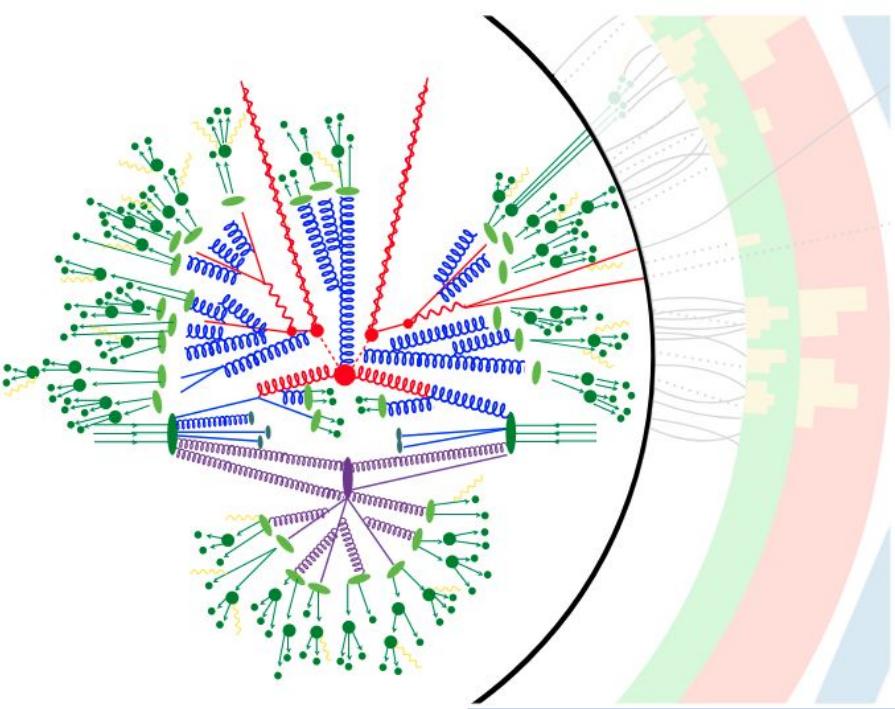
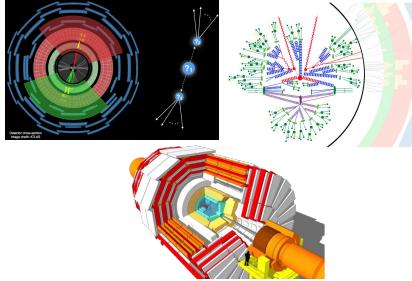


Unfolding

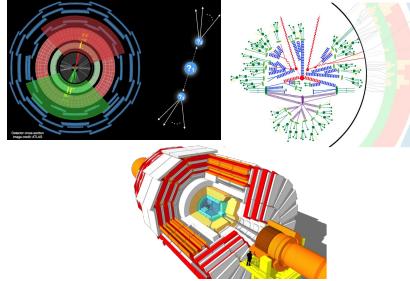
What we measure



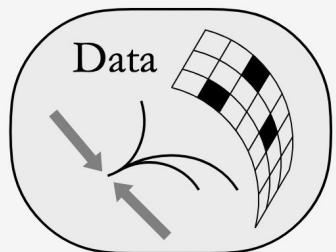
What we want



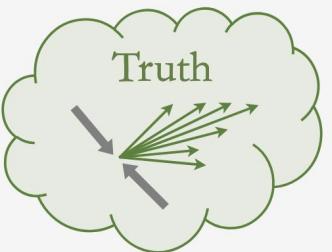
OmniFold



Detector-level



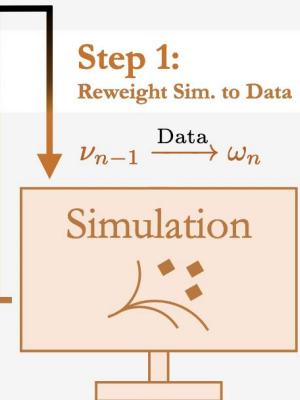
Particle-level



Natural

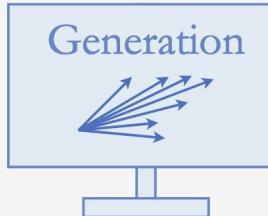
Step 1:
Reweighting Sim. to Data

$$\nu_{n-1} \xrightarrow{\text{Data}} \omega_n$$



Step 2:
Reweighting Gen.

$$\nu_{n-1} \xrightarrow{\omega_n} \nu_n$$



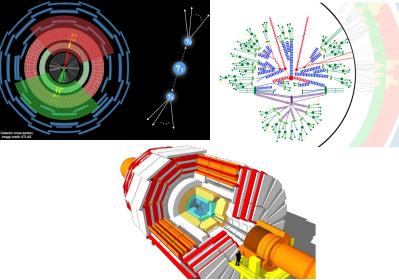
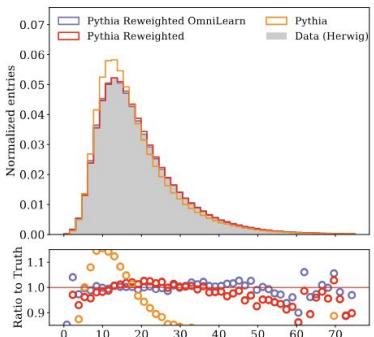
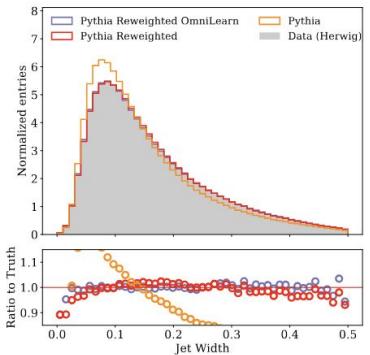
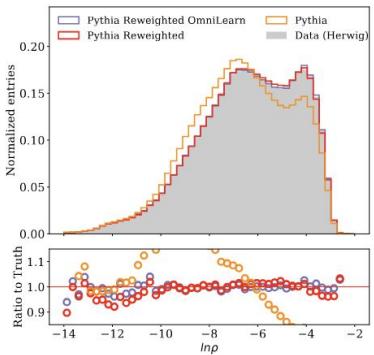
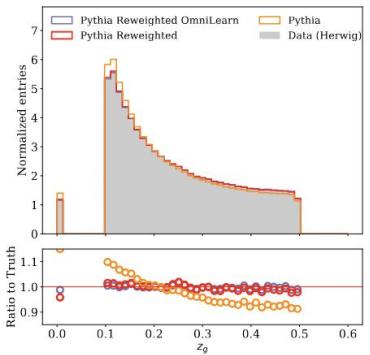
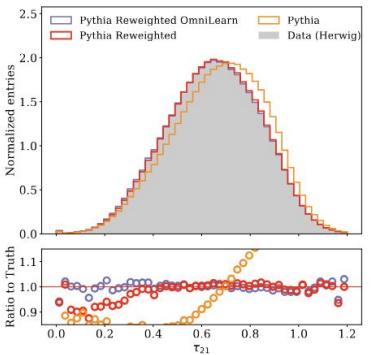
2-step iterative process

- **Step 1:** Reweighting simulations to look like data
- **Step 2:** Convert learned weights into functions of particle level objects

See more details in **Kyle's Talk!**

Source: Andreassen et al. PRL 124, 182001 (2020)

ATLAS OmniFold analysis

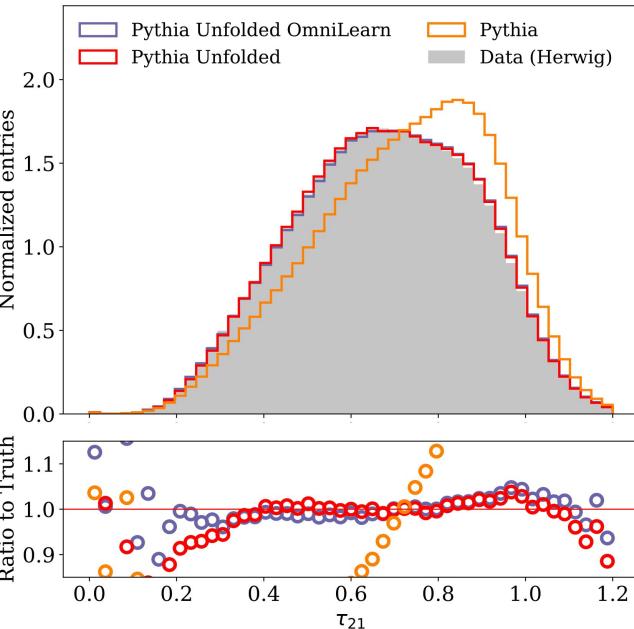


OmniFold dataset
consisting of $Z(\nu\nu) +$
Jets events. Unfold the
particles directly and
then build the jet
observables

Unfolding

Unbinned Unfolding using the OmniFold workflow. More **precise** than traditional unfolding and more **efficient** than previous ML models

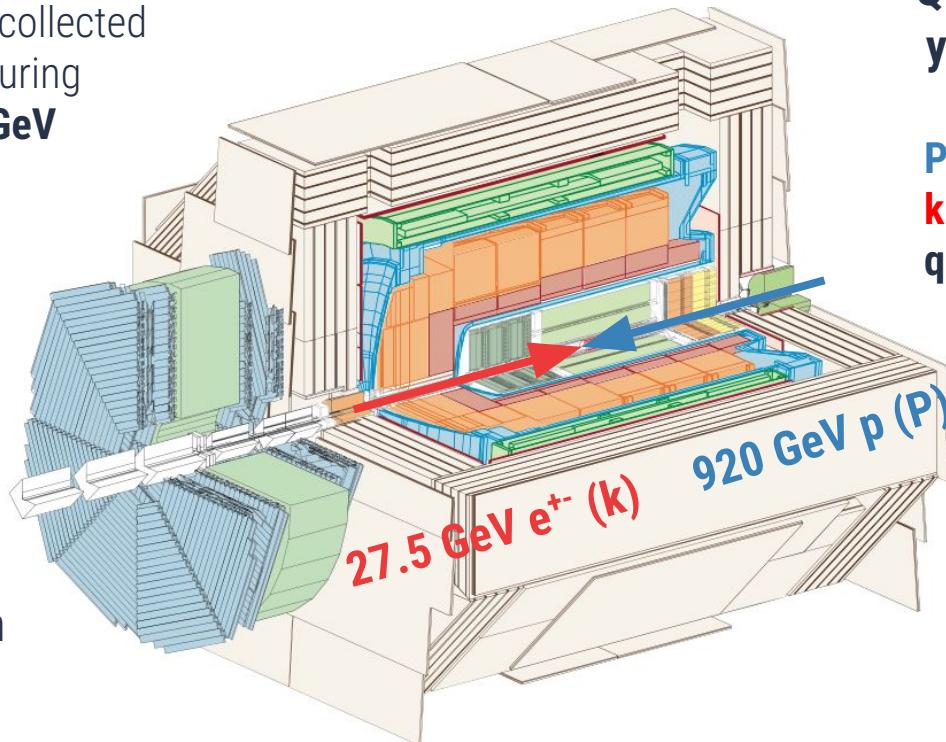
Metric	MULTIFOLD	UNIFOLD	IBU	OMNIFOLD		
				DeepSets	PET classifier	OMNILEARN
Jet mass	3.80	8.82	9.31	2.77	2.8±0.9	2.6±0.8
N	0.89	1.46	1.51	0.33	0.50±0.15	0.34±0.1
Jet Width	0.09	0.15	0.11	0.10	0.09±0.02	0.07±0.01
$\log \rho$	0.37	0.59	0.71	0.35	0.23±0.07	0.14±0.03
τ_{21}	0.26	1.11	1.10	0.53	0.13±0.03	0.05±0.01
z_g	0.15	0.59	0.37	0.68	0.19±0.03	0.21±0.04



Experimental setup

Using **228 pb⁻¹** of data collected by the **H1 Experiment** during **2006** and **2007** at **318 GeV** center-of-mass energy

Goal: Include the information of **all reconstructed particles + scattered lepton** in the collision



$$Q^2 = -\mathbf{q}^2$$

$$y = \mathbf{P}\mathbf{q} / \mathbf{p}\mathbf{k}$$

P: incoming proton 4-vector

k: incoming electron 4-vector

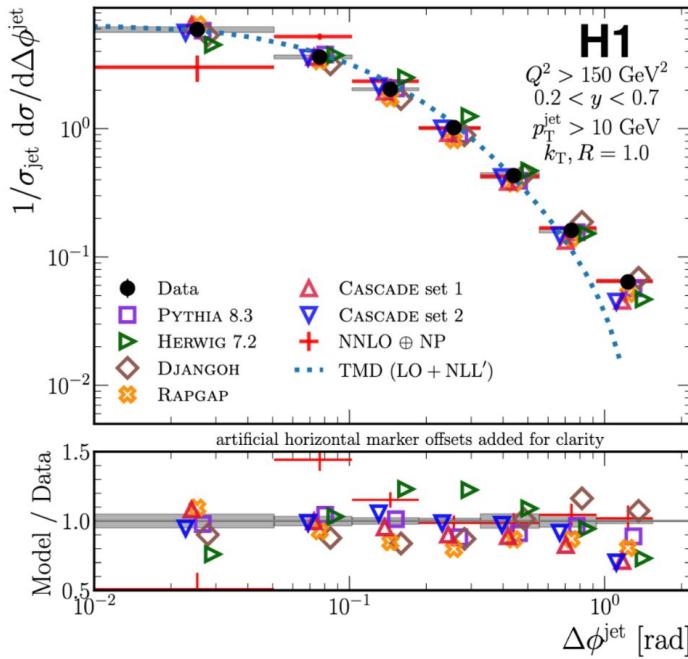
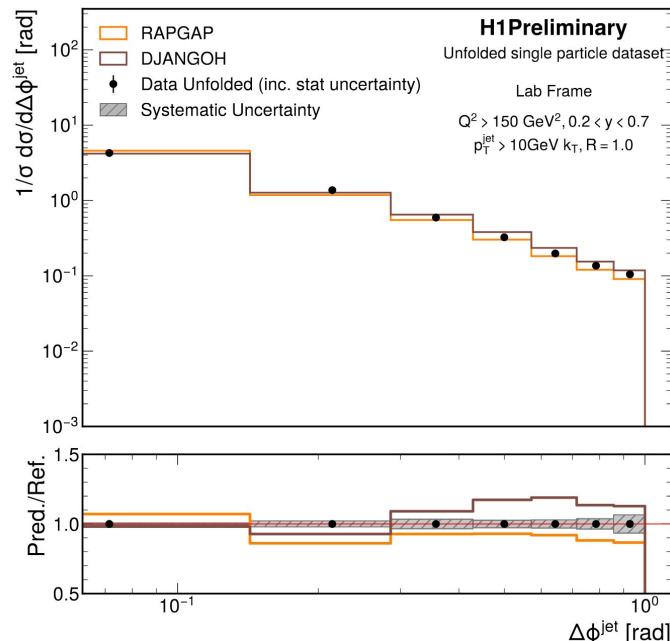
q=k-k' : 4-momentum transfer

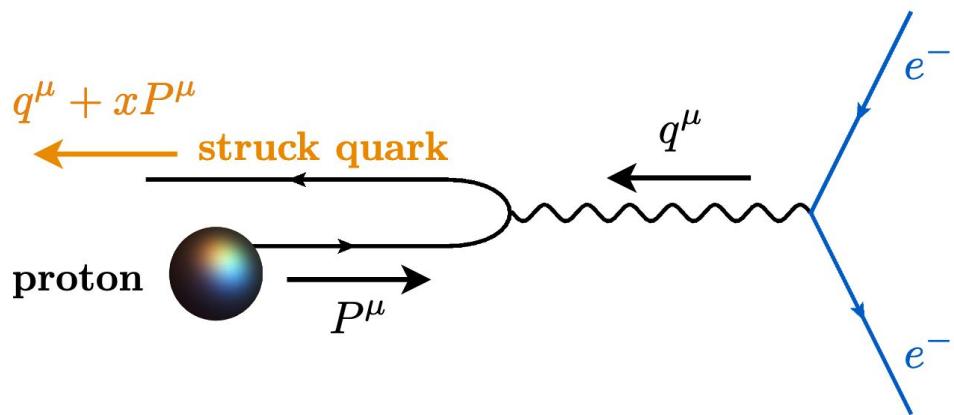
Reconstructed hadrons using combined detector information: **energy flow algorithm**

Results

Cluster unfolded jets using kT algorithm with radius of 1.0

We are able to re-derive **past results**



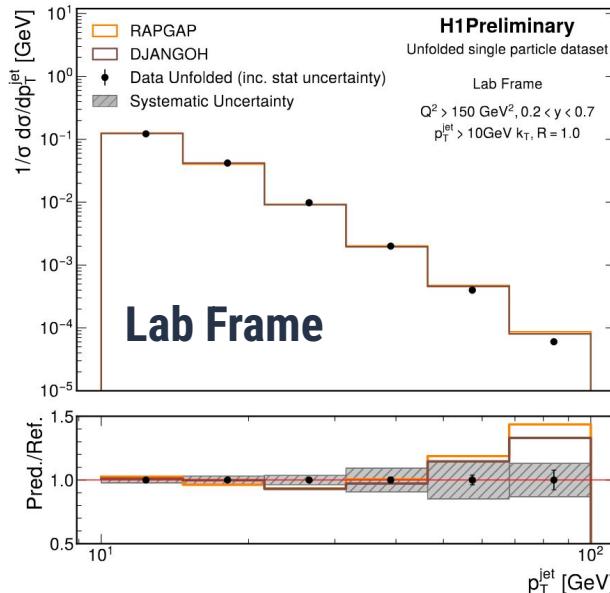
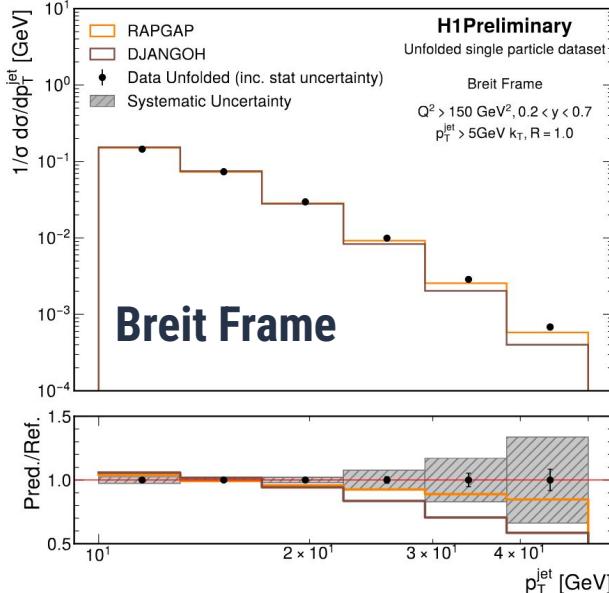
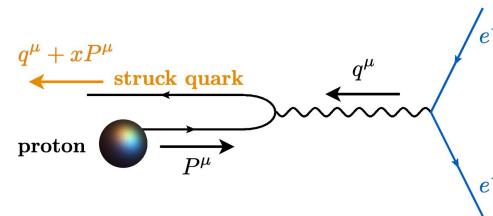


Breit Frame provides a natural frame to study ep collisions, where the struck quark forms a jet opposite from the proton beam: useful for jet and TMD studies

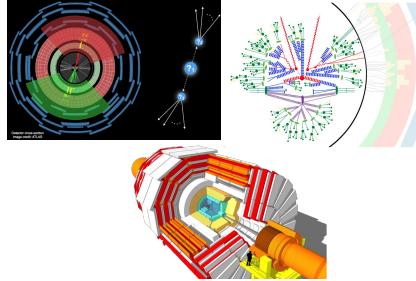
- Starting from the Lab frame, we need to boost the system: not trivial in terms of unfolding

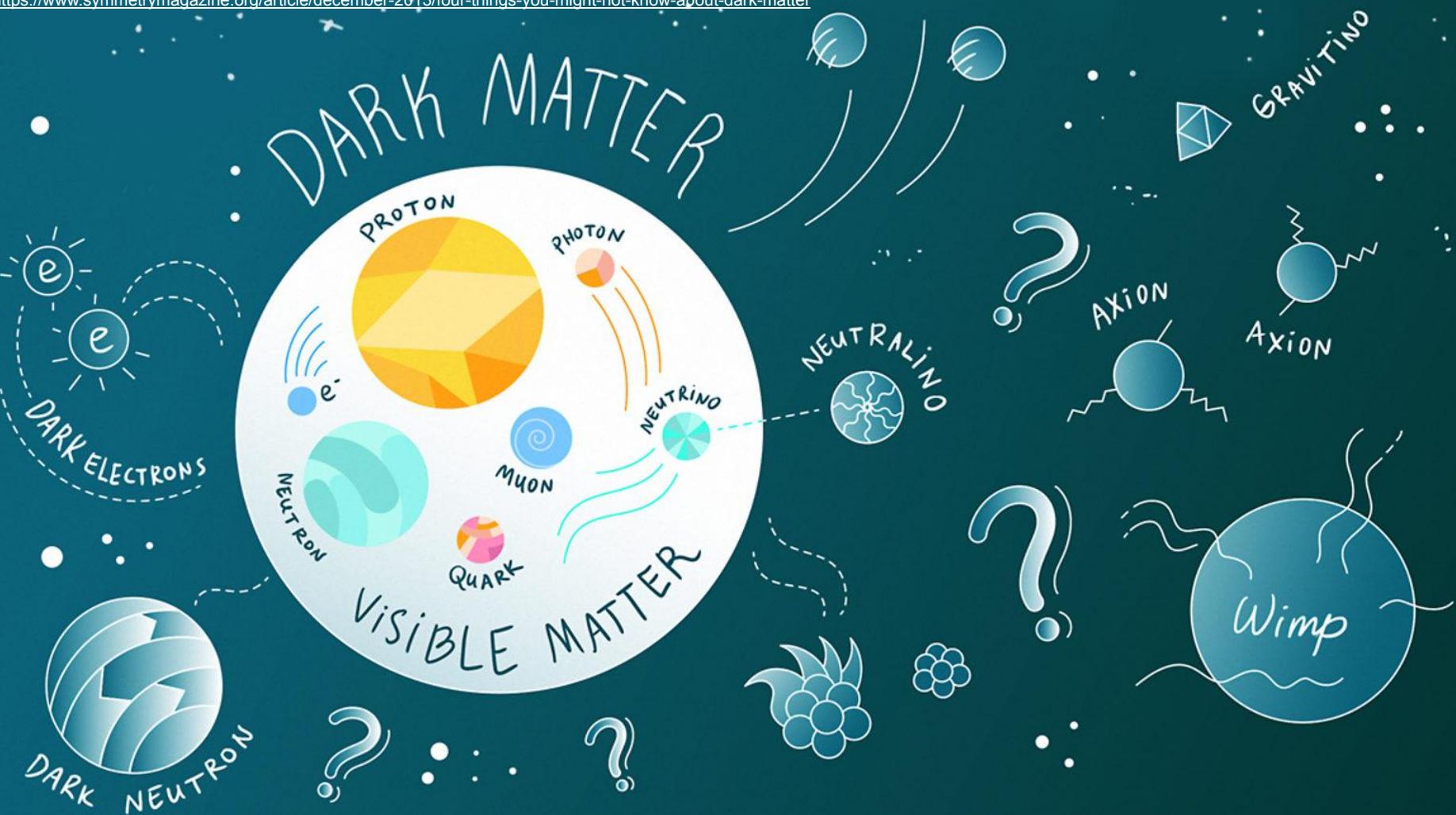
Results

Cluster jets using k_T algorithm with radius of 1.0
We can study observables in **different frames!**



Applications

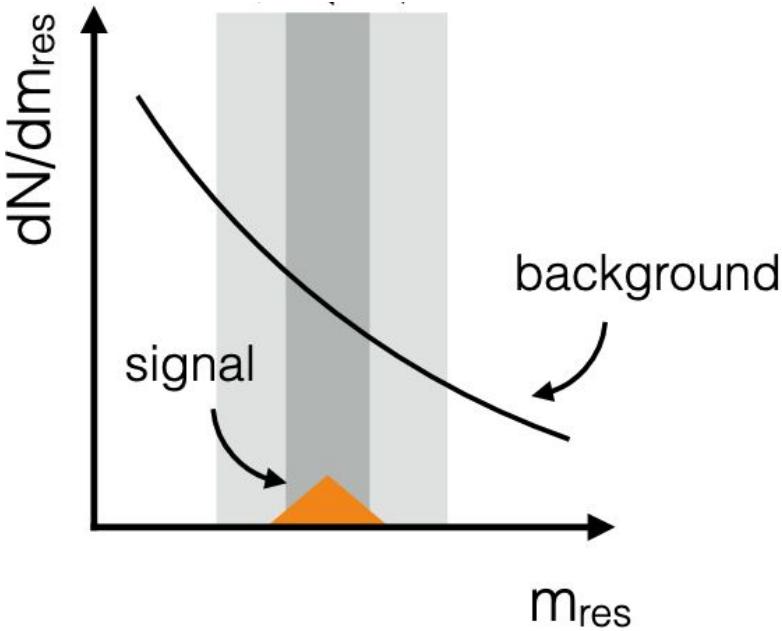




Anomaly Detection

Bump-hunting using ML:

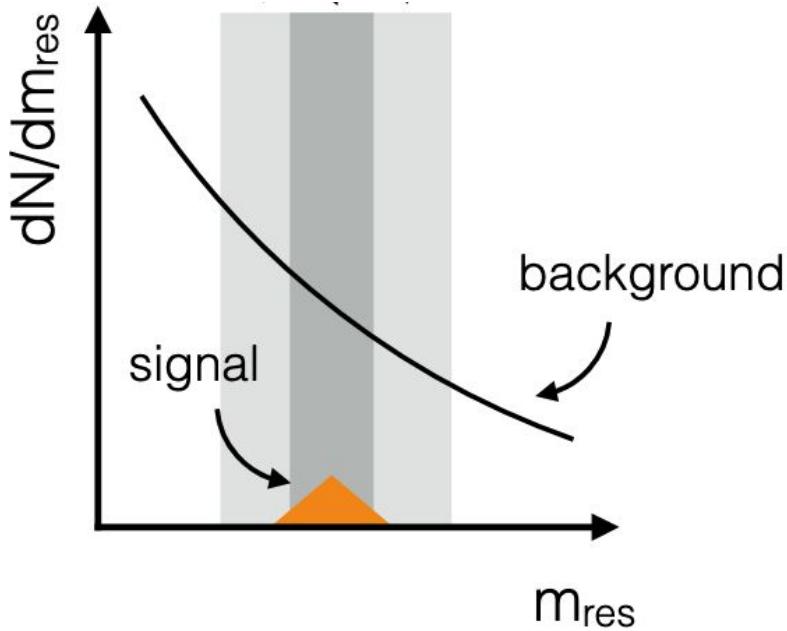
- Use the background in the sideband to estimate the background in the signal region
- Compare the estimated background with the data



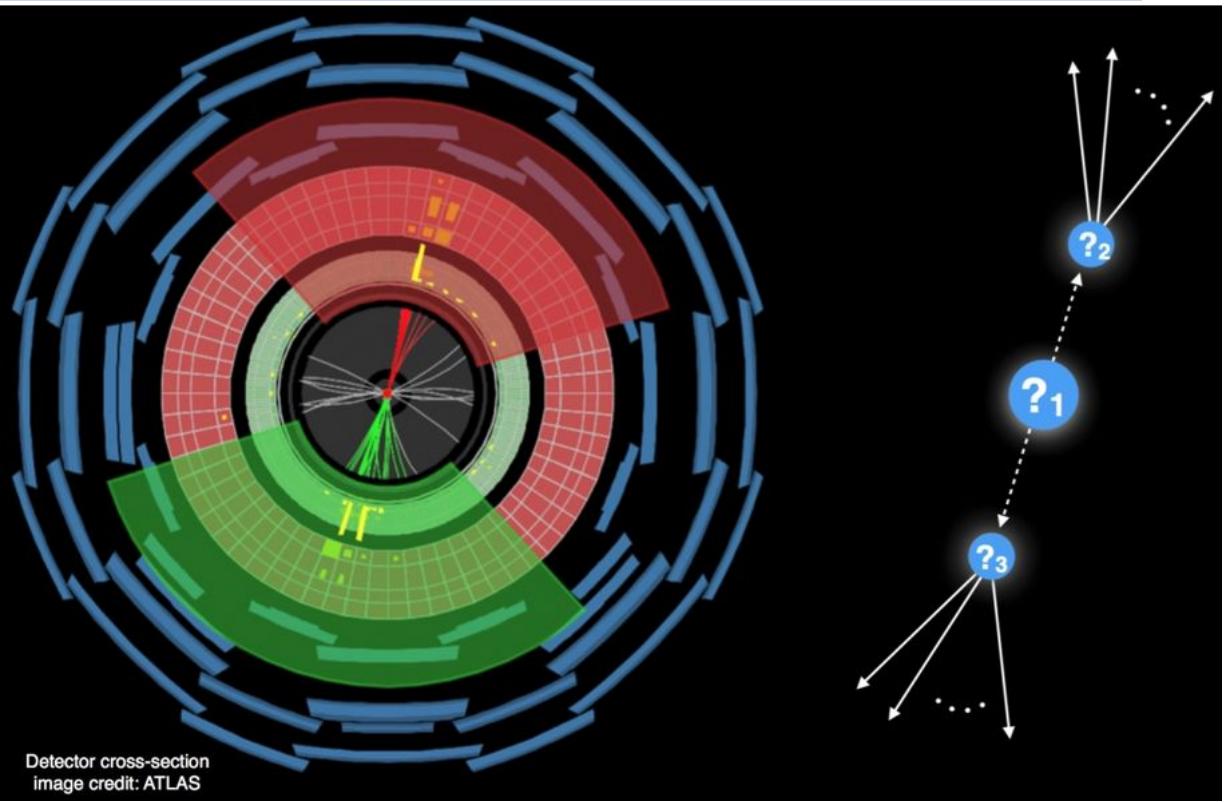
Anomaly Detection

Bump-hunting using ML:

- **Generative Model**
- **Classifier**



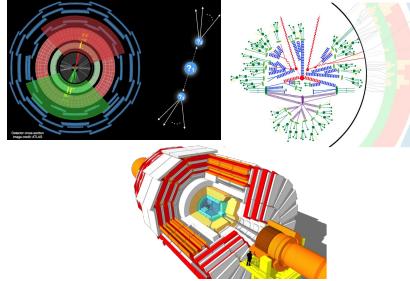
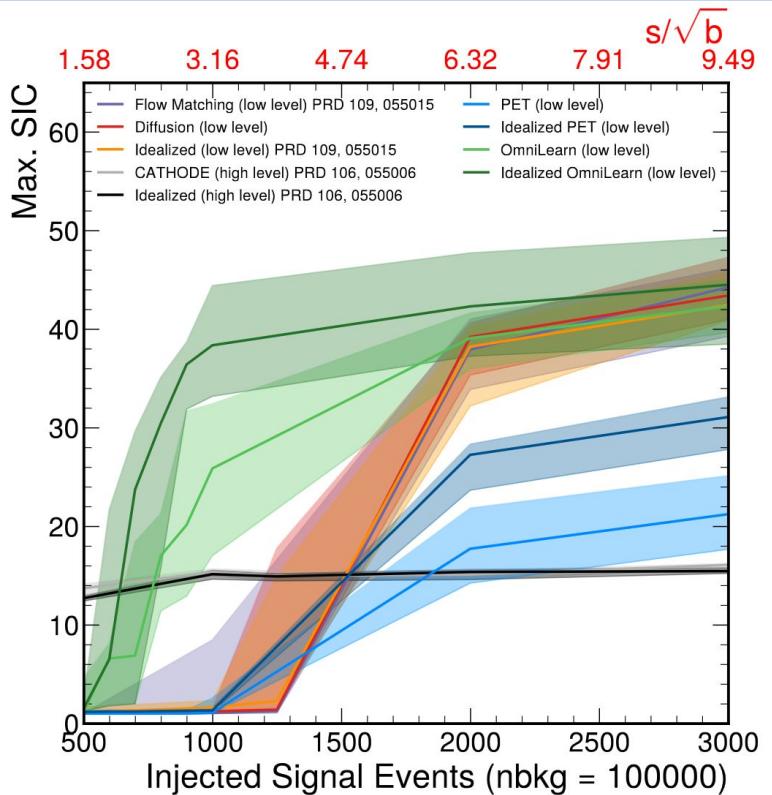
LHCO dataset



LHCO R&D dataset

- Resonant **dijet** final state: $A \rightarrow B(q\bar{q})C(q\bar{q})$ with $m_A, m_B, m_C = 3.5, 0.5, 0.1 \text{ TeV}$

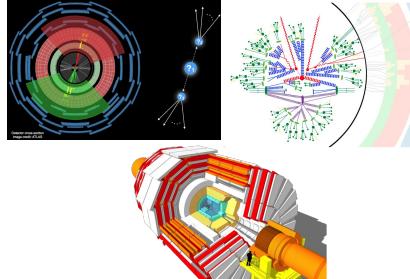
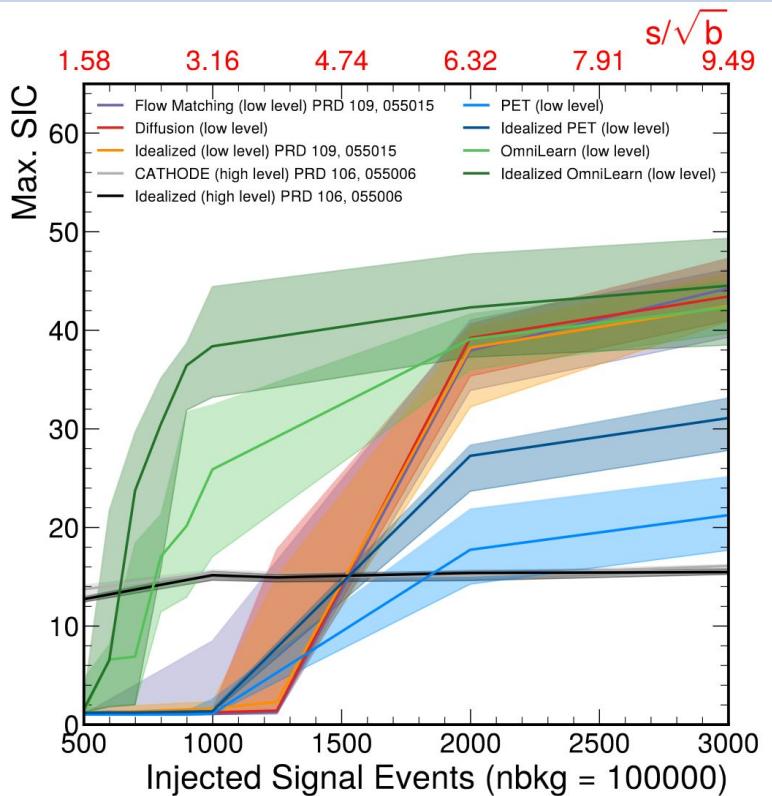
Anomaly Detection



- **Generate** the full dijet system: $2*279*3 = 1674$ numbers to generate
- **Classify** data from background

SIC = Significance Improvement Curve (TPR/sqrt(FPR) vs TPR) "By how much can I improve the significance of a particular signal given an initial significance."

Anomaly Detection

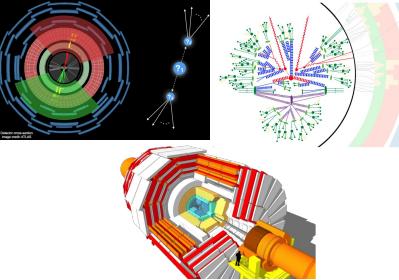
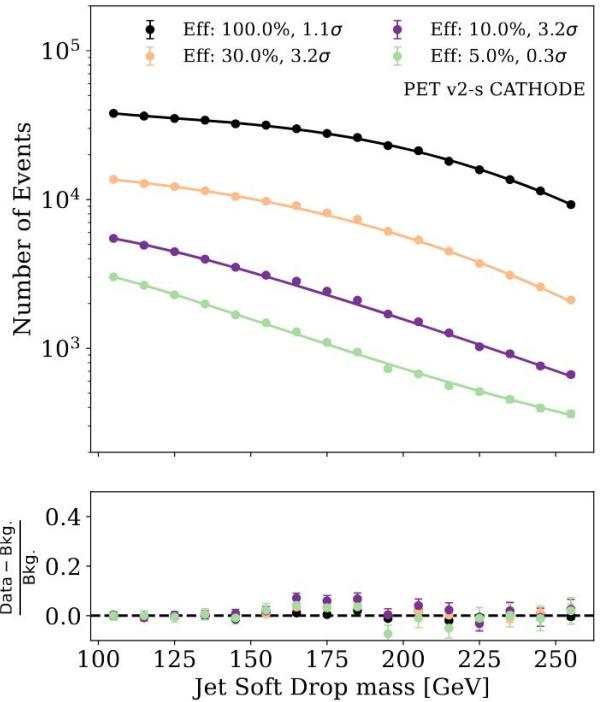


- **Generate** the full dijet system: $2*279*3$ = **1674** numbers to generate
- **Classify** data from background

Previous results were limited by the amount of data in the SR: Only sensitive to NP when $S/B > 3\% \sim 4\sigma$

OmniLearn finds the NP with $S/B = 0.7\%$ $\sim 2\sigma$

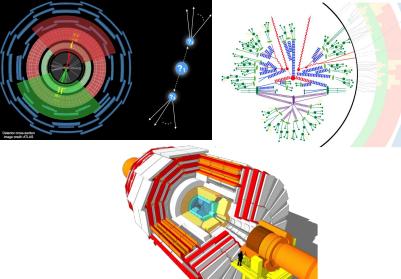
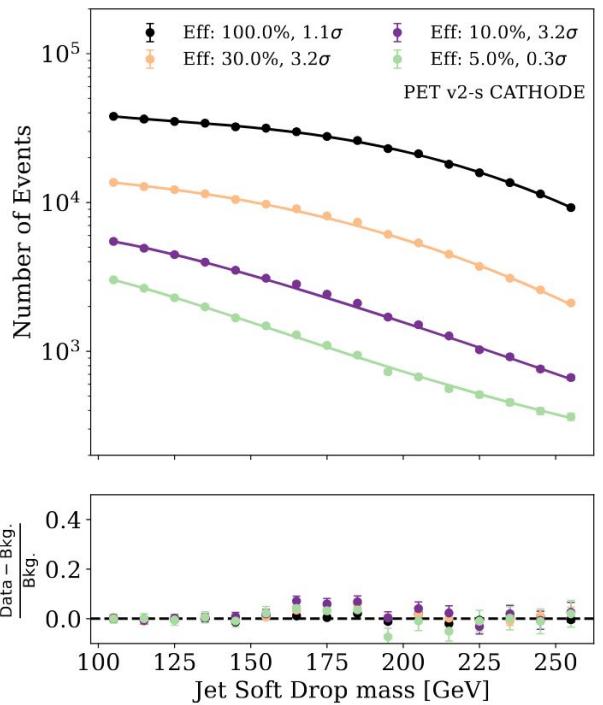
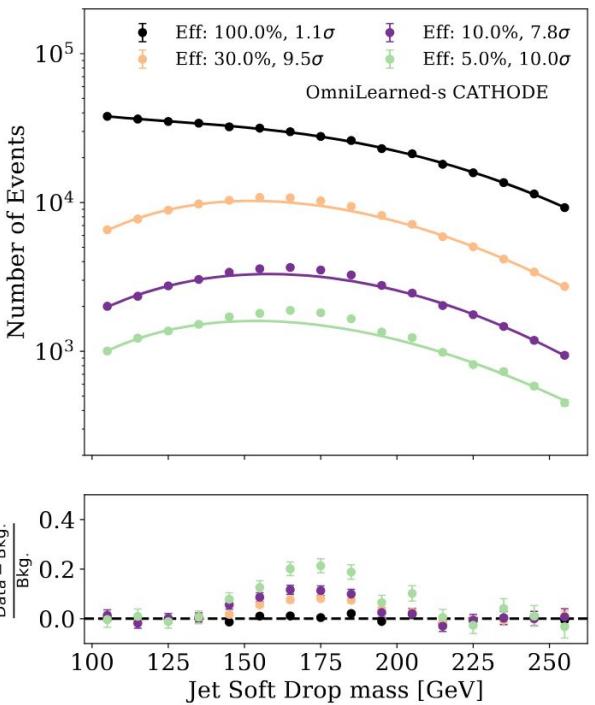
Anomaly Detection



Use **experimental data** for this exercise

- **Signal:** top quarks, corresponding to 0.1% of the data
- Model trained from scratch **unable to find the anomaly**

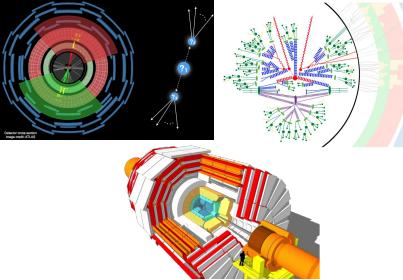
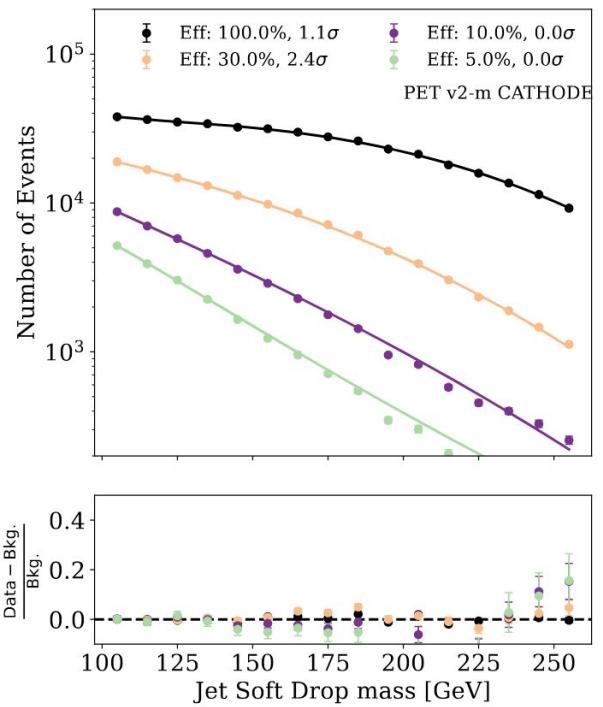
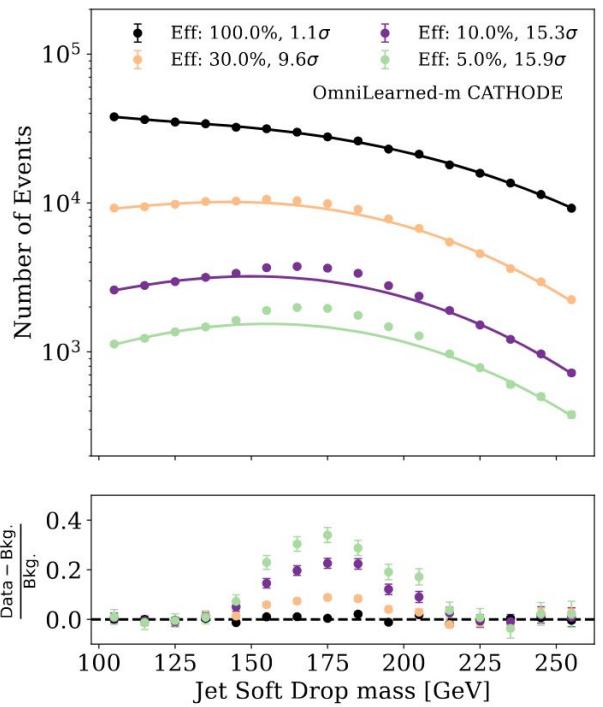
Anomaly Detection



Use **experimental data** for this exercise

- **Signal:** top quarks, corresponding to 0.1% of the data
- **OmniLearned** finds the signal!

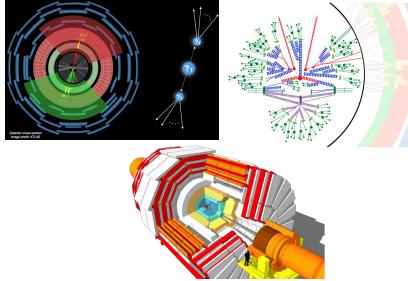
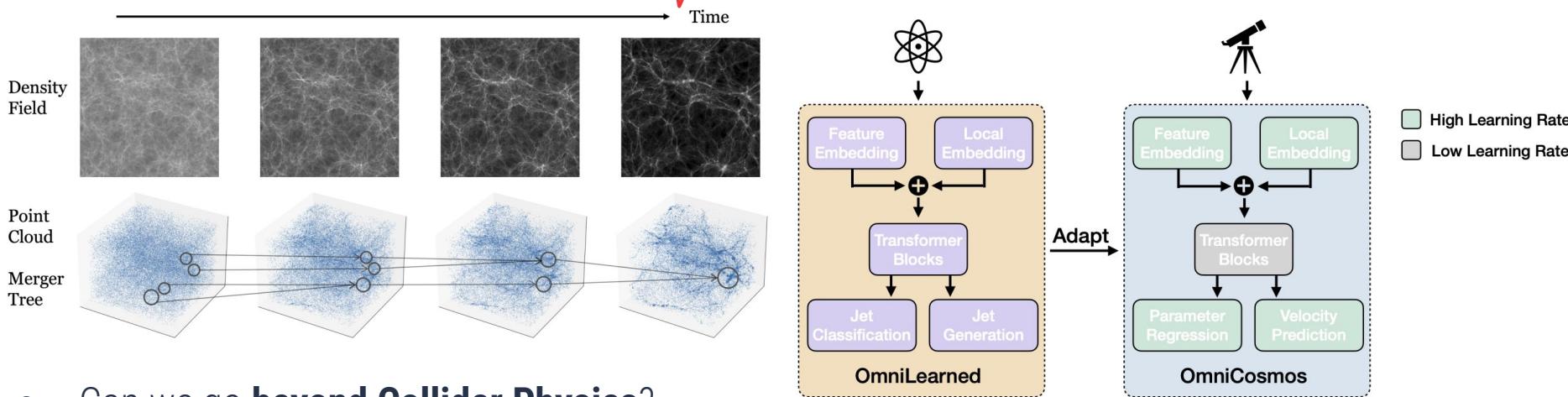
Anomaly Detection



Use **experimental data** for this exercise

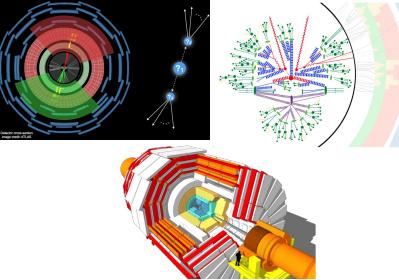
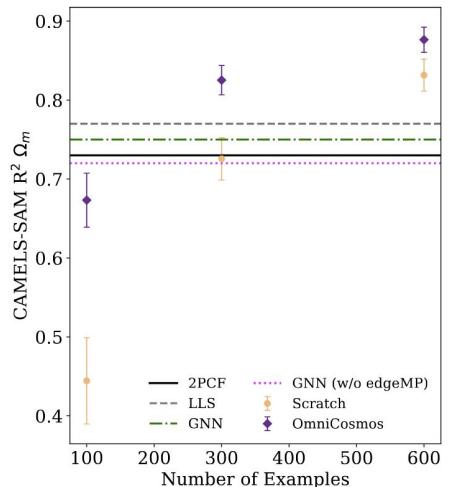
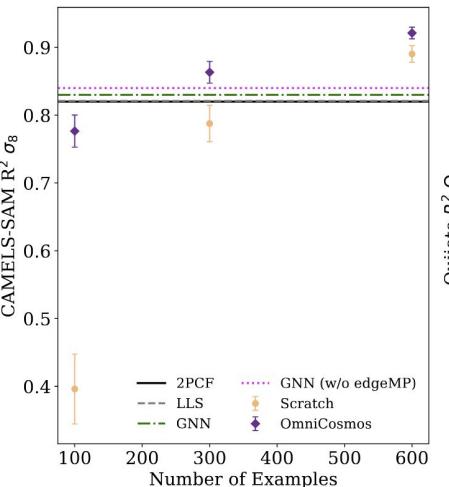
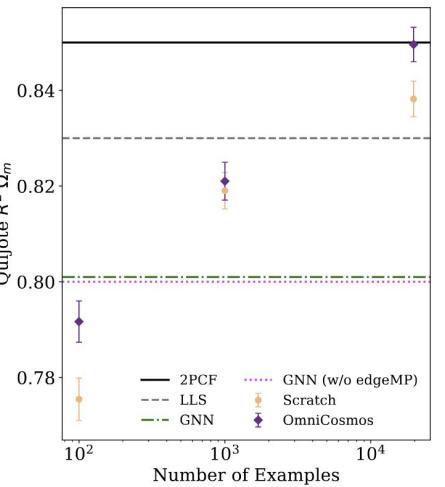
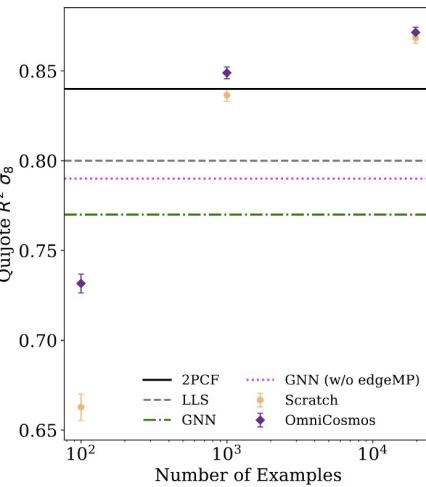
- **Signal**: top quarks, corresponding to 0.1% of the data
- **OmniLearned** finds the signal!
- **Bigger** model even more sensitive

Bonus: OmniCosmos



- Can we go **beyond Collider Physics**?
- Expensive to generate multiple universes
- Adapt OmniLearned to predict cosmological parameters and dark matter halo velocities: **OmniCosmos**

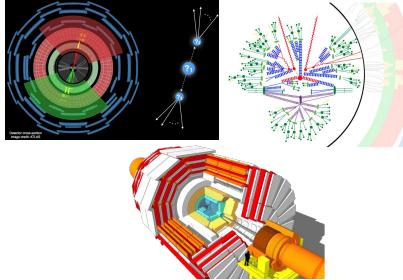
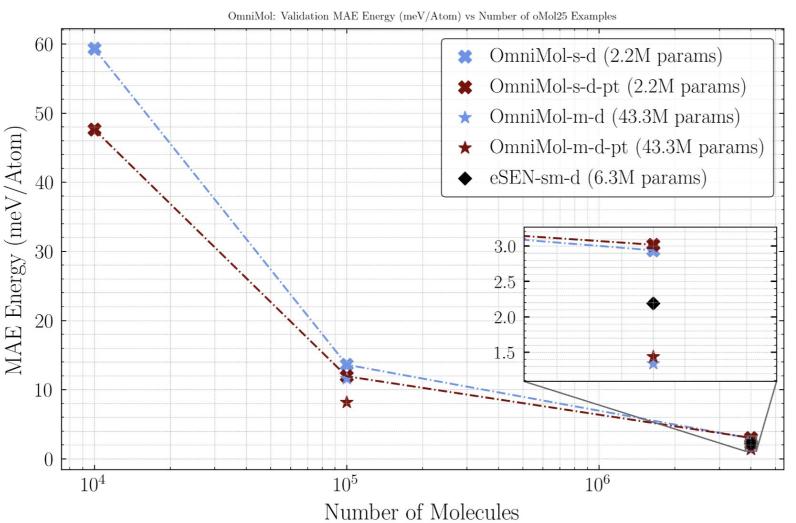
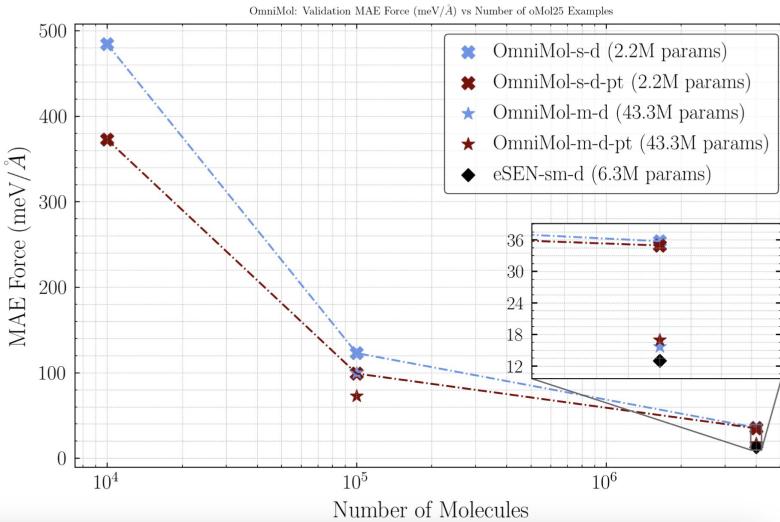
Bonus: OmniCosmos



- Transfer learning benefits using **different types** of simulators
- Improve upon previous AI methods for cosmology

Bonus: OmniMol

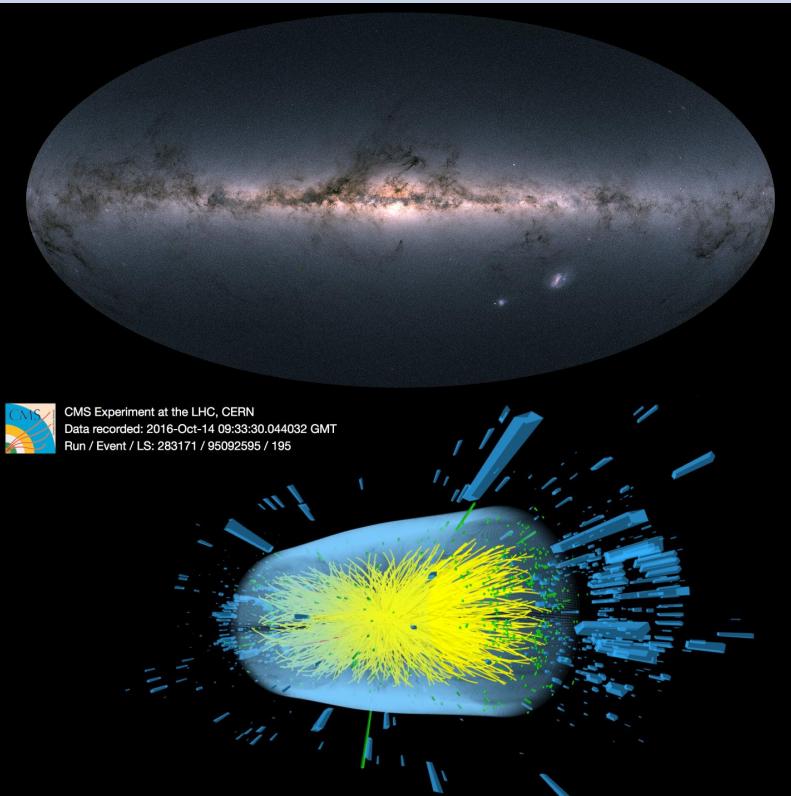
NEWER



- Use OmniLearned to learn Molecular Dynamics: **OmniMol**
- Strong scaling with model and data size: Best performing transformer model in the **Open Molecules dataset**

V. Mikuni, I. Elsharkawy, B. Nachman, W. Bhimji [arXiv:2601.10791](https://arxiv.org/abs/2601.10791)

Conclusion



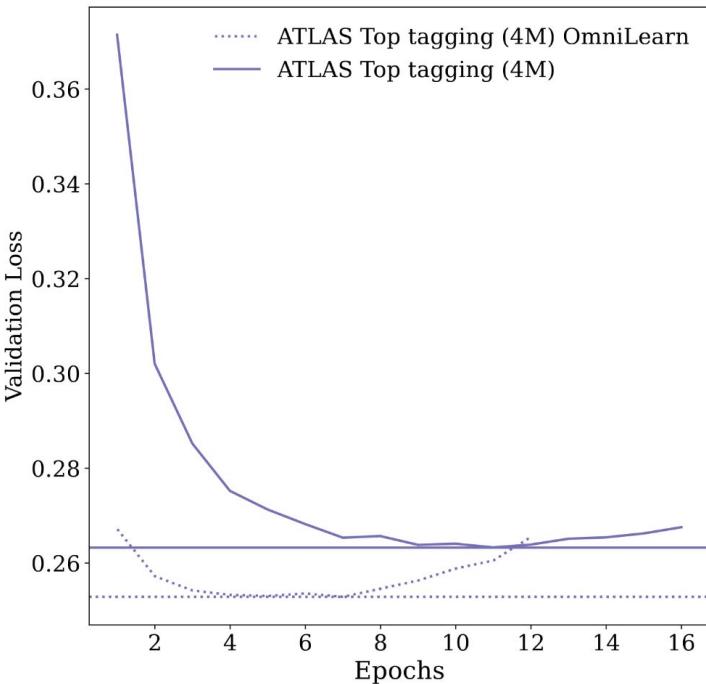
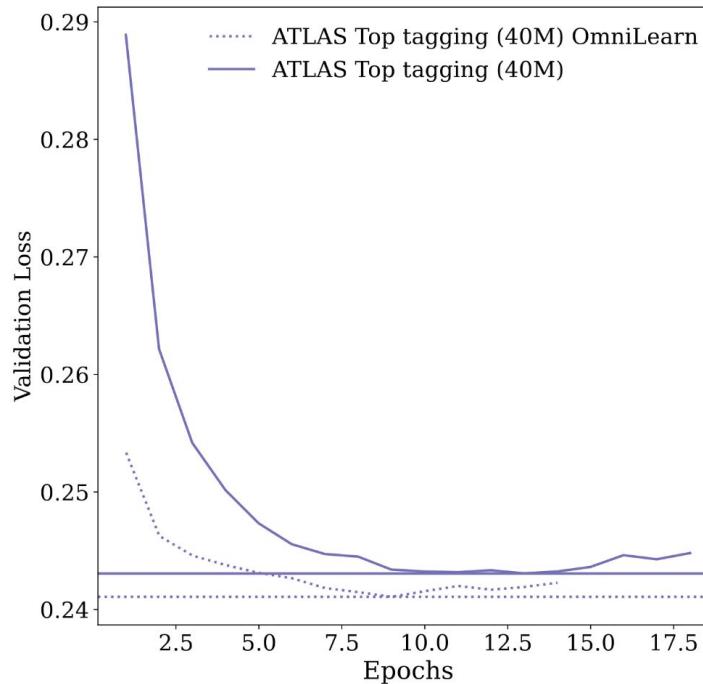
- **OmniLearn(ed)**: learn a rich representation of jets
- Improvements in **jet tagging, unfolding, and anomaly detection in a single model**
- **Going beyond**: Train models on large HEP data and adapt to data limited fields
- **Try yourself:**
<https://github.com/VinicioMikuni/OmniLearned>

THANKS!

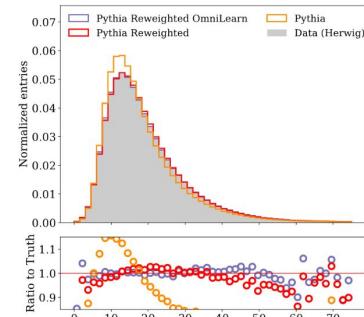
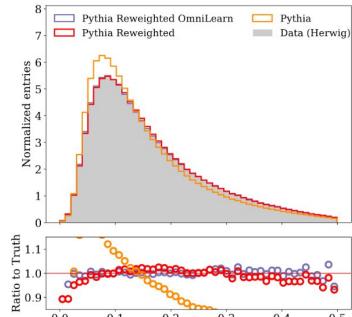
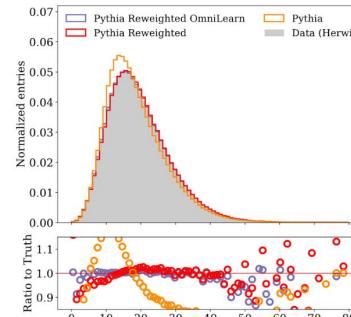
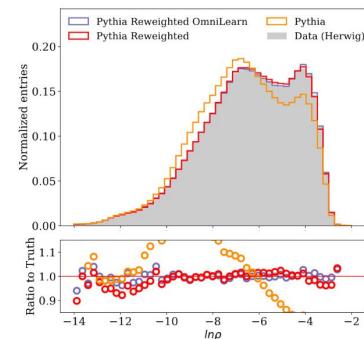
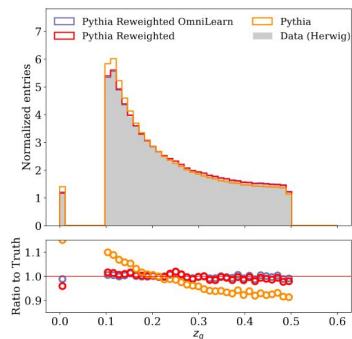
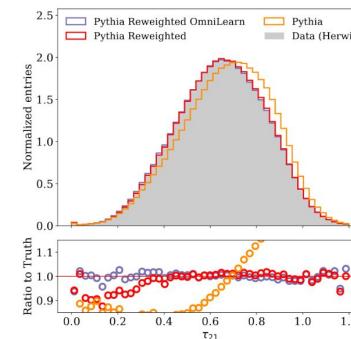
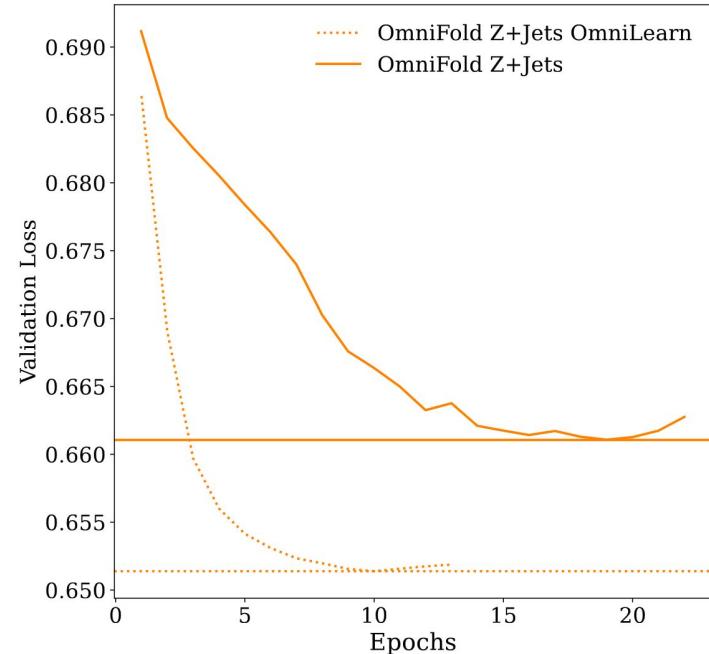
Any questions?

Backup

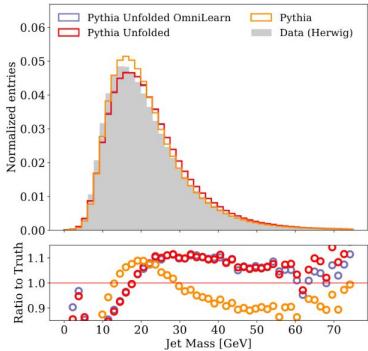
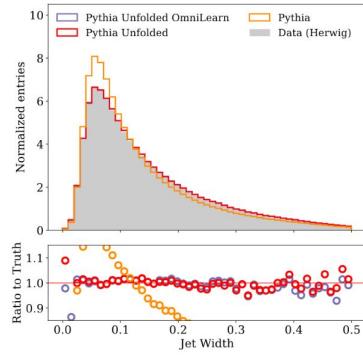
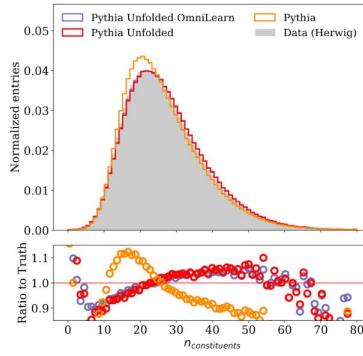
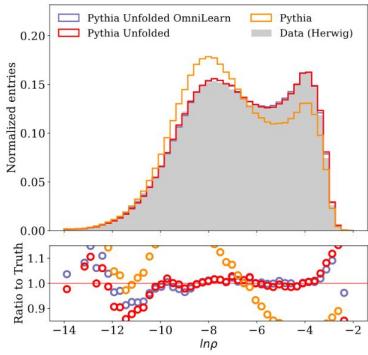
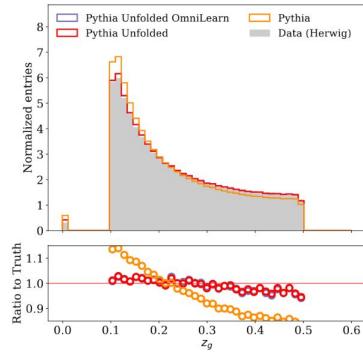
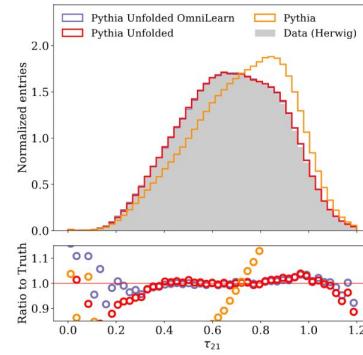
ATLAS Loss Curves



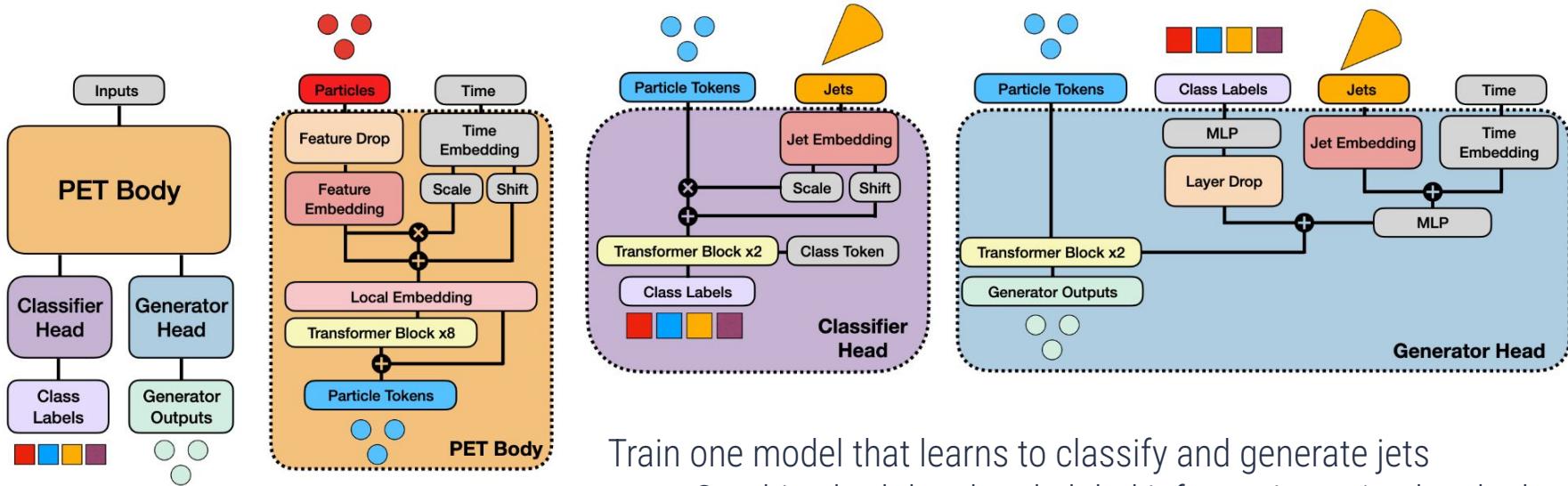
OmniLearn for reweighting



OmniLearn for Unfolding



PET



Train one model that learns to classify and generate jets

- Combine both local and global information using local edges and a transformer: **Point-Edge Transformer**

Diffusion Generative Models

Forward SDE (data \rightarrow noise)

$\mathbf{x}(0)$

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

$\mathbf{x}(T)$



score function

$\mathbf{x}(0)$

Reverse SDE (noise \rightarrow data)

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t)d\bar{\mathbf{w}}$$

$\mathbf{x}(T)$

Source:

<https://yang-song.net/blog/2021/score/>

Loss function

$$\begin{aligned}\mathcal{L} &= \mathcal{L}_{\text{class}} + \mathcal{L}_{\text{gen}} + \mathcal{L}_{\text{class smear}} \\ &= \text{CE}(y, y_{\text{pred}}) + \|\mathbf{v} - \mathbf{v}_{\text{pred}}\|^2 + \alpha^2 \text{CE}(y, \hat{y}_{\text{pred}})\end{aligned}$$

Straightforward loss function:

- **Cross entropy** for each class
- Perturbed data prediction from the **diffusion loss**
- Classification over perturbed inputs: **data augmentation!**

More details at: <https://arxiv.org/abs/2404.16091>