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Figure 1: Schematic of the structure of a pp ! tt event, as modelled by PYTHIA.
To keep the layout relatively clean, a few minor simplifications have been made: 1)
shower branchings and final-state hadrons are slightly less numerous than in real
PYTHIA events, 2) recoil effects are not depicted accurately, 3) weak decays of light-
flavour hadrons are not included (thus, e.g. a K0

S meson would be depicted as stable in
this figure), and 4) incoming momenta are depicted as crossed (p!�p). The latter
means that the beam remnants and the pre- and post-branching incoming lines for
ISR branchings should be interpreted with “reversed” momentum, directed outwards
towards the periphery of the figure; this avoids beam remnants and outgoing ISR
emissions having to criss-cross the central part of the diagram.
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Simulations at colliders
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Figure courtesy of R. Winterhalder
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Simulations at colliders
Figure courtesy of R. Winterhalder
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Calculable in perturbative 
Quantum Field Theory

Highly-accurate

⇒
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Simulations at colliders
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Figure courtesy of R. Winterhalder

• Lund String model (Pythia) 

• Cluster model (Herwig)
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Wishlist for neural hadronization

1. Tunable to data such that we actually improve predictions 

2. Physically principled for universality and robustness 

3. Calibrated uncertainties

{ Precludes end-to-end solutions

MLHAD (Lund string model) 
      [2203.04983], [2311.09296], [2410.06342],        
      [2503.05667], [2509.03592]

HADML (Cluster model) 
      [2203.12660], [2305.17169], 
      [2312.08453] 

Bottom-up approach is best: Replace local modules within existing simulators
⇒

Two groups working in this direction:

https://arxiv.org/abs/2203.04983
https://arxiv.org/abs/2311.09296
http://arxiv.org/abs/2410.06342
https://arxiv.org/abs/2503.05667
https://arxiv.org/abs/2509.03592
https://arxiv.org/abs/2203.12660
https://arxiv.org/abs/2305.17169
https://arxiv.org/abs/2312.08453
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Figure 1: The cartoon depiction of a single fragmentation event, viewed in the center-of-
mass system of the initial string. The string connects the initial quark–anti-quark pair, qiq̄i,
each with energy E, moving back to back and carrying three-momenta ±~p, respectively. In
the hadronization event the string breaks and produces a hadron that is composed of valence
quarks qiq̄j , and has energy Eh and three momentum ~ph. Due to the flavor conservation
the new string has as the new endpoints the q̄iqj quark–anti-quark pair, and the kinematics
such that the energy and momentum are conserved.

(i.e., the energy of one of the endpoint quarks in the center-of-mass frame) as well as its flavor
composition, and gives the flavor and kinematics of the hadron after first emission, (Eh, ~ph).
Repeating the first emission generates the full hadronization chain. Since E2

h = ~p2h +m2
h,

where mh is the hadron mass, the kinematics of the emission are fully described by specifying
~ph and flavor of the created hadron h. We orient the coordinate system such that the z axis
is along the direction of the initial string, while the x and y coordinates are perpendicular to
it. The transverse components of the ~ph vector are given by

px = pT cos', py = pT sin', (1)

where pT ⌘

q
p2x + p2y and ' is the polar angle. The string breaking and hadron emission are

assumed to be axially symmetric in Pythia, i.e., independent of ', and thus the problem
of simulating the hadronization event reduces to a two variable problem of generating the pz
and pT distributions for the first emission.

A special feature of the hadronization event and the chosen kinematic variables is the
ability to render the pz kinematic distributions independent of the initial parton energy, E,
through a simple rescaling transformation

p0z ⌘ Eref
p

E
, (2)

where E is the energy of the quark in the center of mass for the initial string, and Eref is a
conveniently chosen reference energy that renders p0 dimensionful. In the rest of the paper
we set Eref = 50 GeV. The transformation of the pz distribution with respect to the initial
parton energy E can be seen in Fig. 2.

The fragmentation process implemented in Pythia is constructed in momentum space
as an iterative walk through production vertices. To do so a stochastic variable termed the
longitudinal momentum fraction z is defined, describing the fraction of longitudinal momen-
tum taken away by the emitted hadron.2 The probability distribution f(z) from which z

2
In Section 2.2, zi denote the latent-space variables. Despite similarity in notation there is no relation

between the two variables.
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The (simplified) string model
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4

• Characterise string breaks by

s ≡ {z, mT}
Lightcone momentum fraction

Transverse mass

• Sample z from fragmentation function:

f(z |m2
T) =

(1 − z)a

z
exp (−

b m2
T

z )
a b

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.5

1.0
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2.0

⇥10�3
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f(z
| m

T)

z

b = m2
T = 1

The (simplified) string model
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• Simulate fragmentation chain as a sequence of breaks

10

• Full chain (over) specifies the final set of hadrons

s1
s2
s3

≡ S xObserve

‘Chain’ Measured event

s1p(mT)s1 ∼ f(z |mT) p(mT)s2 ∼ f(z |mT) p(mT)s3 ∼ f(z |mT)

String state

ζ ζ′￼ ζ′￼′￼ ⋯

The (simplified) string model
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• The full probabilistic model is 
 
 
 
 
 

• But only x is observable in data… Best you could do is maximise marginal likelihood

11

A latent variable problem

pϕ(x) = ∫ dSdζ p(x |S) pϕ(S |ζ) p(ζ)max
ϕ ∑

x∼pdata

pϕ(x)

pϕ(x, S, ζ) ≡ p(x |S) pϕ(S |ζ) p(ζ)

Detector simulation Parton shower

pϕ(S |ζ)

Hadronization generator

pϕ(S |ζ)

pϕ(S |ζ) = ∏
s∈S

fϕ(z |mT)
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Three challenges

Performing the fit directly requires: 

• Tractable likelihoods of each distribution 

• Marginalization over      and   

• Differentiable detector simulation (or unfolded data)

S ζ

max
ϕ ∑

x∼pdata

pϕ(x) pϕ(x) = ∫ dSdζ p(x |S) pϕ(S |ζ) p(ζ)pϕ(S |ζ)
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• Maximum likelihood is just KL divergence. But, Jensen-Shannon divergence… 
 

 

• So                   can be trained in a GAN-like setup. [Louppe et al. 1707.07113, Chan et al. 2305.17169] 

13

A GAN-based solution

DJS[pdata, pϕ] =
1
2

DKL [pdata,
pdata + pϕ

2 ] +
1
2

DKL [pϕ,
pdata + pϕ

2 ]
= 𝔼x∼pdata

log C(x; ϕ) + 𝔼x∼pϕ
log (1 − C(x; ϕ)) + const .C(x; ϕ) C(x; ϕ)

pϕ(S |ζ)

x Need gradients of detector sim (or unfolded data) 

x GAN training can be unstable

✓ Likelihood-free 

✓  Auto-marginalization

C(x; ϕ) ≡
p(x)

p(x) + qϕ(x)

pϕ(x) = ∫ dSdζ p(x |S) pϕ(S |ζ) p(ζ)pϕ(S |ζ)

C(x; ϕ) ≡
pdata(x)

pdata(x) + pϕ(x)
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Reweighted hadronization

?  marginalisation

Histories and Observables for Monte-Carlo Event Reweighting (HOMER)

[Bierlich et al. 2305.17169] based on ratio’s of normalising flows

• Two implementations by MLHAD:

[Bierlich et al. 2410.06342]

• This talk: iHOMER: cheap marginalisation + uncertainties [Butter, AO et al. 2509.03592]

• Can solve all the difficulties: 
 

• Bonus: 

• Weights integrate seamlessly with event generators

pϕ(S |ζ) wϕ(S) pref(S |ζ)

✓ Likelihood-free ✓Physical prior✓ Bypass detector gradients

• Easy to propagate uncertainties
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Goal: Find string-break weights that correct observables in reference set

15

HOMER Overview

pref(x) ⟶ pdata(x)w(s)

fHOMER(z |mT) ≡ w(s) fref(z |mT)w(s)

Result: A data-driven fragmentation function:
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• Likelihood ratio trick: 

• Binary cross-entropy loss 
 

• Optimum at 
 
 

• Yields 
 

HOMER: Step 1

16

w(x) ≈ pdata(x)/pref(x)
ℒ = ⟨log C(x)⟩pdata(x)

+ ⟨log(1 − C(x))⟩pref(x)

δℒ = ∫ dx[ pdata(x)
C(x)

−
pref(x)

1 − C(x) ]δC != 0

pdata(x)
pref(x)

=
C(x)

1 − C(x)
≡ w(x)

fref(z)

pref(x) w(x)pref(x) w(S)pref(x)

Simulate Reweight Factorize

fHOMER(z)→ w(s) fref(z)
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HOMER: Step 2

17

• Distill the reference        data correction              into 

• Exploit joint samples from reference set 

 

• Assign            to each string break and ‘match’

w(x) w(s)→

w(s)

x, S = (s1, s2, s3)

x,

x, S = (s1, s2, s3, s4, s5)

S = (s1, s2, s3, s4)

⋮⋮
∼ pref(x, S)

fref(z)

pref(x) w(x)pref(x) w(S)pref(x)

Simulate Reweight Factorize

fHOMER(z)→ w(s) fref(z)
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HOMER: Step 2

18

• Three options to factorise event weight: 

• Minimise error 1-to-1 between chains and events             
 
 

• Explicitly integrate over chains  
 
 

• Ignore and iterate! (Expectation-Maximisation) 
                                                           
                                      

w(x) ← ∏
s∈S

w(s)

w(x) ← ∫ dS p(S |x)∏
s∈S

w(s)∫ dS p(S |x)

[Bierlich et al. 2410.06342]

[Assi et al. 2503.05667]

[Butter, AO et al. 2509.03592]
Also OmniFold [1911.09107]

fref(z)

pref(x) w(x)pref(x) w(S)pref(x)

Simulate Reweight Factorize

fHOMER(z)→ w(s) fref(z)



Neural models of hadronization  —  Ayodele Ore   |  AI+HEP in East Asia 2026 @ KEK 19

iHOMER: Iterations

fref(z)

pref(x)

w(x)pref(x) w(S)pref(x)

Simulate

Reweight

Factorize

Iterate

fHOMER(z)→ w(s) fref(z)

w(x) ≈ ∏
s∈S

w(s)
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fref(z)

pref(x)

w(x)pref(x) w(S)pref(x)

Simulate

Reweight

Factorize

Iterate

fHOMER(z)→ w(s) fref(z)

w(x) ≈ ∏
s∈S

w(s)

20

iHOMER: Iterations

fref(z)

pref(x)

w(x)pref(x) w(S)pref(x)

Simulate

Reweight

Factorize

Iterate

fHOMER(z)→ w(s) fref(z)

Averaged implicitly in  
next iteration
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Simulated Datasets

21

★ Events represented as high-level observables (event shapes, multiplicities, etc…) 

★ Simplified scenario: only pions, no gluons, fixed initial state 

• Sim: Standard fragmentation 
 
                         w/ a=0.68, b=0.98 

• Data: Mixture fragmentation 
 
                                                     w/ a1=0.68, a2=0.30, b=0.98 
                                                                    

z ∼ f(z |m2
T)

z ∼ 1
2 f1(z |m2

T) + 1
2 f2(z |m2

T)

(Cannot fit with standard form)

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.5

1.0

1.5

2.0

p(
z|

m
2 T
=

1)

⇥10�3

a = 0.68 (Sim)
a = 0.30
Mixed (Data)

b = 0.98, m2
T = 1• qq string at sqrt(s) = 90GeV
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Reweighting accuracy: Observables

Classifier score

χ2/Nbins

Event shape observable

• iHOMER improves on ‘naive’ fit that assumes standard fragmentation• Iterations mitigate bias!

−2 log w1(x)
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Reweighting accuracy: Fragmentations

Optimal chain observable
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Fragmentation function
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• iHOMER also corrects fragmentation!        Extracts universal physics

−2 log wexact(S)

⇒
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Uncertainties 
• Two ways in which ‘well-trained’ models can make errors:

Epistemic or Statistical uncertainty Alleatoric or Systematic uncertainty

y y

x x

Vanishes given infinite data Persists despite infinite data

To capture: Infer distribution on network parameters To capture: Infer distribution on network outputs
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iHOMER: Uncertainties 

• Step 1 already predicts probabilities         

    Only treat statistical uncertainty: 

   

• Step 2 only uses simulation. 

    Can ignore statistical uncertainty

⇒

⇒
w(s)±σ(s)

fref(z)

pref(x)

w(x)pref(x) w(S)pref(x)

Simulate

Reweight

Factorize

Iterate

fHOMER(z)→ w(s) fref(z)

wθ(x) θ ∼ q

Bayesian Neural Network 

Gaussian regression
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iHOMER: Step 1 Bayesian Neural Network 

26

wθ(x), θ ∼ qΘ

• Make variational approximation 
 
(Typically independent Gaussians) 

• Train above condition by KL divergence: 
 
 
 
 

• After training, we can estimate uncertainties by sampling 
 
 
 
where     is any function of the network.

qΘ(θ) ≈ pposterior(θ |𝒟train)

{f(θ)}, θ ∼ qΘ

f

ℒ(Θ) = DKL [qΘ, pposterior]
= DKL [qΘ, pprior] − ⟨p(𝒟train |θ)⟩θ∼qΘ

e.g. Classification loss

fref(z)

pref(x) w(x)pref(x) w(S)pref(x)

Simulate Reweight Factorize

fHOMER(z)→ w(s) fref(z)
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iHOMER: Step 2 Gaussian regression

27

• Predict mean and variance for break-level log-weight: 

• Propagate mean and variance to chain level: 
 
                                                     
                                                     with  

• Fit step-one log-weight with Gaussian likelihood:

ln w(s) → ln w(s) ± σ(s)

ln w(S) → ln w(S) ± σ(S) σ2(S) ≡ ∑
s∈S

σ2(s)

ℒ = − ⟨ln 𝒩 (ln wθ(x) ; ln w(S), σ(S))⟩pref(x,S), qΘ(θ)
Target Mean; Uncertainty,

fref(z)

pref(x) w(x)pref(x) w(S)pref(x)

Simulate Reweight Factorize

fHOMER(z)→ w(s) fref(z)fHOMER(z) ≡ (w(s) ± σ(s)) fref(z)(w(s) ± σ(s))

fref(z)

pref(x)

w(x)pref(x) w(S)pref(x)

Simulate

Reweight

Factorize

Iterate

fHOMER(z)→ w(s) fref(z)
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Uncertainty Calibration

• Centred but narrow pulls on log-weights 

• Gaussian for chains, but wilder for breaks 

• Actually expected: 
 
High-level observables cannot 
fully constrain fragmentation 
 
+ 
 
We evaluate against just one 
compatible fragmentation model. 

�1 0 1
log w(S)

�0.10

�0.05

0.00

0.05

0.10

lo
g

w
�
(S
)�

lo
g

w
(S
)

�2.5 0.0 2.5
t[w(S) |w�(S),��(S)]

0.0

0.2

0.4

0.6

D
en

si
ty

0.0 0.5 1.0
Gaussian CDF

0.00

0.25

0.50

0.75

1.00

Em
pi

ri
ca

lC
D

F

0.00 0.25 0.50
log w(s)

�4

�2

0

2

4

lo
g

w
�
(s
)�

lo
g

w
(s
)

⇥10�2

�2.5 0.0 2.5
t[w(s) |w�(s),��(s)]

0.0

0.2

0.4

0.6

D
en

si
ty

0.0 0.5 1.0
Gaussian CDF

0.0

0.5

1.0

Em
pi

ri
ca

lC
D

F

log wexact(S) − log w(S)
σ(S)

log wexact(S)

Re
si

du
al

Re
si

du
al

log wexact(s) log wexact(s) − log w(s)
σ(s)

Chain 
pull

Break 
pull



Neural models of hadronization  —  Ayodele Ore   |  AI+HEP in East Asia 2026 @ KEK

Summary

29

• Machine learning is a natural upgrade to empirical models at colliders 

     … but there are many constraints! 

• iHOMER ticks all the boxes for a neural hadronization model 
 
 
 

• Lots more to be studied: 
        - Validating beyond simplified scenarios 
        - How much is HOMER limited by the string picture? 
        - What if detector simulation / parton shower are uncertain? (see 2409.10421) 
        - To what degree can non-fragmentation effects be absorbed? (see 2307.10370) 

• Might see an ML tune in coming years…

✓ Likelihood-free 

✓ Bypasses detector gradients

✓Physical prior from string model  

✓Marginalisation by iteration 

✓Uncertainties 
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Backup: Step 1 vs Step 2 Uncertainties
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Backup: Stopping condition
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• Track AUC (with BNN uncertainty) over iterations 

• Stop once AUC=0.5 is within uncertainty
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Backup: Parametric fit 
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• In addition to matching event observables, 
HOMER defines a fragmentation function: 
 
 

• Using an ensemble of bootstrapped MLEs, 
we find that a fit recovers parameters 
consistent with the true mixture model 

• More generally,                        can be used to 
directly test some fragmentation model of 
interest

fHOMER(z |mT) ≡ w(s) fref(z |mT)w(s)

fHOMER(z |mT)
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Backup: Acceptance effects
• Some chains cannot be resolved into a physical hadronic system      Rejected by Pythia 

 
 
 

• Consequently, probability for events and chains are related by the acceptance rate: 
 
 
                                                       with     

• Factorisation condition should also be amended, including an inferred acceptance rate: 
 
 
                                                       with  

p(x) =
1
α

p(S)
dS
dx

α ≡ ∫ dSA(S)p(S)

A(S) = {1 S accepted
0 S rejected

w(x) ≈
αref

α(ϕ) ∏
s∈S

wϕ(s) α(ϕ) ≡ ∫ dS∏
s∈S

wϕ(s)A(S)p(S)


