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Stimulations at colliders
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Figure courtesy of R. Winterhalder

Stimulations at colliders

|

Calculable in perturbative

Quantum Field Theory

|

Highly-accurate
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Figure courtesy of R. Winterhalder

Stimulations at colliders

® Lund String model (Pythia)

® C(Cluster model (Herwig)

No first-principles
predictions

|

Need empirical models
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Wishlist for neural hadronization

1. Tunable to data such that we actually improve predictions
Precludes end-to-end solutions
2. Physically principled for universality and robustness

3. Calibrated uncertainties

—> Bottom-up approach is best: Replace local modules within existing simulators

Two groups working in this direction:

MLHAD (Lund string model) HADML (Cluster model)
2203.04983], [2311.09296], [2410.06342], 2203.12660], [2305.17169],
2503.05667], [2509.03592 2312.08453
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The (simplified) string model
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Neural models of hadronization — Ayodele Ore | AI+HEP in East Asia 2026 @ KEK



The (simplified) string model
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The (simplified) string model
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The (simplified) string model

® (Characterise string breaks by @
. |

‘ Lightcone momentum fraction

SE{Zan‘/lT} @

Transverse mass

® Sample z from fragmentation function:

f(z| my)

] — ) b m?
f(z\M%)=( - ) exp | — ZT
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The (simplified) string model

® Simulate fragmentation chain as a sequence of breaks

String state

|
gﬂ, >§ﬂ, >Cﬂv >

s; ~ f(z| my) s, ~ f(z| my) sy ~ flz| my)

® Full chain (over) specifies the final set of hadrons

‘Chain’ Measured event
31
S2 — S Observe . X
53
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A latent variable problem

® The full probabilistic model is

Hadronization generator

|
py(x,$,0) = p(x[8) p (S| ) p() 2810 = [Tl

‘ ‘ sES

Detector simulation Parton shower

® But only x is observable in data... Best you could do is maximise marginal likelihooad

max Z P¢(x) P¢(X) = JdeCP(X‘S)Pgb(SM)P(Z:)
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Three challenges

max Z Pp(X) Py(x) = [deCP(X‘S)PAS‘C)P(Z:)

Performing the fit directly requires:
® Tractable likelihoods of each distribution
® Marginalization over § and (

® Differentiable detector simulation (or unfolded data)
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A GAN-based solution

Pyx) = [de:poc 15) (S0P

e Maximum likelihood is just KL divergence. But, Jensen-Shannon divergence...

1 Pdata T pg/} | Pdata T p¢
DJS[pdata9p¢] — EDKL [pdata’ N + EDKL [p¢9 )
aa( )
=E,.,, log Clx:)+ i, log (1 — C(x; gb)) + Clx: ) = PdatalX

Pdata(X) + Pp(X)

® So p¢(S | {) can be trained in a GAN-like setup. [Louppe et al. 1707.07113, Chan et al. 2305.17169]

v Likelihood-free X Need gradients of detector sim (or unfolded data)

v Auto-marginalization X GAN training can be unstable
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Reweighted hadronization

Py(S|E) > Wy () Prei(S 1 C)

® (Can solve all the difficulties:

v Likelihood-free v Bypass detector gradients  / Physical prior ~ ? marginalisation
® Bonus:

® \Weights integrate seamlessly with event generators ® Easy to propagate uncertainties

® Two implementations by MLHAD:

[Bierlich et al. 2305.17169] based on ratio’s of normalising flows
[Bierlich et al. 2410.06342] Histories and Observables for Monte-Carlo Event Reweighting (HOMER)

® Thistalk: iHOMER: cheap marginalisation + uncertainties [Butter, AO et al. 2509.03592]
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HOMER Overview

Goal: Find string-break weights that correct observables in reference set

w(s)

p ref(x ) — p data(x)

Result: A data-driven fragmentation function:

Juomer(Z | m7) = w(s) frep(z| my)
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HOMER: Step 1

W(X) ~ pdata(x) /pref(x)

- -
~~~~~~~~

Reweight .
—_—

\
1
1
I

~ - ~
‘‘‘‘‘

’
\‘\ W(x)pref(x) !/

—————

a8

\_

Likelihood ratio trick:

® Binary cross-entropy loss

P = <10g C(x)>

pdata(x)
¢ Optimum at

+ <10g(1 - C(x))>

P data(x) pref(x) ]

I|.

0F = de

® Yields

pdata(x) _ C(.X)
pref(x) 1 - C(X)

. C(x) 1 — C(x)-

= w(x)

Pref (x)
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HOMER: Step 2

e Distill the reference — data correction W(x) into w(s)

- -
~~~~~~~~

® Exploit joint samples from reference set 7 el
I, _+_—+—\\ I, _+_—+—\\
! _+_ \ . / _+_ \
: W ‘. Factorize : W ‘.
s 5 =51, 52, 53, 54)
\\\W(X)pref(x) ,', \\\W(S)pref(X) /',
~ pref(xa S)

A, 5 = (51352, 835545 55)
x’ S — (S19S29 SB)

fromer(2) = W(S)fref(2)

e Assign W(S) to each string break and ‘match’
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HOMER: Step 2

-
.= ~ -~

-
.= ~ -~

Y _+_ \ ’
ll _+_ —+—\‘ . ll
: ‘. Factorize
| I
\ |
\ ,l \
\ \
‘\W(X)pref(x),' ‘.

~~~~~

faomer(2) = W(s) fre(2)

~~~~~

-

\_

~

® Three options to factorise event weight:

® Minimise error 1-to-1 between chains and events
[Bierlich et al. 2410.06342]

wx) < | [wis)
sES

® Explicitly integrate over chains [Assi et al. 2503.05667]

W(x) < stms 0 | [wis)

SES

® |gnore and iterate! (Expectation-Maximisation)

[Butter, AO et al. 2509.03592]
Also OmniFold [1911.09107]
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IHOMER: Iterations

- .
S ~~

Simulate ' '
f ref(z ) > | ' ' :

_____

Reweight [terate

PN w@) & | [ws) PN

R SES O et
' \ Factorize Ir3k, \
| ; ‘ l : > :
\\W(x)pref(x) /' ‘\W(S)Pref(x) /'

——————————

Y
faomer(2) = W(s) fref(2)
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IHOMER: Iterations

Simulate !
f ref(z ) > | ¢ ¢

~~~~~

Reweight [terate

: ‘. Factorize
1 ]
\ | |

_____

Y
fromer(2) = W(S)frer(2)
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Averaged implicitly in
next iteration
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Simulated Datasets

® (g string at sgrt(s) = 90GeV

® Sim: Standard fragmentation
z~ f(z|m%) w/a=0.68, b=0.98

® Data: Mixture fragmentation (Cannot fit with standard form)

1 |
z~ > fiz] mz) + ~h(z] m?) w/a;=0.68, a;=0.30, b=0.98

* Events represented as high-level observables (event shapes, multiplicities, etc...)

* Simplified scenario: only pions, no gluons, fixed initial state
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® |[terations mitigate bias!

Ratio
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Event shape observable

1 — Data — Exact (0.97)

iHOMER-1 (11.21)
105-E — Sim — Fit (3.78) — iHOMER-3 (1.24)
10% - -
103?
1.1 -
1.0 =5 = —
0.9 A
2 3 4 5
B x 102

Ratio

Reweighting accuracy: Observables

Classifier score

x10%
— Data — Exact (0.81) iHOMER-1 (8.70)
61 — sim — Fit (4.74) — iHOMER-3 (1.05)
2 4- I
-
= N
O _
2 | ___
O ]
1.1 -
1.0 -
0.9 -
—2 —1 0 1 2
—2log wi(x)

e HOMER improves on 'naive’ fit that assumes standard fragmentation

)(2/Nbins *



e HOMER also corrects fragmentation! = Extracts universal physics

10-2 Fragmentation function
54 — Data — Exact (1.09) iHOMER-1 (9.88)
— Sim — Fit (16.12) — iHOMER-3 (2.28)
4_
2
g 3
U
A
2 -
1 -
o M T T
0.95 -

Ratio

Reweighting accuracy: Fragmentations

%10 Optimal chain observable
61 Data — Exact (1.18) iHOMER-1 (9.55)
— Sim — Fit (5.47) — 1iHOMER-3 (1.43)
— Step 1 (6.62) e
g4 F
= _
O
U 7_ —
2 ] 77 :_—
O -
1.1- P
- o |
1.0 -
0.9 -
—2 —1 0 1 2
—2 log Wexact(S )

Neural models of hadronization — Ayodele Ore | AI+HEP in East Asia 2026 @ KEK

)(2/Nbins *



Uncertainties

® Two ways in which ‘well-trained’ models can make errors:

Epistemic or Statistical uncertainty Alleatoric or Systematic uncertainty

X X
Vanishes given infinite data Persists despite infinite data
To capture: Infer distribution on network parameters To capture: Infer distribution on network outputs
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IHOMER: Uncertainties

- .
S ~ ~

Si | ; ¢ y +\\\
imulate ! \
fref(z) > | ¢ ':
' pref(x) ,"
® Step 1 already predicts probabilities
N - L
Only treat statistical uncertainty: Reweight orate
Bayesian Neural Network
® Step 2 only uses simulation. T s R R
>tep Y © PURN Wo(X) 0 ~ g w(s)xo(s) P
= Can ignore statistical uncertainty ! + \ Factorize s '
: ‘ l ‘ : > |
Gaussian regression \ ] '\ ,
\\\W(X)pref(X) ,/' \\\ W(S)pref(x) ,/'

_____

Y
fuomer(2) = W(S)frer(2)
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IHOMER: Step 1 Bayesian Neural Network

- .
S ~ o~

- .
S ~ o~

_____

’
\‘\W(x)pref(x) L/

~
_____

-

\_

~

® Make variational approximation ge() & Pposterior(6 | Dirain)

(Typically independent Gaussians)

L(©) = Dy, |

do- P posterior

= Dx1. |90 Pprior

{fO)}, 0~ gg

® Train above condition by KL divergence:

— e.qg. Classification loss

| o <p(9train ‘ 6)>9Nq®

ter training, we can estimate uncertainties by sampling

where f is any function of the network.
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IHOMER: Step 2 Gaussian regression

—————
ffffff

Factorize ): 3 ¢

8

Inw(s) = Inw(s) * o(s)

Inw(S) = Inw(S) *+ o(S)

Predict mean and variance for break-level log-weight:

~

® Propagate mean and variance to chain level:

with

62(S) = Z o2(s)

SES

_____

_____

faomer(2) = (W(s) £ 6(5) ) fieg(2)

® Fit step-one log-weight with Gaussian likelihood:

P = — <ln/V (In wy(x) ; Inw(S), U(S))>

Target , Mean

\_

Pret(X,9), go(0)

Uncertainty

J

Neural models of hadronization — Ayodele Ore | AI+HEP in East Asia 2026 @ KEK




Uncertainty Calibration

0.10
0.05 - 0.6-
o -wel E .
Centred but narrow pulls on log-weights E B Chain
% 0.00 2 0.4-
. . . 2 il A pull
® (aussian for chains, but wilder tfor breaks 0.05 - Sl 0.9 -
® Actually expected: -0.10 - ! - 0.0 —= - -
-1 0 1 —2.5 0.0 2.5
log w.,...(S) 10g Weyoel(S) — log w(S)
High-level observables cannot , o(S)
: : x10™
fully constrain fragmentation 4
0.6 -
2 -
n § m £0.4- Break
i -
g 2 oull
We evaluate against just one 0.2°
compatible fragmentation model. 4 | | 0.0 1— | .
0.00 025  0.50 2.5 0.0 2.5
log wexact(s) log Wexact(s) _ log W(S)

o(s)
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Summary

® Machine learning is a natural upgrade to empirical models at colliders

... but there are many constraints!

e HOMER ticks all the boxes for a neural hadronization model

v’ Likelihood-free v Physical prior from string model v Uncertainties

v Bypasses detector gradients v Marginalisation by iteration

® |ots more to be studied:
- Validating beyond simplified scenarios
- How much is HOMER limited by the string picture?
- What if detector simulation / parton shower are uncertain? (see 2409.10421)
- To what degree can non-fragmentation effects be absorbed? (see 2307.10370)

® Might see an ML tune in coming years...
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Backup: Step 1 vs Step 2 Uncertainties

0.10-
— <6BNN(X)>
——-— <0'2(S)> 0.4 A
0.08 -
Ef' 03 7
S 0.06- =
8 “Factorisation error” %
S ~ 0.2-
=
)
0.04 -
0.1 -
0.02] T T -
. . | _ 0.0
1 2 3 4 —4
[teration log w;(x) — log w,(S)

6,(S)
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Backup: Stopping condition

0.60 -

0.58 -

® Track AUC (with BNN uncertainty) over iterations
) 0.56 -

AU

® Stop once AUC=0.5 is within uncertainty 0.54 -

0.52 1

0.50 -
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[teration
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Backup: Parametric fit

0.775 - Data
® |n addition to matching event observables, Exact
HOMER defines a fragmentation function: 0.7501 & HOMER-1
B , HOMER-3
0.725 -
Juomer(z [ my) = w(s) fref(z [ my)
0.700 -
S
® Using an ensemble of bootstrapped MLEs, 0.675 - .
we find that a fit recovers parameters
consistent with the true mixture model 0.650 - 1
® More generally, fuomer(Z|77) can be used to 0.625-
directly test some fragmentation model of 0.600-

INterest ' ' ' ' ' '
0.26 028 030 032 034 0.36 0.38

a
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Backup: Acceptance effects

® Some chains cannot be resolved into a physical hadronic system — Rejected by Pythia

ACS) = 1 § accepted
10 S rejected

® Consequently, probability for events and chains are related by the acceptance rate:

dS

1
px) =—pS)|— with o = Ja’SA(S)p(S)
a dx

® Factorisation condition should also be amended, including an inferred acceptance rate:

W) & Aref HW¢(S) with  a(¢g) = JdS H W4($)A(S)p(S)

(1(¢) SES SES
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