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Introduction

What is a Foundation Model:

.-I =
Why Foundation Model:

Any model that is trained on broad data (generally using self-supervision at scale)
Data | podel2 |=> Task 2
Domain 2 as
m Traditionally, machine learning models are trained separately for each specific task.
m A Foundation Model is pre-trained once and serves as a shared foundation for many

that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks.
downstream tasks.
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Introduction

How to design Foundation Model

% Foundation Model = Pretext Tasks + Loss Functions %

(1). Pretext Tasks: The task being solved is not of genuine interest, but is solved only
for the true purpose of learning a good data representation.

(2). Loss Functions: Loss functions can often be investigated independently of pretext
tasks.

(3). Pretext tasks =Contrastive learning and masking learning.

Foundation Model in BESIII

m Purpose: To cluster all BESIII decay channels (>3,000

categories); our foundation model instead performs clustering
at the collision-event level, potentially involving tens to » o
hundreds of thousands of clusters.

* Research Highlight: An extreme multi-class classification
problem.
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Research Method

Research Procedure:

Training Data Pretext Tasks
Inclusive MC data Contrastive + Mask

\/

Pre-training a Foundation Model

% Particle Masked Siamese Encoder (Particle_MSE)

'

Embedding space | Feature embeddings
In high-dimensional space, those vectors act as
a universal representation of features from data.

Transfer learning l Downstream task

Clustering Classification

Anomaly
Detection




Research Method

Training Data:
© Decay event: J/y decay (Inclusive MC data)

© Event classes: More than 1000 decay classes in J/{ decay. Only the top 99 most
frequent classes are used for model training.

© Training dataset: 99 classes of J/ decay events (= 3M samples; expected to scale to
over 100M in future versions)

© Input features:

= Kinematic:

[g',)mdc_p3_px', 'mdc_p3_py', 'mdc_p3_pz', 'vz0', 'vrO']

= Particle identification information:

['pid_prob_type']

= Electromagnetic calorimeter :

[emc_numHits', 'emc_e3x3', 'emc_e5x5', ‘'emc_energy', 'emc_x', 'emc_y', 'emc_z', 'emc_time’, 'EoP’, 'emc_secmom’, ‘emc_latmom']

[muc_dpt', 'muc_numLayer', 'muc_maxHitsInlater', ‘'muc_chisq’, 'muc_dof', 'muc_numHits']

Downstream Tasks (Excluded from Training Data):
@ Task 1 — Clustering

= 300K samples from the top 99 classes of J/{ decay classes.
@ Task 2 — Classification (99 classes classification task)

= 300K samples from the top 99 classes of J/Y decay classes. (50% labeled, 50%
unlabeled)




Research Method

Contrastive + Masking Learning:

HH =

Contrastive
Loss

@ Contrastive Learning
= Brings representations of same decay types closer, and push apart of different classes.
@ Masking Learning
= Captures inter-particle correlations within decay events. 8



Research Method

Particle-MSE Structure:

(Multi heads):
(Learnable variable) [ Condition ]

Positive Sample LayerNorm

> Y y
Positive Particle .| Transformer- [ Embedding I Projection
e Embedding 1| based Encoder g Head

A

Contrastive
Loss
Shared (InfoNCE)
Weights

Anchor Sample

Anchor Particle <4 .| Transformer- [ Embeddin I Projection 1
Tanchor Embedding based Encoder g L Head

A A

A

[ Condition ] y

(Multi heads): LayerNorm MAE _| Reconstruction MAE
(Learnable variable) Decoder | “| Prediction Loss

Condition LayerNorm:
m Condition 1: Number of the total charged tracks.

m Condition 2: Number of the total neutral tracks.
m Condition 3: Number of the charged tracks with further selection.
m Condition 4: Number of the neutral tracks with further selection.
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Research Results

Total Loss MAE Loss Contrastive Loss
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Training Results:
m Total Loss: Total loss shows a steady downward trend over the first 50 epochs.

however, it does not yet appear to have converged. Training will be extended to 100
epochs for further optimization.

m MAE Loss (Reconstruction Loss): Reconstruction loss decreases overall but exhibits
substantial instability during training.

m Contrastive Loss: Contrastive loss performs well, benefiting from the supervised

contrastive learning. Future plans include exploring self-supervised contrastive way.
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Research Results

Reconstruction Results:
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Research Results

t-SNE Component 2

SupMSN CLS Token Embeddings (t-SNE - Top 20 Classes)

t-SNE Component 1

Classification results:

m For the classification task,
the embedding space was
derived from representations
of events drawn from the top
20 decay classes.

m In the t-SNE visualization,
7 clusters emerge.

m Among these, 3 clusters
are composed almost of a
single type of decay event.

®m The remaining 4 clusters
contain events from more
than three different decay
modes.
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Research Results

t-SNE Component 2

SupMSN CLS Token Embeddings (t-SNE - Top 20 Classes)

JIY = TU'TTpP

JIp = e*e”

t-SNE Component 1

m Cluster 1:
@ JIY = ' KK-
© JIy = Tt K*K-

m Cluster 2:

©

© JiIYy = TU'TU' T T W,

w = TOTUTC

© JIY = T TUTU TU TUTUTU T

m Cluster 3:

© JIY = T TTtTITTUC

© JIy = TTTUTUTC

©

© JIY = °rt°tb*,, b* = MW,
W = TOTT T

©

m Cluster 4:

© Jiy = t'p, p~ = T

© JIY = T

© JIY = OO

® JIP = 11°1°h,(1170), h, (1170)
= T%0°, p° = TUTC

©
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Research Results

True Label

Classification results:
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% not sensitive to neutral track
and resonance state. 15



Research Results

Comparison with Standard Approaches:

Table 1: Performance Comparison on Different Decay Channels

Foundation Model Traditional Method
Decay Channel Precision Recall Fl-score Precision Recall F1-score
Jp —atp=, p~ — nln~ 0.72 0.79 0.75 0.72 0.74 0.73
J/p —n=pt, pt — 70xt 0.70 0.79 0.74 0.71 0.74 0.72
J/th — 70p% p¥ — 7wt 0.82 0.87 0.85 0.82 0.82 0.82
J/p — ata— 7Y 0.74 0.76 0.74 0.74 0.70 0.71

© For all events that are well separated by traditional methods, our foundation model
achieves comparably high classification accuracy.

© Compared with traditional physics-based methods, foundation models achieve
higher recall at the same precision level.

© Traditional physics-based methods can further increase precision above 99% by
sacrificing recall, which foundation models currently cannot achieve.
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Conclusions

1. We successfully developed a foundation model for high-energy physics
collider data — the Particle Masked Siamese Encoder (Particle MSE) —
built upon a transformer-based architecture. The model achieves promising
performance across various downstream tasks, including clustering, event-
level classification and anomaly detection.

2. There remains room for improvement for reconstruction in pretext task,
particularly in reproducing fine structures.

3. The Particle MSE—based model shows limited sensitivity to neural track
and resonance states, for event-level classification.

Future Work:
1. Address the model’s insensitivity to neutral tracks and resonance states such
as dynamic contrastive learning and hard mining.

2. Explore self-supervised contrastive learning approaches.

3. Explore more advance masking approaches.
18



Thank you for listening!
Any question?
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Appendix

E-SNE Component 2

t-SME Component 2
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Clustering Results Comparison (t-SNE Visualization)

Ground Truth Labels
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Clustering Results:
@ The model can generally

distinguish the decay-event
timings for the three clusters.

XHowever, for the central four
clusters, the patterns, which
have multiple decay events
remain difficult to separate.

XIn future work, Dynamic
contrastive learning will be
incorporated to enhance
clustering performance and
improve class-level separability.
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Appendix

SupMSN CLS Token Embeddings (t-SNE - Top 20 Classes)
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