
CoLLM: Vibe engineering for collider analyses

Ahmed Hammad
Theory center, KEK, Japan

This work is in collaboration with W. Esmail and M. Nojiri

(Collider LLM)

Which direction do we need to go ?

AI Physics

AI Physics

Black box

Transparency

AI Physics
Black box

CoLLM: Vibe engineering workflow

NOT multi-AI agents

Hard Coding
Vibe engineering

- Time-consuming debugging and adjustments

- Slower initial development, especially for large systems

- Fully deterministic for a specific tasks

- Code generation from natural language

- Rapidly produce working code

- Semi-deterministic

- Code snippets, modules, scripts

- Prototyping, boilerplate, rapid development

Vibe Coding

- Design and control of full AI systems

- Achieve reliable and aligned system behavior

- End-to-end AI workflows, agents, products

- Production systems, research platforms, assistantsSpeed, accuracy and generality

CoLLM: Automated pipeline for collider analyses

Input row

detector files

No coding & ML experience is needed,  
simply click the buttons.

Generate the selection

Analysis

Perform 
 ML analysis

Graphical user interface

Input

cross section

Input files

detector level LangChain

LLM

HuggingFace

Prompt

biasUser input

Python

code

Code

debugging

No error

Error

LLM

Code fixing

User decision

Valid

NOT Valid

Regenerate

Validation

Prepare

ML inputs

ML trainingOutput

metrics

Optimize the cuts

on the network outputFinal results

Example of system prompt

Particle definition in LHCO format

Naming convention

Guidelines for code generation

system prompt is the instructional backbone that defines 
 how the model should behave, reason and format its outputs.

Langchain orchestration
LangChain is an orchestration framework that connects LLMs with prompts, tools, memory,

and external data to build structured, multi-step AI applications.

Auto-tokenization

Generate different prompt

templates

CoLLM is equipped with two pretrained LLM
Deterministic LLM for code generation Creative LLM for code fixing (pyfixer.py)

Inference in a pretrained LLM

<latexit sha1_base64="qKX7VMqwXr0Nro2aCWCcW5rIWRg=">AAACEnicbVDLSgMxFM3UV62vqks3wSK0KGVGfG2EohuXFewD2lIyaaYNTWaG5I60DvMNbvwVNy4UcevKnX9j+lho64HA4Zx7uTnHDQXXYNvfVmphcWl5Jb2aWVvf2NzKbu9UdRApyio0EIGqu0QzwX1WAQ6C1UPFiHQFq7n965Ff u2dK88C/g2HIWpJ0fe5xSsBI7WyhKQn0KBFxOckP2jEcOsnRoIAvcVPJWAceSDJIcP6h0M7m7KI9Bp4nzpTk0BTldvar2QloJJkPVBCtG44dQismCjgVLMk0I81CQvukyxqG+kQy3YrHkRJ8YJQO9gJlng94rP7eiInUeihdMzkKoGe9kfif14jAu2jF3A8jYD6dHPIigSHAo35whytGQQwNIVRx81dMe0QRCqbFjCnBmY08T6rHReeseHp7kitdTetIoz20j/LIQeeohG5QGVUQRY/oGb2iN+vJerHerY/JaMqa7uyiP7A+fwDpDpz+</latexit>

P(xt+1, x) = softmax(z)

conditional probability distribution over the next token

<latexit sha1_base64="AD4KgRtGWyB8wLCpAow8EX/ySxc=">AAACKnicbVDJTsMwFHTYKVuBIxeLCqm9VAliuyCxXDgWiS5SUyLHdVq3dhLZDqJY+R4u/AqXHkAVVz4Ep+0BWkayNJp5T88zfsyoVLY9shYWl5ZXVtfWcxubW9s7+d29mowSgUkVRywSDR9JwmhIqooqRhqxIIj7jNT9/m3m15+IkDQKH9QgJi2OOiENKEbKSF7+2uVIdTFiupJ6FF5CNxAIa1dwSJ5jWHzxaCnVrky4p3uXTvr4BI2njZdmZq+UevmCXbbHgPPEmZICmKLi5YduO8IJJ6HCDEnZdOxYtTQSimJG0pybSBIj3Ecd0jQ0RJzIlh5HTeGRUdowiIR5oYJj9feGRlzKAffNZBZMznqZ+J/XTFRw0dI0jBNFQjw5FCQMqghmvcE2FQQrNjAEYUHNXyHuItOVMu3mTAnObOR5UjsuO2fl0/uTwtXNtI41cAAOQRE44BxcgTtQAVWAwSt4Bx/g03qzhtbI+pqMLljTnX3wB9b3D3aLp00=</latexit>

Pi =
exp(zi)Pv
j=1 exp(zj)

For greedy decoding
<latexit sha1_base64="YJKYhf4kW4KC/39BP0RnItMcj/M=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6UgCCURXxuh6MZlBfuAJoTJdNIOnUnCzERaQr7Ajb/ixoUibl2782+ctFlo64GBwzn33rn3+DGjUlnWt1FaWl5ZXSuvVzY2t7Z3zN29towSgUkLRywSXR9JwmhIWooqRrqxIIj7jHT80U3udx6IkDQK79UkJi5Hg5AGFCOlJc+sjb1UHdsZvIKO4DBFYsDROHOgw5EaYsTSZuZRz6xadWsKuEjsglRBgaZnfjn9CCechAozJGXPtmLl6umKYkayipNIEiM8QgPS0zREnEg3nZ6TwZpW+jCIhH6hglP1d0eKuJQT7uvKfEk57+Xif14vUcGlm9IwThQJ8eyjIGFQRTDPBvapIFixiSYIC6p3hXiIBMJKJ1jRIdjzJy+S9kndPq+f3Z1WG9dFHGVwAA7BEbDBBWiAW9AELYDBI3gGr+DNeDJejHfjY1ZaMoqeffAHxucPkTqb2A==</latexit>

xt+1 = argmax Pi

Temperature scaling: rescales the logits before the softmax
<latexit sha1_base64="pGwL9Y0beQDmOQwb/7bKDCQDZjU=">AAACM3icbVDLSgMxFM34tr6qLt0Ei1A3dUZ8bQTRjbiqYFXo1CGTZjQ1mRmSO2IN809u/BEXgrhQxK3/YKYW8XUgcDjnXm7OCVPBNbjuozMwODQ8Mjo2XpqYnJqeKc/OHeskU5Q1aCISdRoSzQSPWQM4CHaaKkZkKNhJeLlX+CdXTGmexEfQTVlLkvOYR5wSsFJQPvAlgQtKhKnnAa/CMt7GfqQINb6S2LDrNMfVm4CvwHJufJ3JwHS2vfzsClv/y+4UdlCuuDW3B/yXeH1SQX3Ug/K9305oJlkMVBCtm56bQssQBZwKlpf8TLOU0EtyzpqWxkQy3TK9zDleskobR4myLwbcU79vGCK17srQThYJ9W+vEP/zmhlEWy3D4zQDFtPPQ1EmMCS4KBC3uWIURNcSQhW3f8X0gtjGwNZcsiV4vyP/JcerNW+jtn64VtnZ7dcxhhbQIqoiD22iHbSP6qiBKLpFD+gZvTh3zpPz6rx9jg44/Z159APO+wcx/aqq</latexit>

Pi(t) =
exp(zi/t)Pv
j=1 exp(zj/t)

• t = 1 : Original probability distribution
• t < 1 : Sharp probability distribution
• t > 1 : Flatter probability distribution

Run GUI as

Installation & quick start

CoLLM is self-contained  
No need for prior packages installation

CoLLM supports running on  
CUDA, MPS and CPU

Graphical User interface

Opens a local web browser with three main sections

CoLLM targets non coding experts, or experts who want to save time for quick analysis

User input Generated 309 line of code in 28 seconds

Thank you

