CoLLM: Vibe engineering for collider analyses
(Collider LLM)

This work is in collaboration with ~ W. Esmail and M. Nojiri

Ahmed Hammad
NLPhYs ssesmen= 22 28 ¥ 18 3 (D Bl B,
Foundation of "Machine Learning Physics"

Theory center, KEK, Japan

Which direction do we need to go ?

Al =" Physics
Al < =="4Physics

Al :B'“"”" — Physics

CoLLM: Vibe engineering workflow
NOT multi-Al agents

Vibe Coding
Hard Coding @ QY deepseek

- Code generation from natural language

- Rapidly produce working code

- Semi-deterministic

— Code snippets, modules, scripts

- Prototyping, boilerplate, rapid development

Vibe engineering

|
- Time-consuming debugging and adjustments

- Slower initial development, especially for large systems

- Achieve reliable and aligned system behavior

. - End-to-end Al workflows, agents, products
Speed, accur acy and gener al | ty = Production systems, research platforms, assistants

CoLLM: Automated pipeline for collider analyses

Graphical user interface

Generate the selection Perform
Analysis ML analysis

No coding & ML experience is needed,
simply click the buttons.

Input row
detector files

LLM 4
User input bbl .
HuggmgFace User decision

Input files
detector level LangChain
Input
cross section
Regenerate

Code No error Validat] Valid
debuggmg alidation

NOT | Valid

JOJJ3 l

LLM
Code ﬁxmg

Prepare
ML inputs
Optimize the cuts Output L
. M
> on the network output

system prompt is the instructional backbone that defines

Ex am p , e Of S y S rem p r Om p 1’ how the model should behave, reason and format its outputs.

You are a particle physics analysis assistant specialized in analyzing LHCO (.lhco) files produced by fast detector simulations (e.g., Delphes).

Guidelines for code generation

. Always assume the input data is an LHCO file.
. Always generate runnable Python 3 code when analysis is requested.
. Always include the LHCO parser provided below.

STRUCTURE:

. Prioritize physics correctness over style or verbosity. 1. Parsing - Read LHCO file into event list

. Use only: standard library, math, numpy (and matplotlib only if explicitly needed).

2. Selection - Filter objects and events based on cuts
3. Reconstruction — Combine objects to form physics candidates
4. Output — Print results, histograms, or cutflow and save the generated histograms with each histogram in a sepa

BEST PRACTICES:
— Keep code minimal, explicit, and readable

- Validate particle counts before pairing or selection
- Handle edge cases: missing objects, empty events, malformed lines
- Skip events gracefully when required objects are not found

— CRITICAL: When looping over events to fill histograms or compute observables,
always re-extract particle collections (e.g., jets, leptons, taus) for EACH event
inside the loop. Never rely on variables defined in a previous loop or outside
the current event iteration.

— CRITICAL: When computing invariant mass, always SUM the 4-momentum components:
E_tot = E1 + E2, px_tot = px1 + px2, etc. NEVER use differences.

Particle definition in LHCO format R L

— CRITICAL: In nested list comprehensions, ensure loop variables are in scope.
WRONG: [f(x, event) for x in xs] — event undefined if iterating over xs
RIGHT: [f(x, e) for e in events for x in get_xs(e)l]

— CRITICAL: Cutflow print statements must match the actual cuts applied.

CUTFLOW REQUIREMENTS:
— Track number of events before and after each cut

¢ [
a m ’ n C O n Ve n ’ ’ O n - Print the event count after each selection step
- Always print final number of events passing all cuts

OBJECT LINE FORMAT:
index type eta phi pt jmass ntrk btag had/em

COLUMN DEFINITIONS:
index : Object index within the event (@ marks new event header)
type : Particle type code (see below)
eta : Pseudorapidity

LEPTONS:
"lepton" or "1" refers to BOTH electrons (type=1) AND muons (type=2)
"1+" or "lepton+" refers to positively charged leptons (ntrk > 0)

phi : Azimuthal angle (radians)
"1-" or "lepton-" refers to negatively charged leptons (ntrk < 0)

pt : Transverse momentum (GeV)

jmass : Jet mass (GeV) — use only for jets "electron" refers specifically to type=1

ntrk : Track count; sign encodes lepton charge “muon® refers specifically to type=2
btag : b-tag flag (1.0 = b-tagged jet, 0.0 = not b-tagged)

had/em : Hadronic-to-electromagnetic energy ratio JETS:

- "jet" refers to type=4 objects

PARTICLE TYPE CODES: - "b-jet" refers to jets with btag=1.0

0 Photon
Electron
Muon

- "light jet" refers to jets with btag=0.0

LEADING/SUBLEADING:

. - "leading" = highest pT particle of that type in the event

Jet
MET (n = 0, @ = MET direction, pt = MET magnitude)

- "subleading" = second-highest pT particle of that type in the event

Langchain orchestration

LangChain is an orchestration framework that connects LLMs with prompts, tools, memory,
and external data te build structured, multi-step Al applications.

 Auto-tokenization &7
| Interface with various large \ \ ~I-o L M
i language model providers o 4
Q
User Output
' ENG
Fetch external data | Ry we% ” !

Generate different prompt & % T:l
?po \g User Input

LLM Framework User Interface
(LangChain) '

Perform data pre-processing | Store and retrieve word
and generate word embeddings ! embeddings from vector stores|

[R o - S—

Raw Data Sources Data Pipeline Vector Store

I n fe rence i N d pr efr da i ned L L M Temperature scaling: rescales the logits before the softmax
exp(zi/t)
x;—l exp(z;/t)

conditional probability distribution over the next token Pi (t) —

P(xiy1,) = softmax(z)
*t =1 : Orniginal probability distribution
exp(z;) *t <1 : Sharp probability distribution

Pi = =<3 For greedy decoding T¢+11 = argmax P; ot > 1 : Flatter probability distribution
> j=1 exp(z;)

CoLLM is equipped with two pretrained LLM

Deterministic LLM for code generation Creative LLM for code fixing (pyfixer.py)

class Config: ass Config:

Generation Parameters
MAX_NEW_TOKENS = 4096
TEMPERATURE = 0.9

TOP_P =1

TOP_K = 0.9

DO_SAMPLE = True

Generation Parameters
MAX_NEW_TOKENS = 4096
TEMPERATURE = 0.0

TOP_P =1

TOP_K = 00

DO SAMPLE = False

Installation & quick start

¢ Installation

Step 1: Clone the Repository

git clone https://github.com/yourusername/CoLLM.git
cd CoLLM

Step 2: Create a Conda Environment

Create a new conda environment with Python 3.11
conda create -n collm python=3.11 -y

Activate the environment
conda activate collm

Gtep 3: Install Dependencies

CoLLM automatically check and installs required dependencies on first run via the pip command. You don't have to
install any package by yourself.

CoLLM is self-contained
No need for prior packages installation

CoLLM supports running on
CUDA, MPS and CPU

Checking requirements...

INFO: numpy already installed

WARNING: Installing matplotlib...

INFO: Successfully installed matplotlib
INFO: tgdm already installed

INFO: yaml already installed

WARNING: Installing langchain...

INFO: Successfully installed langchain
WARNING: Installing langchain-huggingface...
INFO: Successfully installed langchain-huggingface
INFO: transformers already installed

INFO: huggingface hub already installed
INFO: accelerate already installed

INFO: pydantic already installed

WARNING: Installing streamlit...

INFO: Successfully installed streamlit

INFO: PyTorch 2.9.1+cul28 installed

INFO: CUDA not available, using CPU
Starting ColLLM GUI...

http://localhost:8501
http://130.87.250.19:8501

Graphical User interface EEtEe

Opens a local web browser with three main sections

A next-generation automated machingg€arning toolbox designed forgiigh-energy
physics and collider analyses. Levgfage the power of large languagegfinodels to
generate analysis code and tgfin sophisticated deep learning magfiels with an intuitiv,

interface.

@ Preselection Analysis Deep Learning Ml Results

g LLM Analysis Generation

Analysis Specification (Do not change the naming tag after ###.)
#HH# SELECTION CUTS
#H# PLOTS FOR VALIDATION

##H# OUTPUT STRUCTURE

¢ Example Template

Require at least 2 jets with pT > 30 GeV

Select MET > 30 GeV

Plot the MET distribution

Plot delta R between the two leading jets

Save plots in png format

print summary statistics

save the following in a single csv file for MLP analysis:
1- Transverse mass of lepton + MET

2- Delta R between the two jets

e Model Architecture

Select Model Type

® Multi-Layer Perceptron (MLP) Graph Neural Network (GNN)

7 Network Architecture Builder

Number of layers

3

v\ Layer 1 Configuration

Layer Type

Dense Layer

v\ Layer 2 Configuration

Layer Type

Dense Layer

>\ Layer 3 Configuration

B Show Configuration

Training Configuration

Data Settings

Signal Events File

/path/to/signal_events.h5

Training Size

100000

Test Size

20000

M Evaluation Metric

Accuracy

Validation Split Ratio

»” Start Training

Transformer

Neurons

128

Neurons

128

g Training Parameters

Background Events File

/path/to/background_events.h5

Epochs

50

Batch Size

@ Early Stopping Patience

5

Activation

RelLU

Activation

ReLU

= Resources & Optimization

Hardware Device

CPU

Learning Rate

LR Scheduler

StepLR
Training Precision

float32

® Random Seed

42

CoLLM targets non coding experts, or experts who want to save time for quick analysis

User input Generated 309 line of code in 28 seconds

Physics Process: p p > W+ W=, W+ > 1+ nu, W=->3j j

Leading Jet pT Distribution Subleading Jet pT Distribution Delta Phi between Leptonic W and Hadronic W Candidates
0.074 = , =

[SELECTION_CUTS] R
Select electrons with pT > 25 GeV and |eta| < 2.5
Select muons with pT > 20 GeV and |eta| < 2.4
Require exactly 1 lepton (electron or muon)
Require at least 2 jets with pT > 30 GeV and |eta| < 2.5
Select MET > 30 GeV
Veto events with b-tagged jets
Select transverse mass of lepton + MET between 40 and 120 GeV (W leptonic candidate)
Select invariant mass of the two leading jets between 60 and 100 GeV (W hadronic candidate)
Select delta R between the two leading jets < 3.0 0.000 -

0.06 -

0.020 A
0.05

0.015 - 0.04 1

Normalized Yield
Normalized Yield

0.03

Normalized Yield

0.010 A

0.02 4

0.005 A
0.01 A

0.00 - T f T T T
0 25 50 75 100 125 150 175 200 0 100 125 150 175 200 -3 -2 -1 0 1 2 3

pr(j1) [GeV] prij2) [GeV] Ad(j1, MET)

[PLOTS_FOR_VALIDATION]

- Plot the following as histograms:

Plot the transverse mass of lepton + MET (W leptonic) in the range 30 to 150 GeV

Plot the invariant mass of the two leading jets (W hadronic) in the range 40 to 120 GeV
Plot the MET distribution

Plot the pT of the lepton 0.25 1
Plot the pT of the leading jet

Plot the pT of the subleading jet

Plot delta R between the two leading jets

Plot delta phi between the lepton and MET

Plot the eta of the lepton

10 Plot delta phi between the leptonic W and hadronic W candidates

Delta Phi between Lepton and MET Lepton pT Distribution

0.30 1 Invariant Mass of Two Leading Jets

0.04 1 0.020 1

0.20 7 0.03 1 0.015 -

0.15 A
0.02 1

Normalized Yield
Normalized Yield

Normalized Yield

0.010 A

1
2
3
4
5
6
7
8
9

0.10 A

0.01
0.005 A
0.05 A

— Each histogram should have 4@ bins.

0.00

0.00 -

40 50 60 70 80 % 100 110 120 0.000 -
mj [GeV] 0 25 50 75 100 125 150 175 200
pr(l) [GeV]

- Use LaTeX notation for axis labels where applicable.
- Normalize all histograms to unity (density=True).

0
AU, MET)

MET Distribution ’
Lepton Eta Distribution — Transverse Mass of Lepton + MET Delta R between Two Leading Jets

[OUTPUT_STRUCTURE]]
- Print cutflow showing number of events after each selection
- Save the pltos in png format
- Save the following in a CSV file for MLP analysis:
1- Transverse mass of lepton + MET
Dijet invariant mass
MET
pT of the lepton
Delta R between the two jets o
Delta phi between leptonic and hadronic W systems

0.030
0.025

0.025
0.020 q

0.020
0.20

0.015 -
0.015
0.15 1

Normalized Yield

Normalized Yield

0.010 1

Normalized Yield

0.010
0.10 1

0.005 0.005

0.05 -

0.000 -

0.000 -

80 100

2 3 4 5
0 25 50 75 100 125 150 175 200 mr{l, MET) [GeV]

BR(j1, j2)
MET [GeV] U, J2

CoLLM vs ChatGPT

ChatGPT | General LLMs

End-to-End Pipeline

LHCO File Support
Physics-Aware Code

Auto Error Correction
Code Execution

GPU Acceleration
Data Privacy

User Interface
Physics Functions
Cutflow Tables
Reproducibility

Batch Processing
ML Training

API Flexibility

v Integrated: parsing — generation -
validation — execution

v Native parser with full format specification

v HEP conventions, formulas, PDG masses
built-in

v PyFixer: automatic bug detection & self-
healing

v Generates and runs validated Python
scripts

v CUDA & MPS with 4-bit quantization
support

v Local models (Qwen, DeepSeek) for
sensitive data

v Terminal Ul + Streamlit GUI with live
monitoring

v 4-momentum, invariant mass, AR, MT,
Z/W/H reco

v Automatic event counting & cutflow
generation

v Deterministic; fixed seeds & versioned
outputs

v Processes millions of events efficiently

v GUI config: epochs, batch size, LR,
schedulers

v Local models OR HuggingFace Inference
API

X No pipeline; manual coding for each step
X No file handling; code suggestions only
X Generic responses; may contain physics
errors

X No auto-correction; manual debugging

X Cannot execute; provides snippets only
X Cloud-only; no local GPU utilization

X Cloud-only; data sent to external servers
X Chat interface only; no physics-specific Ul
X Must request each formula; error-prone
X Manual implementation required

X Variable responses; not reproducible

X Cannot process actual data files
X No training capability; discussion only

X Locked to OpenAl API only

Thank you

