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INTRODUCTION

PHYSICS MOTIVATION: VBF vs. GGF

» Since the discovery of the Higgs boson in 2012, much effort has been devoted to
precision measurements of Higgs couplings and properties

» Production modes:
» GGF (Gluon—gluon fusion): Dominant cross-section in Standard Model (SM)

» VBF (Vector boson fusion): Subdominant but crucial. It probes Electroweak
Symmetry Breaking and New Physics (BSM) effects

» Accurately separating VBF from the GGF is essential but difficult
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VBF/GGF CLASSIFICATION

» Traditional methods rely on sequential kinematic cuts or BD s

» Deep neural networks (DNNs) demonstrate superior performance in classification
and extracting features from low-level inputs

» In NN training, fully supervised learning requires event-level truth labels. However,
they are unavailable in real collider data = Simulations

» Relying solely on Monte Carlo (MC) simulations introduces model dependencies
and systematic uncertainties

» Can we train a classifier on the dataset without truth labels?






WEAK SUPERVISION /

CWOLA FRAMEWORK

» Truth signal/background event labels are
iInaccessible in real collider data

» Classification Without Labels (CWoLa)
operates on two mixed datasets with
different signal fractions

» Optimal classifier for mixed samples is
proven to be optimal for distinguishing
pure Signhal and Background




WEAK SUPERVISION

PHYSICS IMPLEMENTATION: SR & CR

» Target: Distinguish VBF (Signal) from GGF (Background)

» We define regions based on the parton flavor of the two leading jets. Then, use
these regions to construct two mixed datasets

» Signal Region (SR): Both jets originate from quarks (290g)

» Control Region (CR): Contains at least one gluon jet (191g/0g2g)
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MONTE CARLO SAMPLES

» VBF/GGF Higgs boson production are simulated for the LHC at a center-of-mass
energy of \/g =14 TeV with different decay channels
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NEURAL NETWORK

NETWORK ARCHITECTURES: CNN vs. TRANSFORMER

» Convolutional Neural Network (CNN) » Transformer

» Based on the Event-CNN » Based on the Particle Transformer
» Input: Event image » Input: (o, 1, @, type)
» Captures local spatial correlations via » Capture global dependencies via
convolutional layers Attention blocks
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DATA AUGMENTATION: @ -SHIFTING

» LHC detectors exhibit cylindrical symmetry along the beam axis
» Rotate all event constituents by a random angle 6 in [-17, 7]
» @-Shifting: @i = @i+ 6

» Generates statistically independent samples without altering the underlying
kinematics or topology
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DECAY-MODE TRANSFERABILITY

» Proposed Workflow:
» Train the model on the H = yy dataset (masking photon information)

» Transfer the trained model directlyto H = ZZ = 4/and H = Zy = 2ly events
(masking decay products)

» The VBF/GGF production mechanisms (initial state radiation, forward jets) are
largely factorized from the Higgs decay mode

» Hadronic activity alone provides sufficient discrimination power
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H—9»p PERFORMANCE
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EFFECT OF DATA AUGMENTATION
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H — Z7Z — 4I: A DIFFICULT CHANNEL

» The model performance improves gradually
with increasing training luminosity

» Even at L = 3000 fb, the achieved AUC values
remain modest, reflecting the severe data

scarcity

» The luminosity levels required to reach stable
training are well beyond those achievable in

realistic experimental conditions
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TRANSFERABILITY TEST

CNN (H — yy) transferredto H = ZZ — 4/

0.750
0.725
0.700 _%/;—--

i o
O x
2 0.675 :::::::==”€§?%%??§;::
<E ;\/.
0.650 /
[ )

0.625 —eo— Qriginal

—x—  Augment +5

0.600 —=— Augment +10

100 300 900 1800 3000
Luminosity [fb~!]

AUC

1.0

0.9

0.8

0.7

0.6

0.5

Without lepton information

0.1

Luminosity [ab™!]

—eo— CNN
—x=— ParT
—== CNN-FS :
~—== ParT-FS E—
) ‘/"
/é’éx\x
Ax/ ’
(e
. —0
0.3 09 18 3 9 18 30



RESULTS 19
TRANSFERABILITY TEST
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TRANSFERABILITY TEST
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SUMMARY

» Successfully applied the CWola framework to distinguish VBF/GGF production
mechanisms using only mixed data without explicit labels

» For the H = yy channel, the CWolLa captures the differences between VBF and GGF
processes and demonstrates that hadronic activity is sufficient for discrimination

» Augmentation: ¢-shifting improves AUC and stability in low-luminosity regimes

» Transfer Learning: Models pre-trained on the abundant H — yy channel generalize
successfullytorare H = ZZ — 4/ and H = Zy — 2ly channels

» Establishes a practical, data-efficient strategy for real LHC analyses
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EFFECT OF DATA AUGMENTATION
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H — Z7Z — 4I: A DIFFICULT CHANNEL

» Even with the application of data
augmentation, the performance gain
remains marginal

» These results indicate that direct weakly
supervised training on H = ZZ — 4] is
constrained by statistical limitations
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