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Higgs factory

* Precise measurement of Higgs bosons are necessary
to search for the beyond standard model

 ete- colliders are designed
 ILC, FCC, etc...
« Jet energy resolution ~30%/~E

* To achieve the requirement, Particle Flow Algorithm
(PFA) oriented high granular detectors are
considered

 ILD, SiD, CLD, etc...
* (e.g., silicon ECAL: 5X5mm?, 30 layers)
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Particle flow Pandora Algorithms (illustrated)
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granular calorimeter is crucial
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* Current algorithm : PandoraPFA T

 Pattern recognition based on the human-tuned
parameters

* Limitations: difficult to optimize or incorporate
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GravNet and object condensation

GravNet  arxiv:1902.07987

* The virtual coordinate (S) 1s derived from inputs
with simple multilayer-perceptron(MLP)

* Convolution using “distance” at S
(bigger convolution with nearer hits)

* Concatenate the output with MLP
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Object condensation (loss function)

L —_— Lp + Sc(LB + LV)

Condensation point: the hit with
largest 5 at each MC cluster

Ly : attractive potential to the
condensation point of the same cluster
and repulsive potential to the
condensation point of different clusters

Lg: pulling up § of the condensation point
(up to 1)

L,,: regression to output features



Model architecture

* Origmally developed by CMS HGCal group

* Input/output are obtained for each hit at calorimeters
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Samples for performance evaluation : :

 ILD full simulation with SIW-ECAL and AHCAL 1 —
(ILD 15 ol v02,020301) Jili
* Two types of samples : 7, di-jets
* 77 (p=10 GeV)

* 10 taus overlayed

* Good mixture of decay products (pi, e, mu, photons) - -
* 100,000 events

« di-jet (ee—Zh—qquu,Vs=250 GeV)
* 40,000 events

<o Yoke/Muon

e train : 80%
validation : 10% .~ Coll
test : 10% S

e EGAL
€ TPE

e Vertex

ILD
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Clustering algorithm

(D Select hit with B above threshold (tbeta) as condensation seeds

(2> Assign nearby hits (within distance ¢d) to the nearest seed
(3 Repeat with next-highest S hit until all hits are clustered

output virtual y
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Condensation point 3
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Clustering performance evaluation

* Make 1-to-many connection of MC and reconstructed cluster
* Reconstructed cluster with highest fraction of hits from the MC is taken

* Multiple reconstructed cluster may connect to one MC cluster
* Chose reconstructed cluster with the highest fraction

* Quantitative comparison with PandoraPFA g
* Egep = MC truth cluster energy Z
* E,eco = reconstructed cluster energy l
* E.qtcn = correctly clustered energy ,+ Condensation point

* Compared “efficiency” and “purity” of each cluster

Ematch
» Efficiency o
Edep
E
e Purity _ Zmatch
Ereco

» Compared efficiency and purity for
» Charged particles: electrons, pions,
* Neutral particles: photons, kaons, neutrons

2.5 2

output virtual x




Clustering performance
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* PandoraPFA aims to minimize jet energy resolution — E_nerutral

—regression is critical
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Message Passing

* Before examining jet energy resolution, performed energy
regression on decay particle level

|

* Added two energy regression terms to model output and loss
function

2
LE charged = Zi(Etruthi — Epred charg i) i:summation over only condensation points

* For charged particles
» To fully use track information
« Estimate cluster energy only at the condensation point

2
LE,nerutral = Zi(Etruth,i - Zj Epred,calo,i,j) i:summation over clusters, j:summation over hits in a cluster

* For neutral particles

* Condensation beta of neutral particles tend to have lower values than
charged particles

* This regression strongly depends on the clustering



Energy regression -tau samples-
(Ongomg WOI'k) GNN energy regression
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Energy regression -tau samples-

(ongoing work)

* Energy regression for ]

charged particles are
working well

* Neutral particles have
WOrse regression
* Depends on

clustering
performance
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Energy regression - di-jet samples —
(ongoing work)

* Energy regression for
pions are working
well

20 mnde e
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 Electron energy
regression worsens at
low energies, likely
due to photon
misidentification.
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* Regression of photon
seems to have two
lines

* Top line mainly
comes from
% - yy decay

14



electron efficiency (MC energy>1 GeV)
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Upgrading clustering algorithm
(ongoing work)
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* The current clustering simply applies a set of
rules using the outputs of the GNN
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* Modifying this method to cross-attentioned
clustering model is ongoing

* Estimation of number of particles and particle
energy is the next task
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Summary

Developing GNN based PFA

* Evaluated performances with tau and jets samples
* Clustering performance of GNN have comparable or superior result to the PandoraPFA

Evaluated energy regression performance
* Added condensation point energy and cluster energy term for charged and neutral particles
* Charged particle resolution is completely determined by the track

The performance of energy regression is still not good enough, but it is working well for charged
hadrons
» Charged particle energy resolution comparable to the Pandora PFA

* Neutral particle energy resolution is still not comparable to the Pandora PFA
* The degraded resolution is likely due to the poor clustering performance of neutral particles

* Evaluation of the jet energy regression is being done

Ongoing work
* Modifying clustering algorithm into machined learned one
* Replacing the whole GNN with transformer
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