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Unfolding

[ Unfolding is the procedure of correcting measurement distortion due to
smearing effects such as finite resolution of the detector
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FIGURES SOURCE: NACHMAN “UNFOLDING: MACHINE LEARNING APPROACHES”
NUXTRACT, CERN (HYBRID), OCT. 2023.




Unfolding: A Simple Example

Experimental particle-level (Truth) Experimental detector-level (Data)
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OmniFold [Andreassen et al. (2020)]
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O OmniFold is one of the earliest machine
learning-based approaches that have been
proposed to perform unbinned unfolding

[ Successfully applied to experimental data
from the Large Hadron Collider (LHC) at
CERN and other particle and nuclear physics
experiments (H1 Collaboration, 2022a,b;
Komiske, Kry hin and Thaler, 2022; LHCb
Collaboration, 2023a; H1 Collaboration,
2023Db,c; Song, 2023; Pani, 2024; CMS
Collaboration, 2024a; ATLAS Collaboration,
2024b,c; H1 Collaboration, 2024d; ATLAS
Collaboration, 2025a; H1 Collaboration,
2025b; Badea et al., 2025; Huang et al., 2025;
Canelli et al., 2025).

ANDREASSEN ET AL. (2020). OMNIFOLD: A METHOD TO SIMULTANEOUSLY UNFOLD ALL

OBSERVABLES. PHYSICS REIVEW LETTER, 124.



OmniFold - Iterative Reweighting

Experimental particle-level (Truth) Experimental detector-level (Data) Goal: Flnd v*(x) SUCh that V*(X)q(x) — p(x)

a n Initialization: v(% (x)g(x) = q(x)
| X Py Step 1: Detector-level reweighting
& 02 p(y)
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oo Lyl L — e where §0() = [ vV (x)q(x, y)dx
MC particle-level (Generation) MC detector-level (Simulation)

Step 2: Particle-level reweighting
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OmniFold - Iterative Reweighting
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Goal: Find v*(x) such that v*(x)q(x) = p(x)
Initialization: v(% (x)g(x) = q(x)
Step 1: Detector-level reweighting

()
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where ® (y) v (x)q(x) = p(x)?

Step 2: Particle-levg-yewerg
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where §®(x) = [ r® (y)q(x, y)dy
Classifier Trick!

Train a classifier f to distinguish samples from P, to P,

P L
Then we have S =




OmniFold - EM Algorithm

1 Maximize the population-level log-likelihood

() = [ pMlog | p(ylx)v(x)q(x)dxdy
subjectto [ v(x)q(x)dx =1

 Expectation-Maximization (EM) algorithm: in each iteration, maximize
Q(v;v™) = [ v p(x|y, v )loglp(ylx)v (x)q (x)]dxdy

——» v**(x) = argmax, Q(v(x) ;v¥)

v(k“)(x) _ V(k)(x) ffp(ylx p(y)

U (x)g(x)dx’

p(ylx)dy




OmniFold - EM Algorithm

p(y)
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Nuisance Parameters

-1 One of the key assumptions in OmniFold (and other ML methods):
p(ylx) = q(y|x)

1 Only approximately true, with the simulation depending on a number of
nuisance parameters ¢

- Forward model: py g(y) = | __, p(¥Ix, 0)px (x)dx
) Log-likelihood

£(v,0) = j plog f w(y, x,0)q(y1x)v(x)q()dxdy

subject to [ v(x)g(x)dx = 1

_py|x,0)
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Profile OmniFold - EM Algorithm

Detector-evel pardcleder 0 Q function in the presence of nuisance parameters
- Data Q v, 0:; v(k) H(k))
: \)% = [ 2O p(x|y,v®,0%)log[w(y, x, 0)q(y|x)v(x)q(x)]dxdy
| subject to [ v(x)q(x)dx = 1

Stepl Ste;:Z

T 0 In each iteration, compute
; S| e e v+ g(k+1D) = argmax, ¢Q (v, 8;vK), )
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Step 3:

Update nuisance parameter
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Profile OmniFold - EM Algorithm

Detectordlevel pardcleder Step 1: Detector-level reweighting
_ Data p(y)
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Gaussian Example
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CMS Open Data

X = ptruth ptruth Yl — ptruth +6 (preco p%rilth) i ptruth 1 9(preco p"%rlzlth ,
YZ — ptruth + H(preco p%rilth) ptruth 9(preco p%rgth
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Summary

J We have developed a new machine learning-based unfolding algorithm,
Profile OmniFold (POF), which extends the original OmniFold (OF)
algorithm to the case where the forward model is not completely specified

 POF simultaneously updates the reweighting function and nuisance
parameters, and shares similar steps as in OF, which allows for easy
implementation while preserving many of its benefits

 In both Gaussian example and CMS open data, POF is able to accurately
estimate the true distribution, whereas OF fails due to misspecfied forward
mode]
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Binned Unfolding

1 D'Agostini Iteration’
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Density Ratio Estimation through
probabilistic classifier

dLetxy,..,x, ~P1, X1, 0, X' ~ Py andassignc=1toxandc=0to x’'

p1(x) _plxlc=1)
p2(x) pxlc=0)

p(c = 1|x)
0 ¢
p(c = 0[x)

[ Train a classifier f to distinguish between {x;}i~; and {x;}Z,, then estimate

P G
P20 1= ()
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W Function Training

) By definition,

_pOIx0) _pG.x0) q&) .
q(y|x) qv,x) p(x]6)
. Train two classifiers to learn two ratios.

J Data:

w(y, x,0)

D1 — {Xi:Yi:Hi}: D2 —_ {X,i' Y,i,gli}
Y; ~p(C1X;,0),Y ~q( X))
A Classifier 1: Distinguish {X;,Y;, 6;} from {X';,Y’";,0";}
[ Classifier 2: Distinguish {X;, 8;} from {X’;,0';}
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