

Unbinned Unfolding in the Presence of Nuisance Parameters

The 2nd "AI+HEP in East Asia" workshop

Joint work of Huanbiao (Richard) Zhu¹, Krish Desai², Mikael Kuusela¹, Vinicius Mikuni³, Benjamin Nachman⁴, Larry Wasserman¹

Based on [arXiv:2512.07074](https://arxiv.org/abs/2512.07074)

Outline

Unfolding

Machine-Learning based Method: **OmniFold**

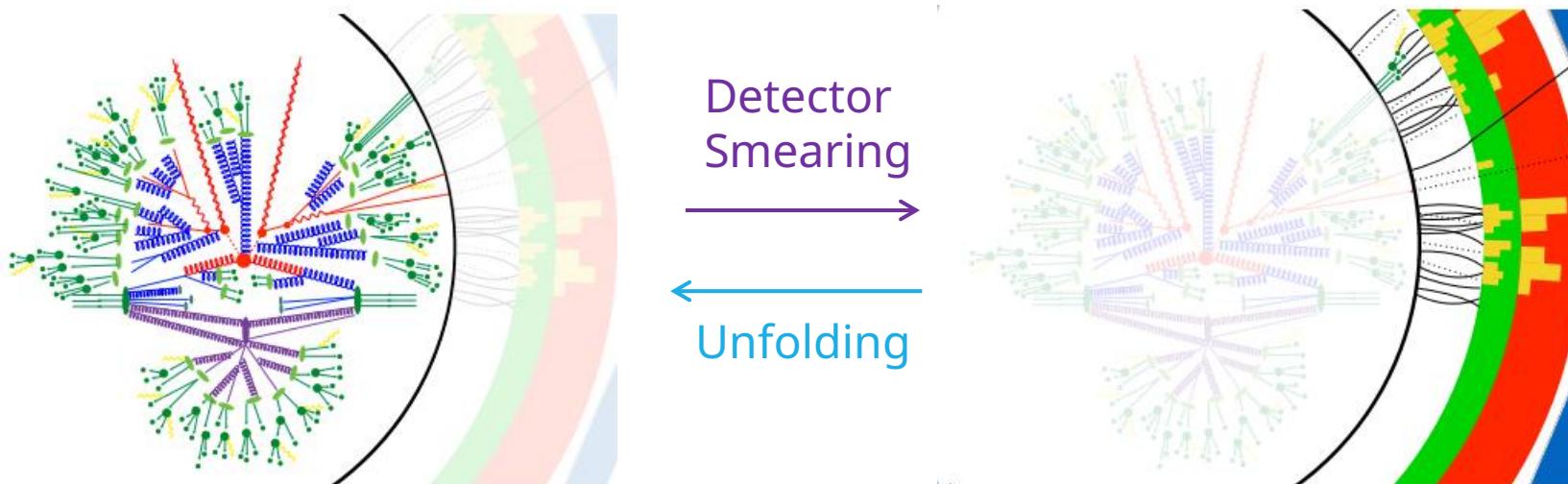
OmniFold in the Presence of Nuisance

Parameters: Profile OmniFold

Case Studies

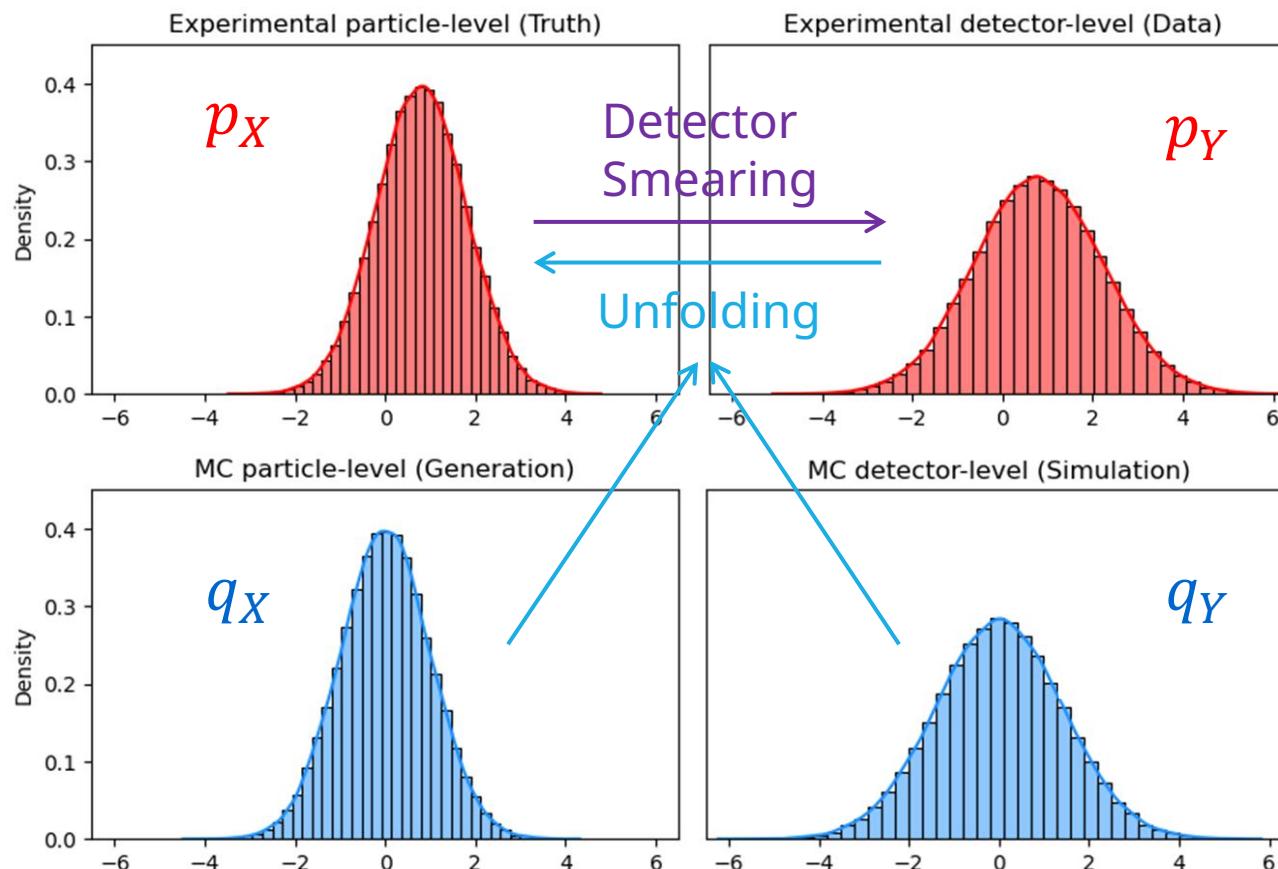
Unfolding

- ☐ Unfolding is the procedure of correcting measurement distortion due to smearing effects such as finite resolution of the detector

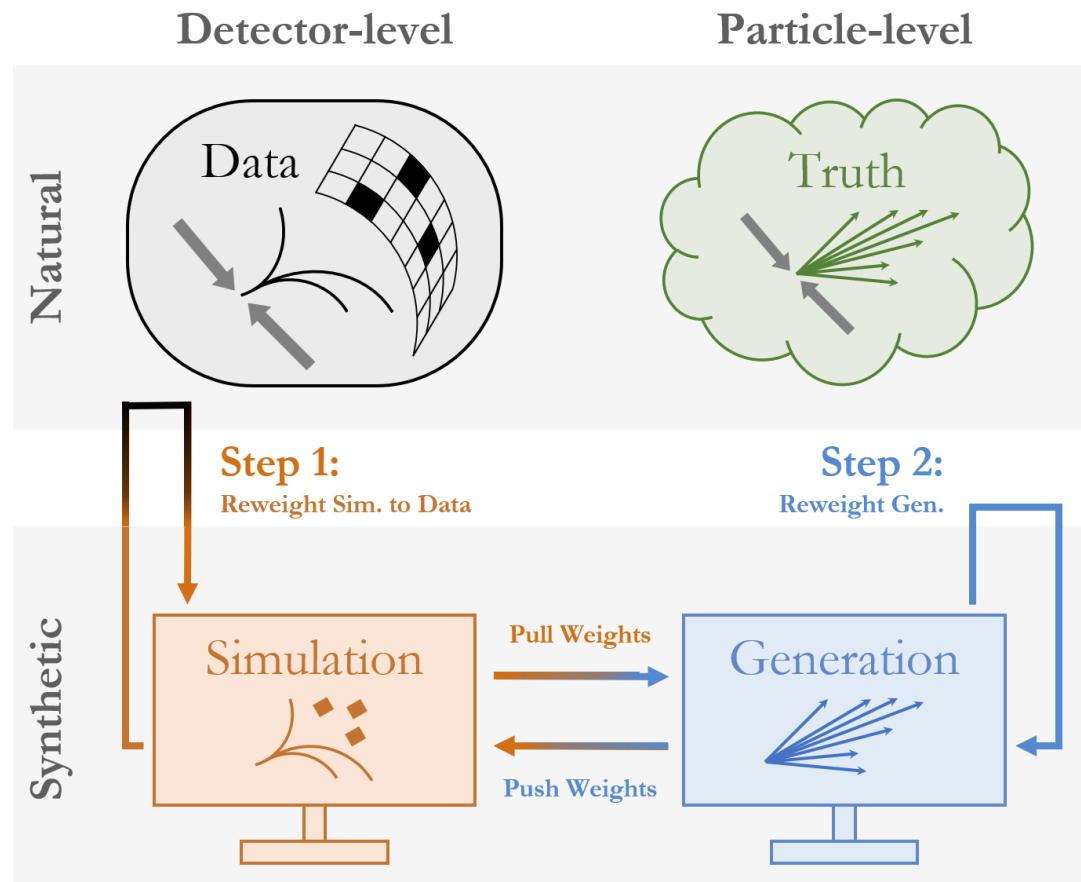


FIGURES SOURCE: NACHMAN "UNFOLDING: MACHINE LEARNING APPROACHES"
NUXTRACT, CERN (HYBRID), OCT. 2023.

Unfolding: A Simple Example

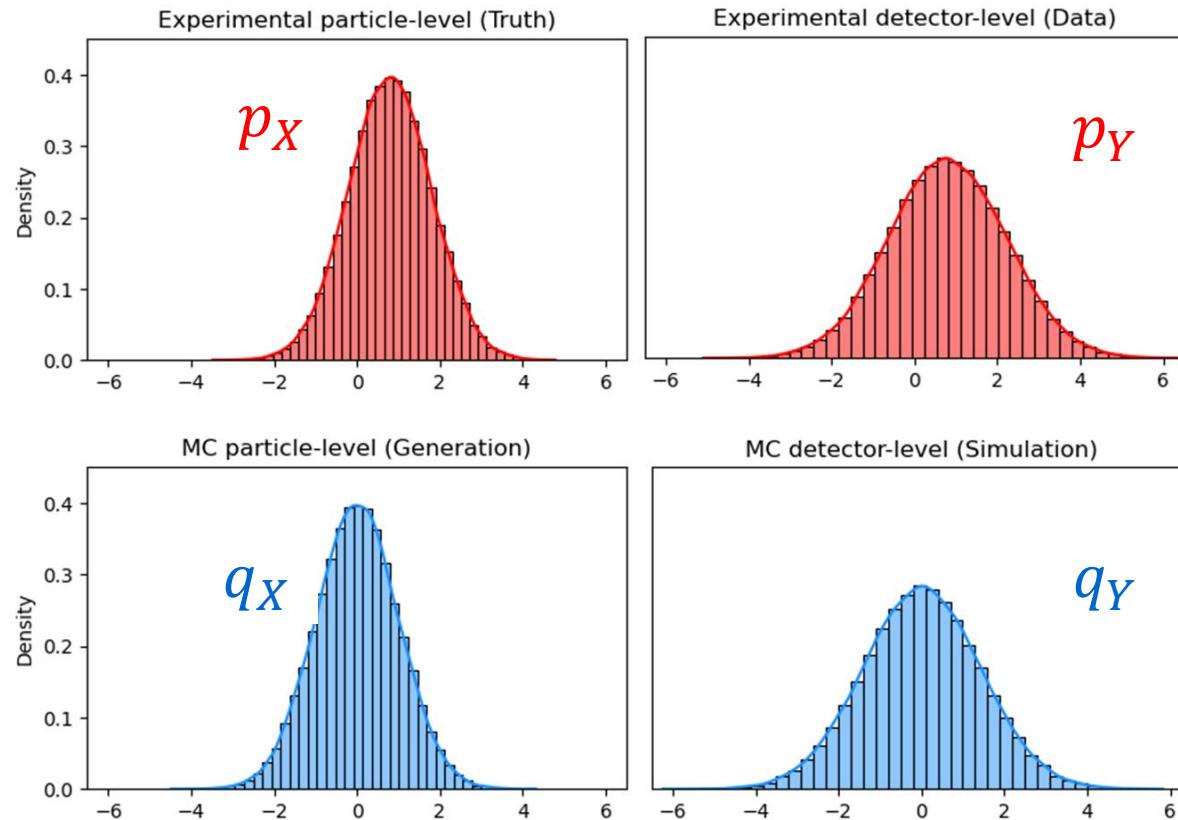


OmniFold [Andreassen et al. (2020)]



- ❑ **OmniFold** is one of the earliest machine learning-based approaches that have been proposed to perform unbinned unfolding
- ❑ Successfully applied to experimental data from the Large Hadron Collider (LHC) at CERN and other particle and nuclear physics experiments (H1 Collaboration, 2022a,b; Komiske, Kry hin and Thaler, 2022; LHCb Collaboration, 2023a; H1 Collaboration, 2023b,c; Song, 2023; Pani, 2024; CMS Collaboration, 2024a; ATLAS Collaboration, 2024b,c; H1 Collaboration, 2024d; ATLAS Collaboration, 2025a; H1 Collaboration, 2025b; Badea et al., 2025; Huang et al., 2025; Canelli et al., 2025).

OmniFold – Iterative Reweighting



Goal: Find $v^*(x)$ such that $v^*(x)q(x) = p(x)$

Initialization: $v^{(0)}(x)q(x) = q(x)$

Step 1: Detector-level reweighting

$$r^{(k)}(y) = \frac{p(y)}{\tilde{q}^{(k)}(y)},$$

where $\tilde{q}^{(k)}(y) = \int v^{(k)}(x)q(x, y)dx$

Step 2: Particle-level reweighting

$$v^{(k+1)}(x) = v^{(k)}(x) \frac{\tilde{q}^{(k)}(x)}{q(x)},$$

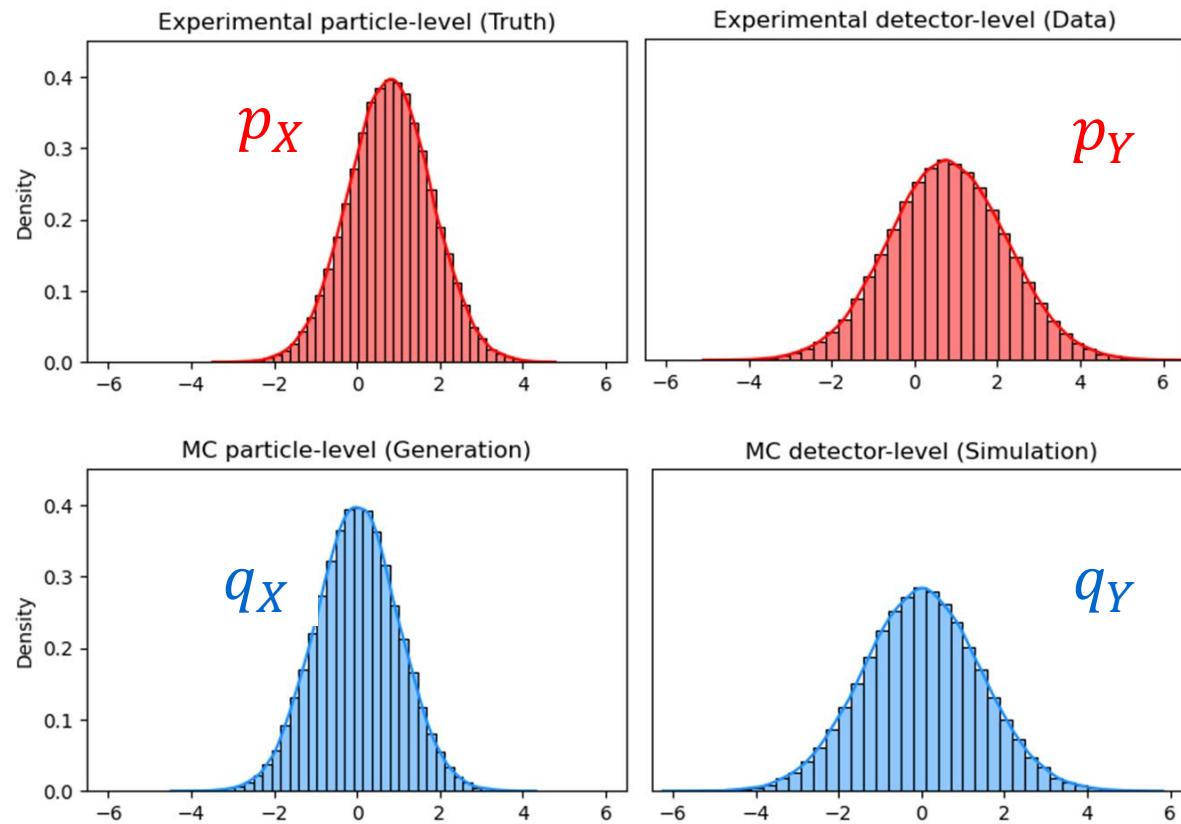
where $\tilde{q}^{(k)}(x) = \int r^{(k)}(y)q(x, y)dy$

Classifier Trick!

Train a classifier f to distinguish samples from \mathcal{P}_1 to \mathcal{P}_2

Then we have $\frac{\mathcal{P}_1}{\mathcal{P}_2} \propto \frac{f}{1-f}$

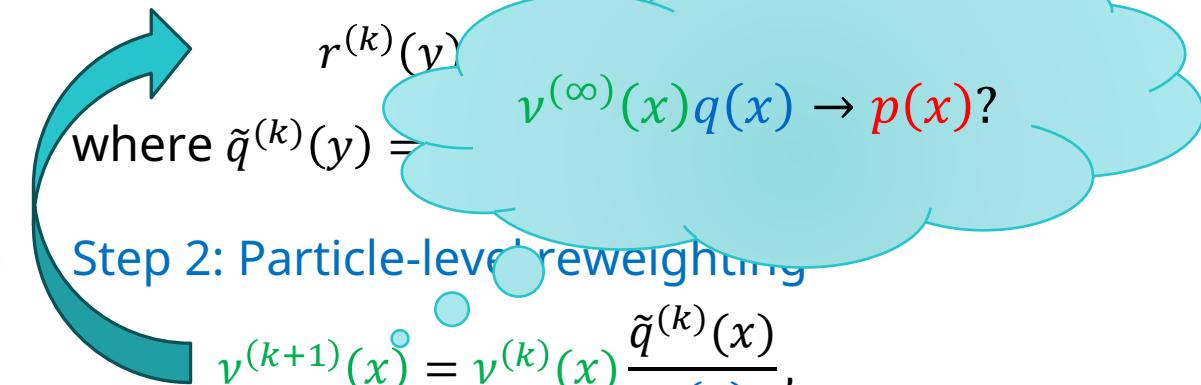
OmniFold – Iterative Reweighting



Goal: Find $v^*(x)$ such that $v^*(x)q(x) = p(x)$

Initialization: $v^{(0)}(x)q(x) = q(x)$

Step 1: Detector-level reweighting



where $\tilde{q}^{(k)}(x) = \int r^{(k)}(y)q(x, y)dy$

Classifier Trick!

Train a classifier f to distinguish samples from \mathcal{P}_1 to \mathcal{P}_2

Then we have $\frac{\mathcal{P}_1}{\mathcal{P}_2} \propto \frac{f}{1-f}$

OmniFold – EM Algorithm

- Maximize the population-level log-likelihood

$$\ell(\nu) = \int p(y) \log \int p(y|x) \nu(x) q(x) dx dy$$

subject to $\int \nu(x) q(x) dx = 1$

- Expectation-Maximization (EM) algorithm: in each iteration, maximize

$$Q(\nu; \nu^{(k)}) = \int p(y) \int p(x|y, \nu^{(k)}) \log [p(y|x) \nu(x) q(x)] dx dy$$

$$\nu^{(k+1)}(x) = \operatorname{argmax}_{\nu} Q(\nu(x); \nu^{(k)})$$

$$\nu^{(k+1)}(x) = \nu^{(k)}(x) \int \frac{p(y)}{\int p(y|x') \nu^{(k)}(x') q(x') dx'} p(y|x) dy$$

OmniFold – EM Algorithm

$$\begin{aligned}\nu^{(k+1)}(x) &= \nu^{(k)}(x) \int \frac{p(y)}{\int p(y|x') \nu^{(k)}(x') q(x') dx'} p(y|x) dy \\ &= \nu^{(k)}(x) \cdot \frac{1}{q(x)} \int \frac{p(y)}{\int \nu^{(k)}(x') q(x', y) dx'} q(x, y) dy\end{aligned}$$

KEY ASSUMPTION
 $p(y|x) = q(y|x)$

Step 1:

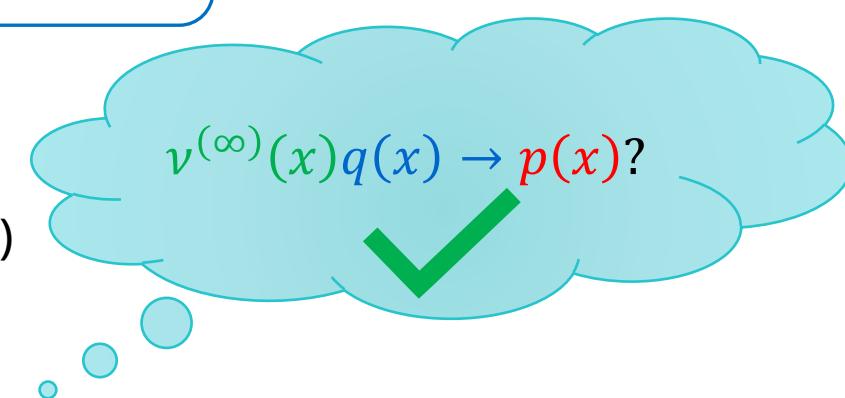
$$r^{(k)}(y) = \frac{p(y)}{\tilde{q}^{(k)}(y)},$$

where $\tilde{q}^{(k)}(y) = \int \nu^{(k)}(x) q(x, y) dx$ (reweighted q(y) at kth iteration)

Step 2:

$$\nu^{(k+1)}(x) = \nu^{(k)} \frac{\tilde{q}^{(k)}(x)}{q(x)},$$

where $\tilde{q}^{(k)}(x) = \int r^{(k)}(y) q(x, y) dy$ (reweighted q(x) at kth iteration)



Nuisance Parameters

- One of the key assumptions in OmniFold (and other ML methods):

$$p(y|x) = q(y|x)$$

- Only approximately true, with the simulation depending on a number of **nuisance parameters** θ

- Forward model: $p_{Y,\theta}(y) = \int_{x \in X} p(y|x, \theta) p_X(x) dx$

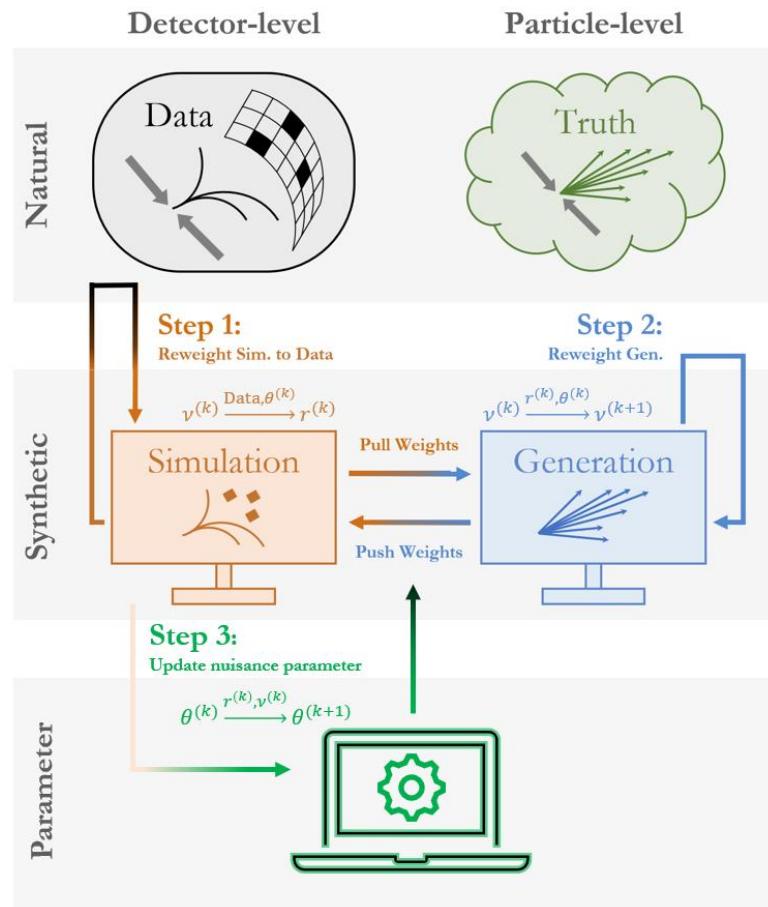
- Log-likelihood

$$\ell(\nu, \theta) = \int p(y) \log \int w(y, x, \theta) q(y|x) \nu(x) q(x) dx dy$$

subject to $\int \nu(x) q(x) dx = 1$

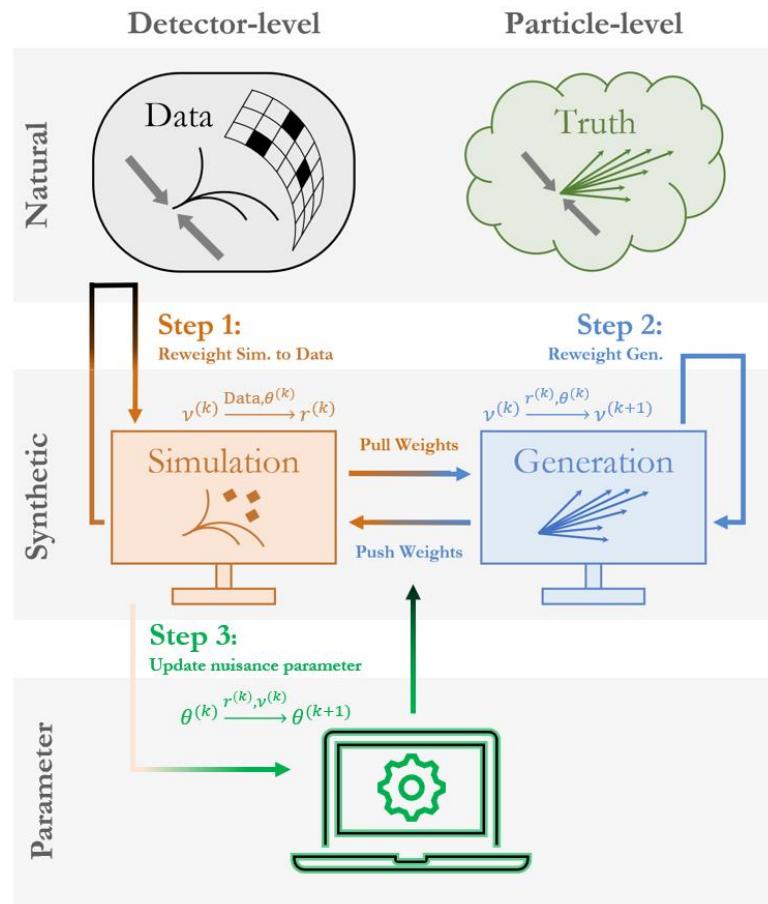
$$w(y, x, \theta) = \frac{p(y|x, \theta)}{q(y|x)}$$

Profile OmniFold - EM Algorithm



- Q function in the presence of nuisance parameters
$$Q(v, \theta; v^{(k)}, \theta^{(k)}) = \int p(y) \int p(x|y, v^{(k)}, \theta^{(k)}) \log[w(y, x, \theta)q(y|x)v(x)q(x)] dx dy$$
 subject to $\int v(x)q(x)dx = 1$
- In each iteration, compute
$$v^{(k+1)}, \theta^{(k+1)} = \operatorname{argmax}_{v, \theta} Q(v, \theta; v^{(k)}, \theta^{(k)})$$

Profile OmniFold - EM Algorithm



Step 1: Detector-level reweighting

$$r^{(k)}(y) = \frac{p(y)}{\tilde{q}^{(k)}(y)},$$

where $\tilde{q}^{(k)}(y) = \int w(y, x, \theta^{(k)}) v^{(k)}(x) q(x, y) dx$

Step 2: Particle-level reweighting

$$v^{(k+1)}(x) = v^{(k)} \frac{\tilde{q}^{(k)}(x)}{q(x)},$$

where $\tilde{q}^{(k)}(x) = \int w(y, x, \theta^{(k)}) r^{(k)}(y) q(x, y) dy$

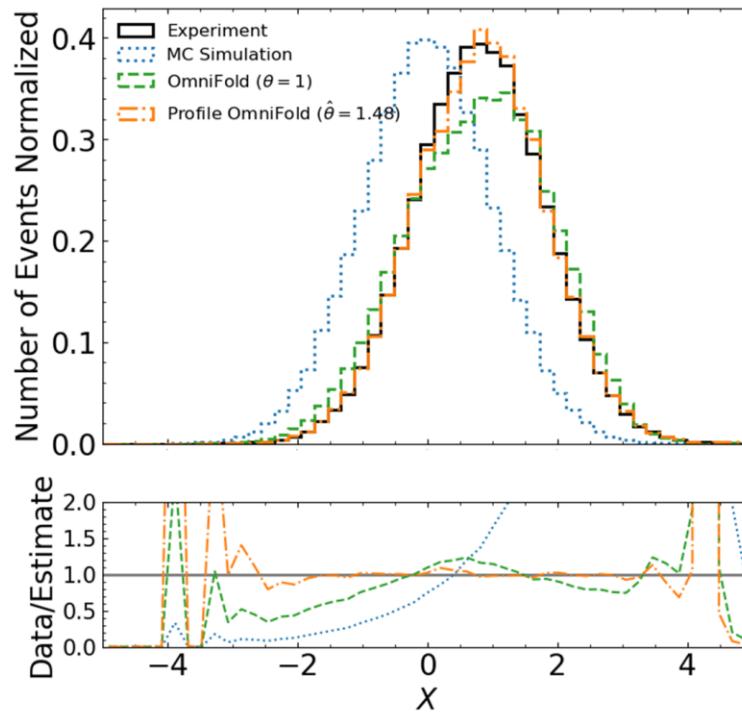
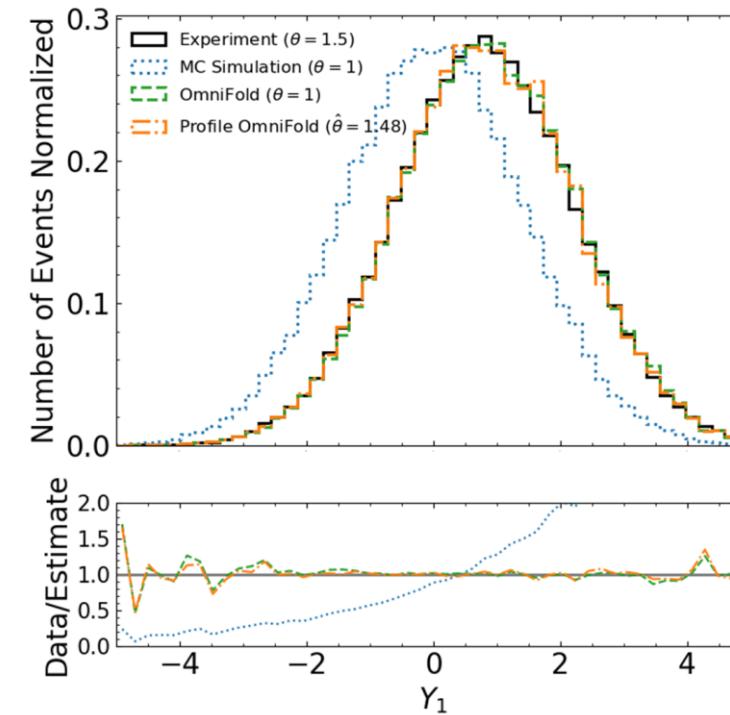
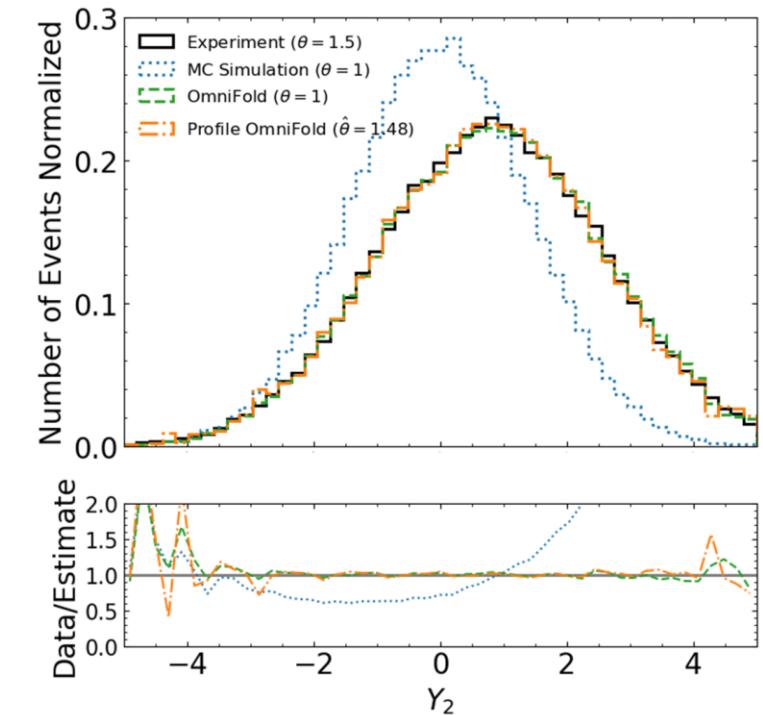
Step 3: Nuisance parameter update

$$\theta^{(k+1)}$$

$$= \operatorname{argmax}_{\theta} \mathbb{E}_{X, Y \sim q} \left[v^{(k)}(X) w(Y, X, \theta^{(k)}) r^{(k)}(Y) \log[w(Y, X, \theta)] \right]$$

Gaussian Example

$$X \sim N(\mu, \sigma^2), Z_1 \sim N(0,1), Z_2 \sim N(0, \theta^2),$$
$$Y_1 = X + Z_1, \quad Y_2 = X + Z_2$$

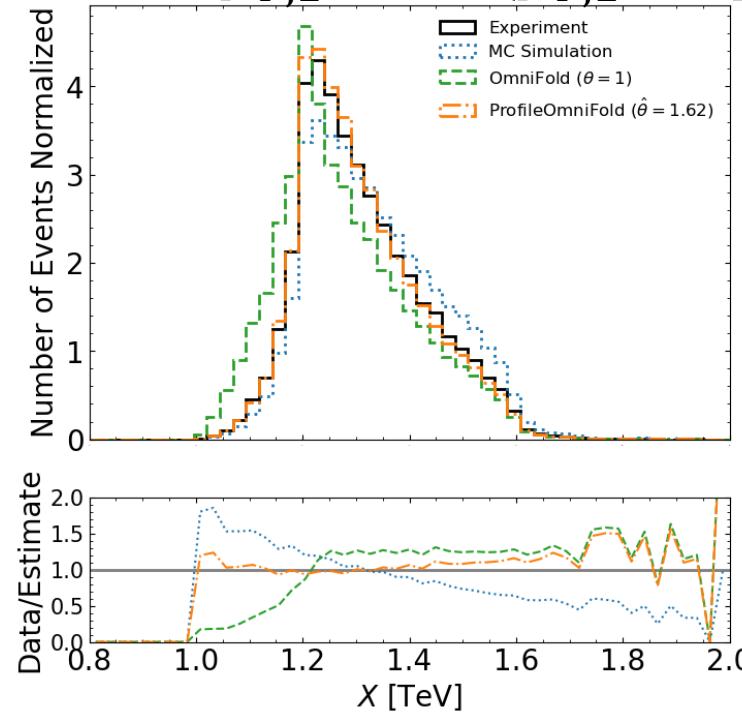
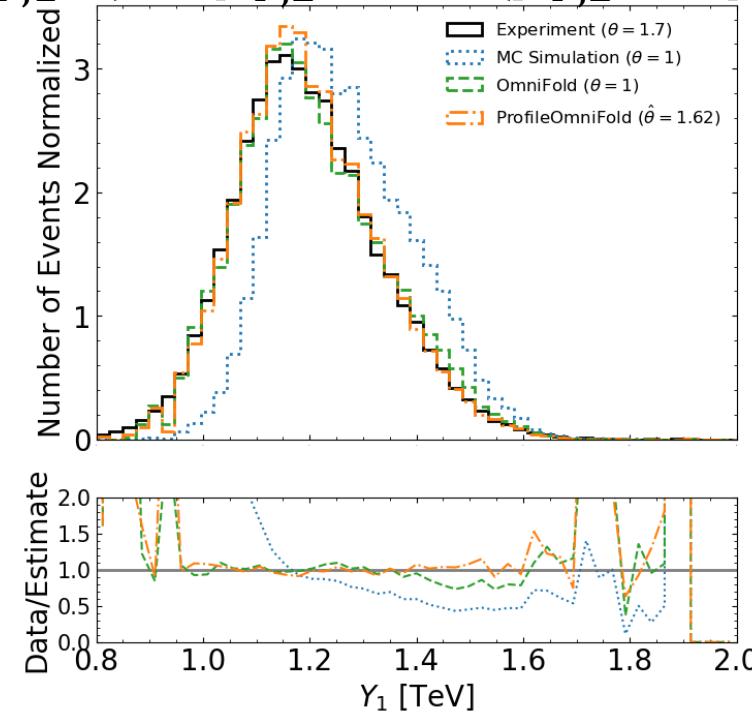
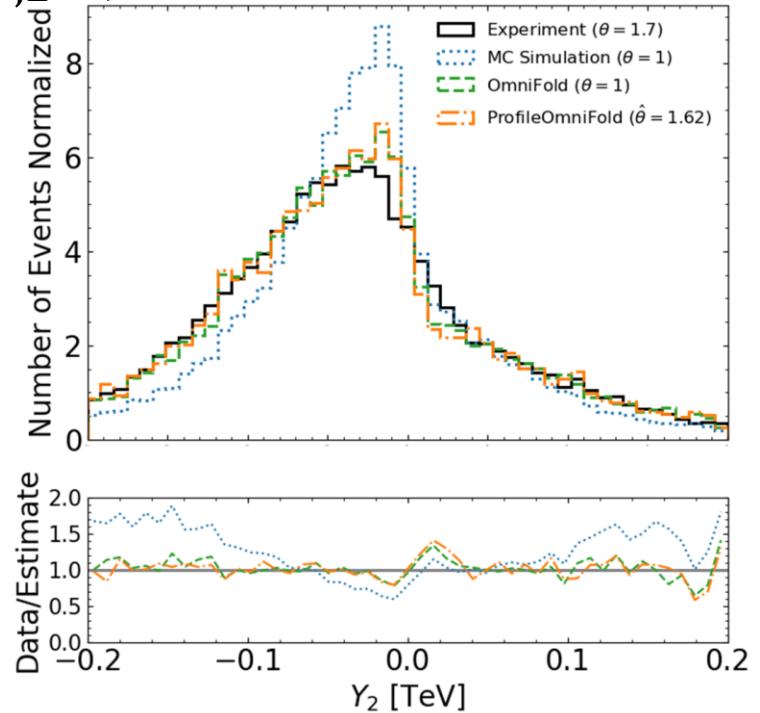


True $\theta = 1.5$, MC $\theta = 1.0$

CMS Open Data

$$X = p_{T,1}^{\text{truth}} + p_{T,2}^{\text{truth}}, \quad Y_1 = p_{T,1}^{\text{truth}} + \theta(p_{T,1}^{\text{reco}} - p_{T,1}^{\text{truth}}) + p_{T,2}^{\text{truth}} + \theta(p_{T,2}^{\text{reco}} - p_{T,2}^{\text{truth}}),$$

$$Y_2 = p_{T,1}^{\text{truth}} + \theta(p_{T,1}^{\text{reco}} - p_{T,1}^{\text{truth}}) - p_{T,2}^{\text{truth}} - \theta(p_{T,2}^{\text{reco}} - p_{T,2}^{\text{truth}})$$



True $\theta = 1.7$, MC $\theta = 1.0$

Summary

- We have developed a new machine learning-based unfolding algorithm, Profile OmniFold (POF), which extends the original OmniFold (OF) algorithm to the case where the **forward model is not completely specified**
- POF simultaneously updates the **reweighting function** and **nuisance parameters**, and shares similar steps as in OF, which allows for easy implementation while preserving many of its benefits
- In both Gaussian example and CMS open data, POF is able to accurately estimate the true distribution, whereas OF **fails** due to misspecified forward model

References

- ANDREASSEN, A., KOMISKE, P. T., METODIEV, E. M., NACHMAN, B. and THALER, J. (2020). OmniFold: A Method to Simultaneously Unfold All Observables. *Physical Review Letters* 124.
- H1 COLLABORATION (2022a). Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding. *Physical Review Letters* 128.
- H1 COLLABORATION (2022b). Machine learning-assisted measurement of multi-differential lepton-jet correlations in deep-inelastic scattering with the H1 detector. H1prelim-22-031.
- LHCb COLLABORATION (2023a). Multi differential Study of Identified Charged Hadron Distributions in Z Tagged Jets in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV. *Physical Review D* 108.
- H1 COLLABORATION(2023b).Unbinned Deep Learning Jet Substructure Measurement in High Q2 ep collisions at HERA. *Physics Letters B* 844 138101.
- H1 COLLABORATION (2023c). Machine learning-assisted measurement of azimuthal angular asymmetries in deep-inelastic scattering with the H1 detector. H1prelim-23-031.
- CMS COLLABORATION (2024a). Measurement of event shapes in minimum bias events from pp collisions at 13 TeV Technical Report, CERN, Geneva.
- ATLAS COLLABORATION (2024b). Simultaneous unbinned differential cross section measurement of twenty four Z+jets kinematic observables with the ATLAS detector. *Physical Review Letters* 133.
- ATLAS COLLABORATION (2024c). Measurement of Track Functions in ATLAS Run 2 Data.
- H1 COLLABORATION (2024d). Machine Learning-Assisted Measurement of Lepton-Jet Azimuthal Angular Asymmetries in Deep-Inelastic Scattering at HERA.
- ATLAS COLLABORATION (2025a). Measurement of Jet Track Functions in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector. 22
- H1 COLLABORATION (2025b). Towards Unfolding All Particles in High Q2 DIS Events. H1 preliminary result.

Link to arXiv

Questions

Backup

Binned Unfolding

□ D'Agostini Iteration¹

$$\max_{\lambda} L(\lambda; y) = \sum_i \frac{(\sum_j K_{ij} \lambda_j)^{y_i}}{y_i!} e^{-\sum_j K_{ij} \lambda_j}$$

□ E-Step

$$Q(\lambda, \lambda^{(k)}) = \mathbb{E}[\ell(\lambda; x, y) | y, \lambda^{(k)}]$$

□ M-Step

$$\lambda^{(k+1)} = \operatorname{argmax}_{\lambda} Q(\lambda, \lambda^{(k)})$$

$$\lambda_j^{(k+1)} = \frac{\lambda_j^{(k)}}{\sum_i K_{ij}} \sum_i \frac{K_{ij} y_i}{\sum_l K_{il} \lambda_l^{(k)}}$$

Density Ratio Estimation through probabilistic classifier

- Let $x_1, \dots, x_n \sim p_1, x'_1, \dots, x'_m \sim p_2$ and assign $c = 1$ to x and $c = 0$ to x'

$$\frac{p_1(x)}{p_2(x)} = \frac{p(x|c=1)}{p(x|c=0)}$$

$$\propto \frac{p(c=1|x)}{p(c=0|x)}$$

- Train a classifier f to distinguish between $\{x_i\}_{i=1}^n$ and $\{x'_i\}_{i=1}^m$, then estimate

$$\frac{p_1(x)}{p_2(x)} \propto \frac{f(x)}{1 - f(x)}$$

W Function Training

- By definition,

$$w(y, x, \theta) = \frac{p(y|x, \theta)}{q(y|x)} = \frac{p(y, x|\theta)}{q(y, x)} \cdot \frac{q(x)}{p(x|\theta)},$$

- Train two classifiers to learn two ratios.

- Data:

$$D_1 = \{X_i, Y_i, \theta_i\}, D_2 = \{X'_i, Y'_i, \theta'_i\}$$
$$Y_i \sim p(\cdot | X_i, \theta_i), Y'_i \sim q(\cdot | X'_i)$$

- Classifier 1: Distinguish $\{X_i, Y_i, \theta_i\}$ from $\{X'_i, Y'_i, \theta'_i\}$
- Classifier 2: Distinguish $\{X_i, \theta_i\}$ from $\{X'_i, \theta'_i\}$