

Quantum Integration Network for Efficient Monte Carlo in High Energy Physics

[arXiv:2510.10501] **Heechan Yi**, Kayoung Ban^a, Myeonghun Park^b, Kyoungchul Kong^c

a. School of Physics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

b. School of Natural Sciences, Seoultech, Seoul 01811, Republic of Korea

Institute of Convergent Fundamental Studies, Seoultech, Seoul 01811, South Korea

Institute for Basic Science, Daejeon 34126, South Korea

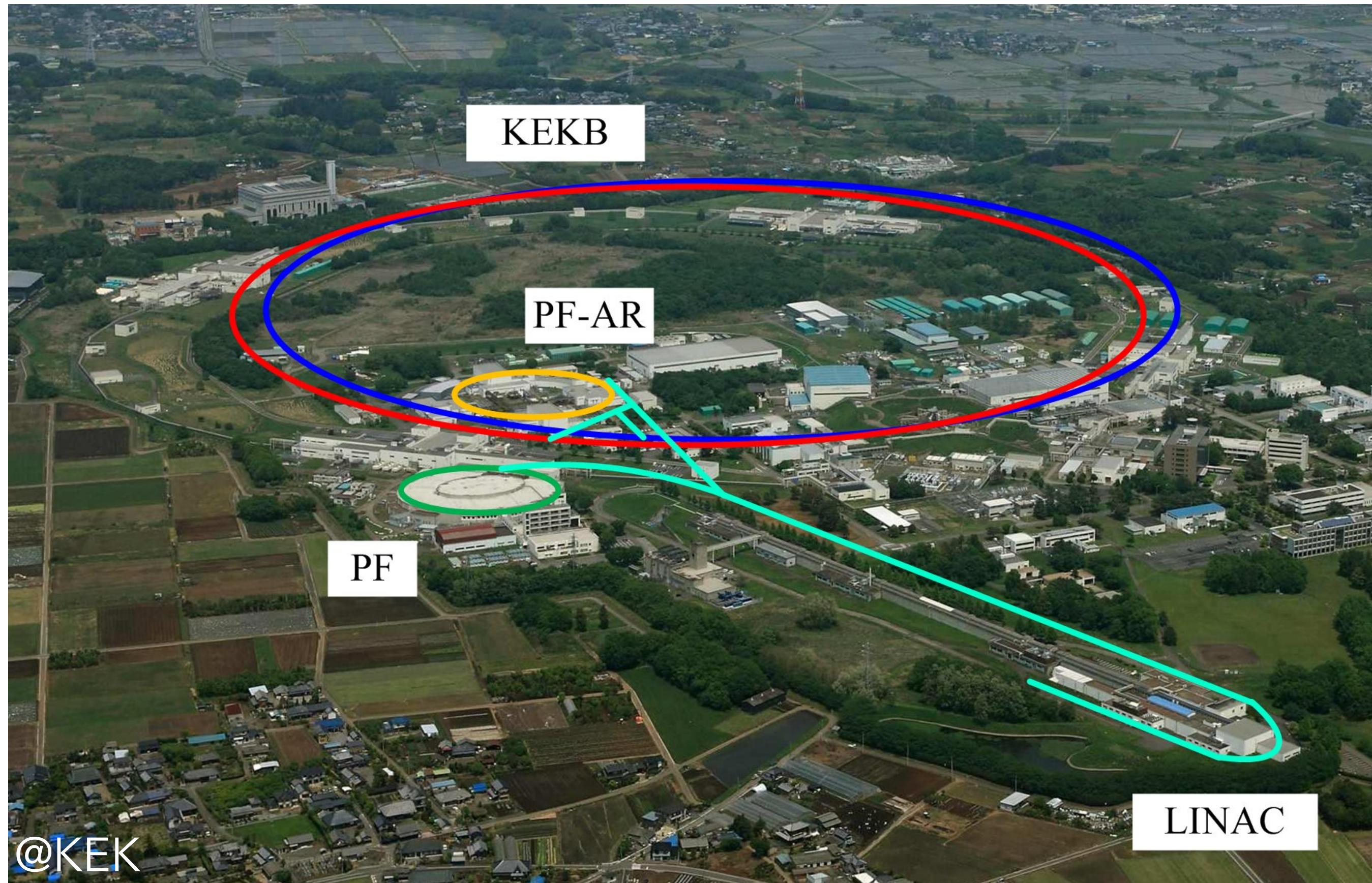
c. Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA

1. Motivation

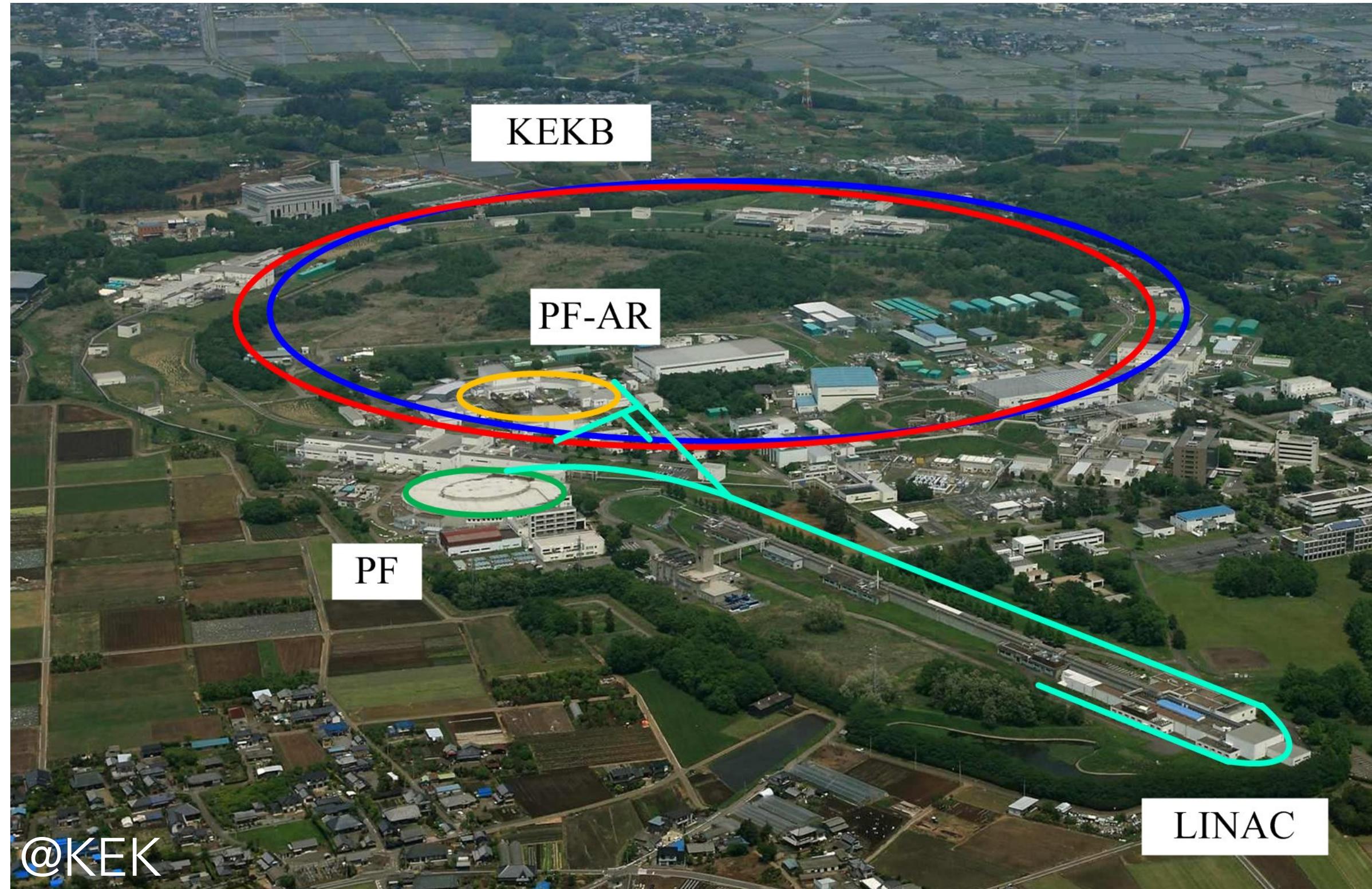
2. Methodology

3. Result

4. Summary & Outlook



Motivation



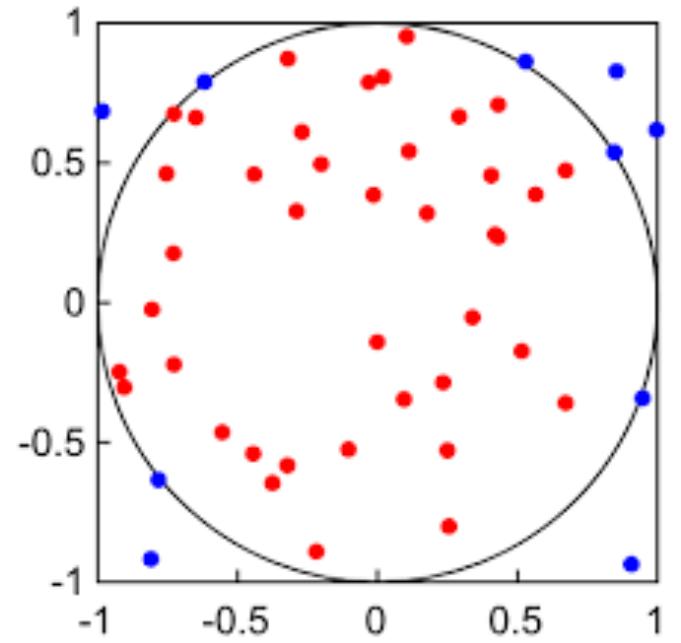
$$\frac{d\sigma}{dX} = \frac{1}{2s} \int \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 E_i} \delta(k_1 + k_2 - \sum_{i=1}^n k_i) \times |M_{fi}|^2 \theta_{\text{cut}}(p_1, \dots, p_n) \delta(X - X(p_1, \dots, p_n))$$

For more accurate calculation,

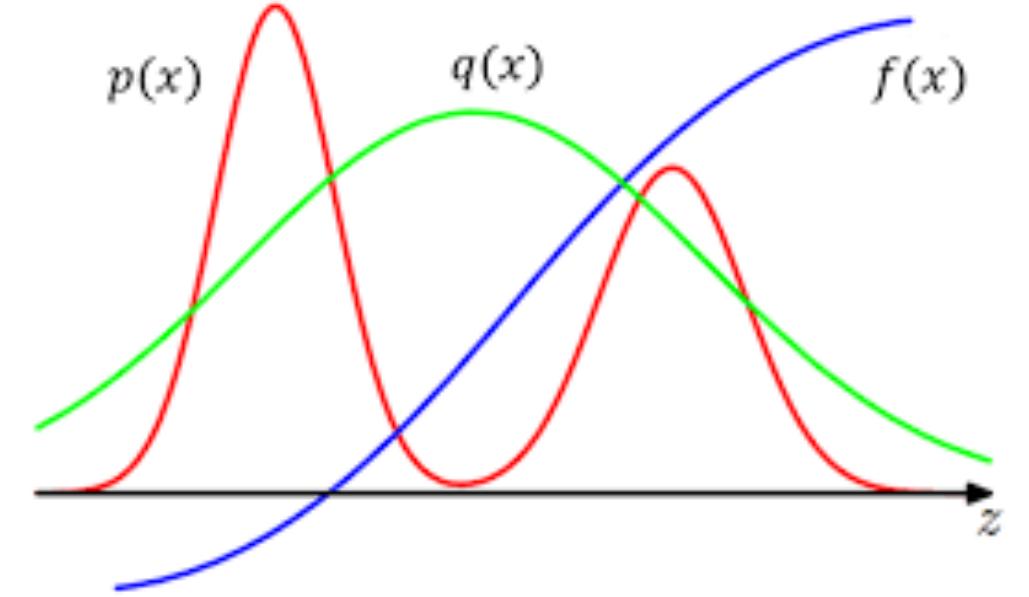
- Higher-order loops corrections
- Complex behaviors like singularities

Hard to evaluate !!!

Motivation

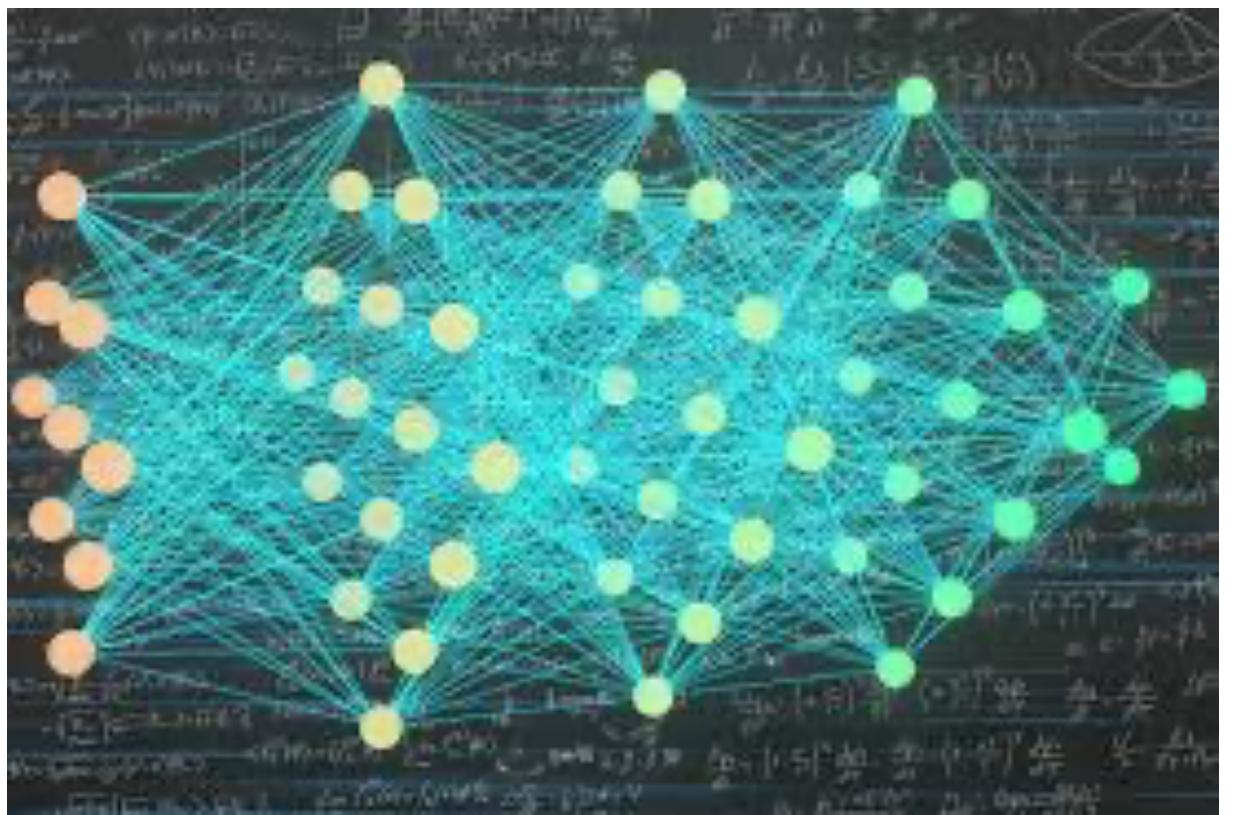


Monte-Carlo Integration

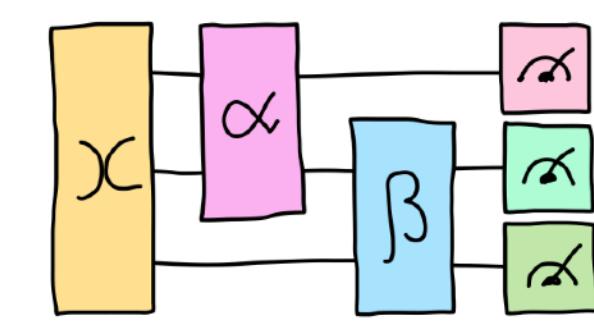


Quantum phenomenon

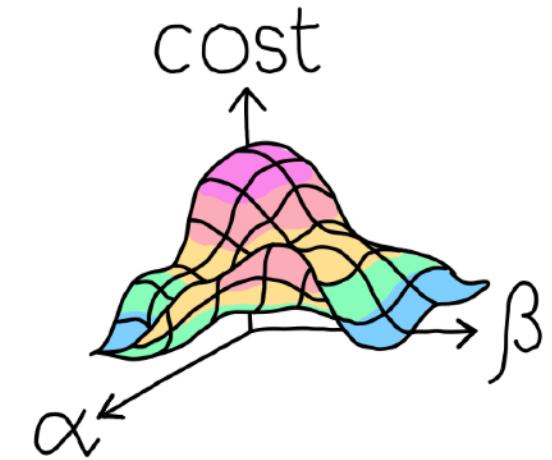
		Type of Algorithm	
		classical	quantum
Type of Data	classical	CC	CQ
	quantum	QC	QQ
@IBM Quantum			



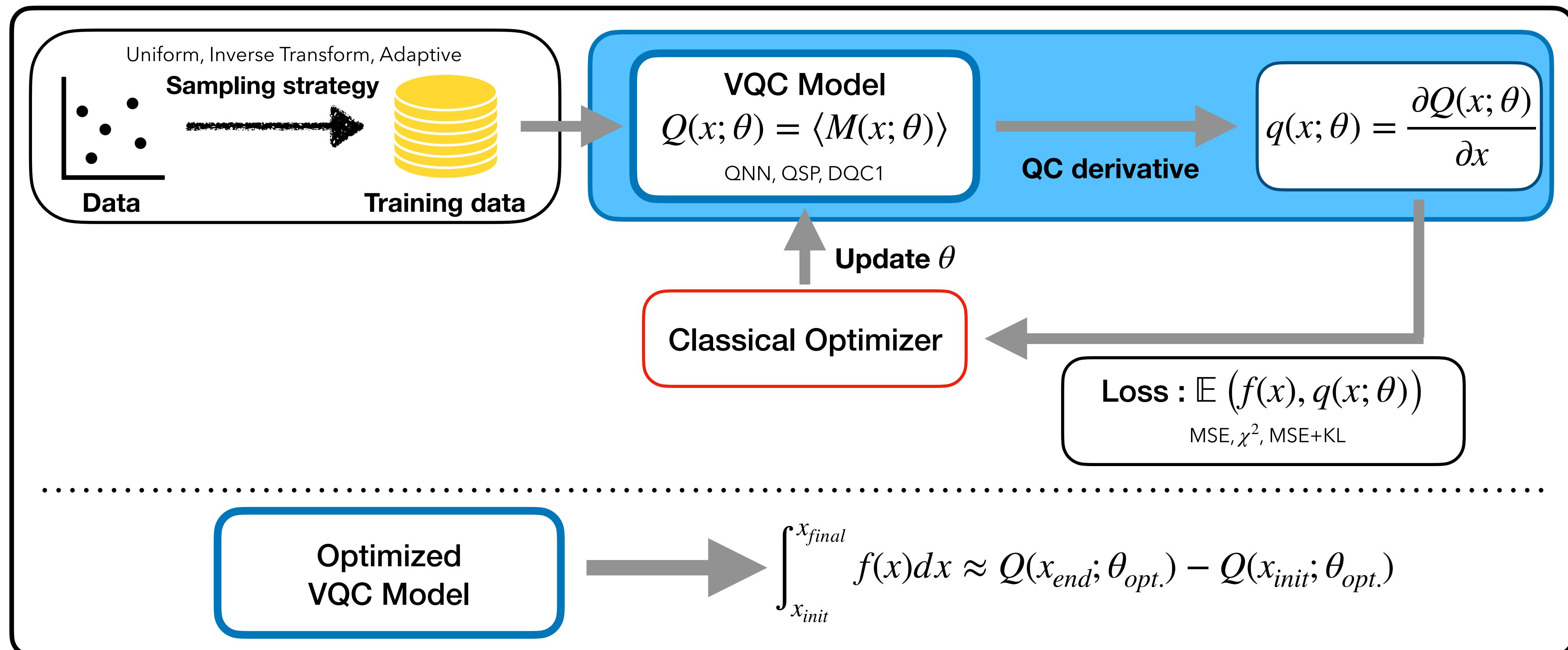
Machine Learning



@Pennylane



Methodology (Qulnt-Net)

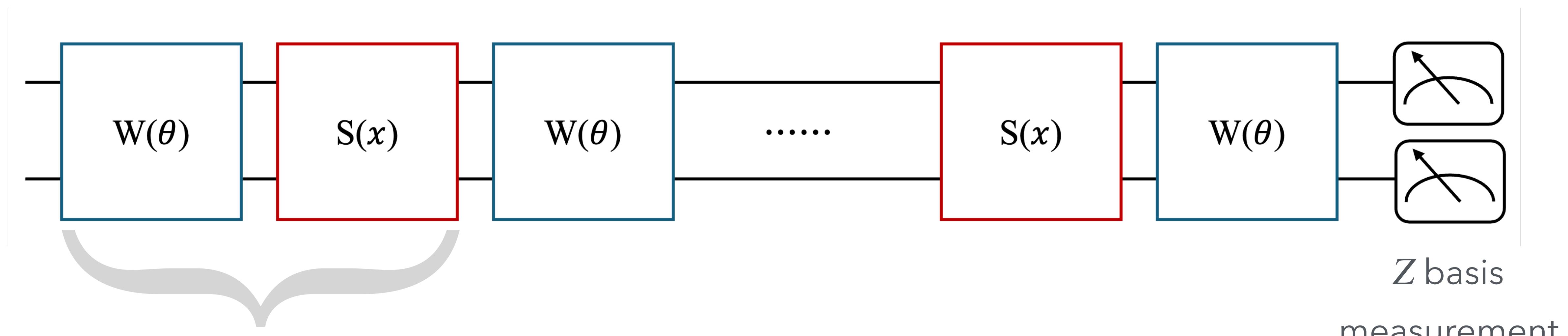


Methodology (Variational Quantum Circuit)

Basic QNN model

→ Gives finite Fourier series

Data Re-uploading method



$$R_X(\theta_0)R_Z(\theta_1 \cdot x)R_Y(\theta_2) + \text{CZ gate}$$

θ : the trainable parameters

Methodology (Data construction)

Uniform Sampling

- a standard baseline for comparison.
- Samples are generated from a uniform distribution over the domain
- Inefficient for functions with singular features (e.g., resonances) due to slow convergence.

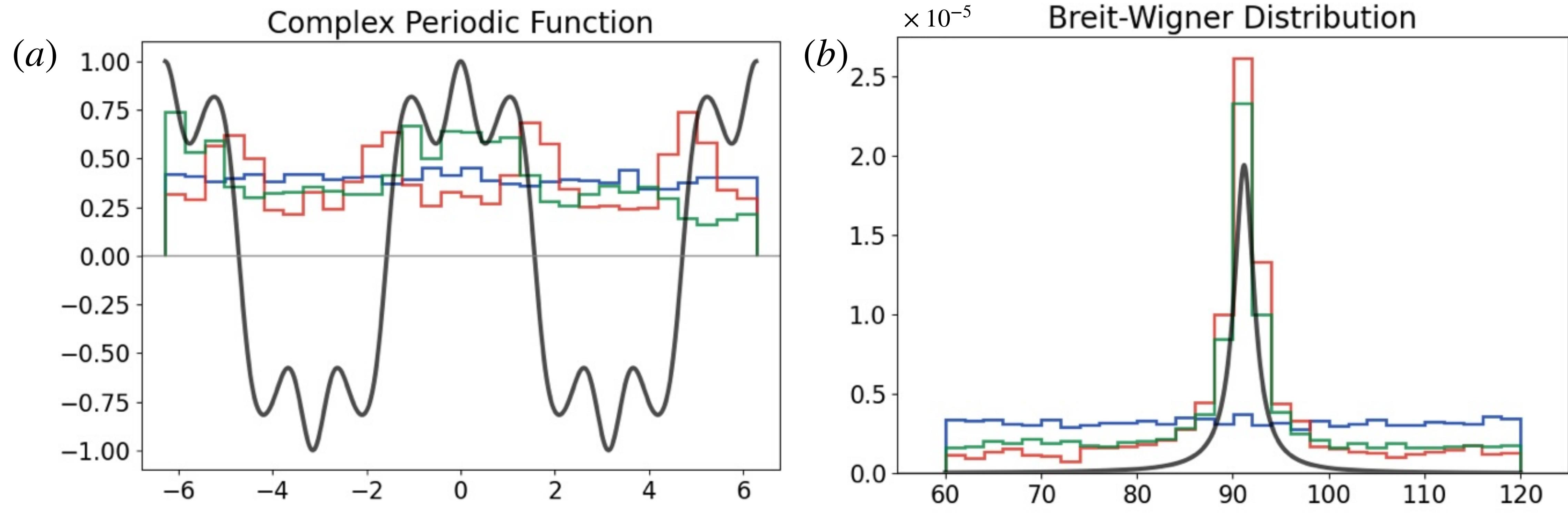
Importance Sampling

- Adopts a variance reduction technique to prioritize "important" regions
- Generates samples based on the derivative of the integrand:
$$q_{target}(x) \propto (f'(x))^2.$$
- **Effectively captures sharp variations and discontinuities.**

HMC sampling

- Adapts Hamiltonian Monte Carlo (MCMC) to navigate complex probability distributions.
- Treats the integrand as a potential field: $H(x, p) = U(x) + K(p)$ where $U(x) = -\log |f(x)|$
- **Allows for large-scale movements to escape local minima and explore peaks**

Methodology (Data construction)



Methodology (Loss function)

Mean-Squared Error (MSE) _____

$$- \mathbb{E}_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^N (q(x_i; \theta) - f(x_i))^2$$

- Standard metric for regression

χ^2 -weighted loss _____

$$- \mathbb{E}_{\chi^2} = \frac{1}{N} \sum_{i=1}^N \frac{(q(x_i; \theta) - f(x_i))^2}{|f(x_i)|}$$

- Inspired by the χ^2 statistic to re-weight residuals
- Enhances sensitivity to **lower-magnitude regions** (tails of distributions)

Log-Cosh loss _____

$$- \mathbb{E}_{\text{Log-Cosh}} = \frac{1}{N} \sum_{i=1}^N \log(\cosh(q(x_i; \theta) - f(x_i)))$$

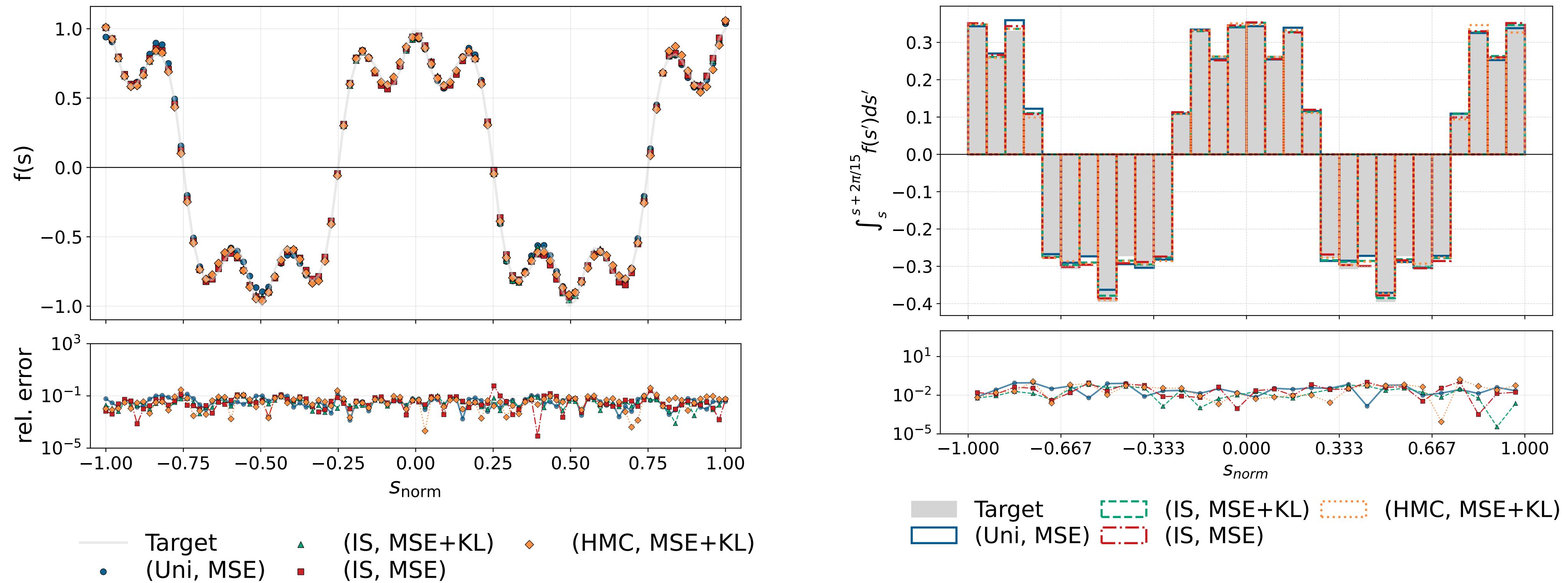
- Smooth interpolation between MSE and Mean Absolute Error (MAE)
- Acts linearly for large errors, making it **less sensitive to outliers**

MSE+KL loss _____

$$- \mathbb{E}_{\text{MSE+KL}} = \mathbb{E}_{\text{MSE}} + \sum_{i=1}^N \text{KL}(\sigma(\mathbf{f}) \mid \sigma(\mathbf{q}_\theta))$$

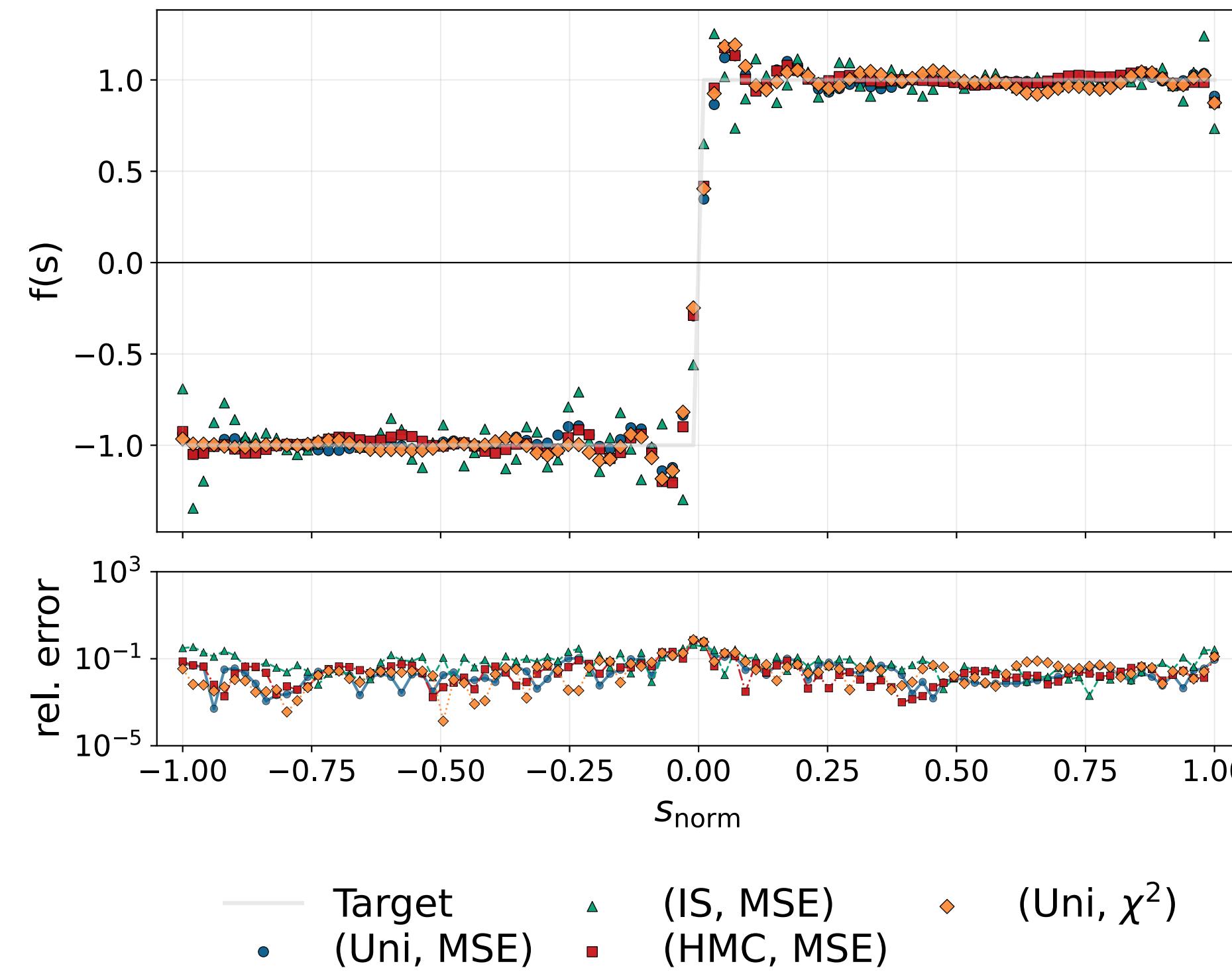
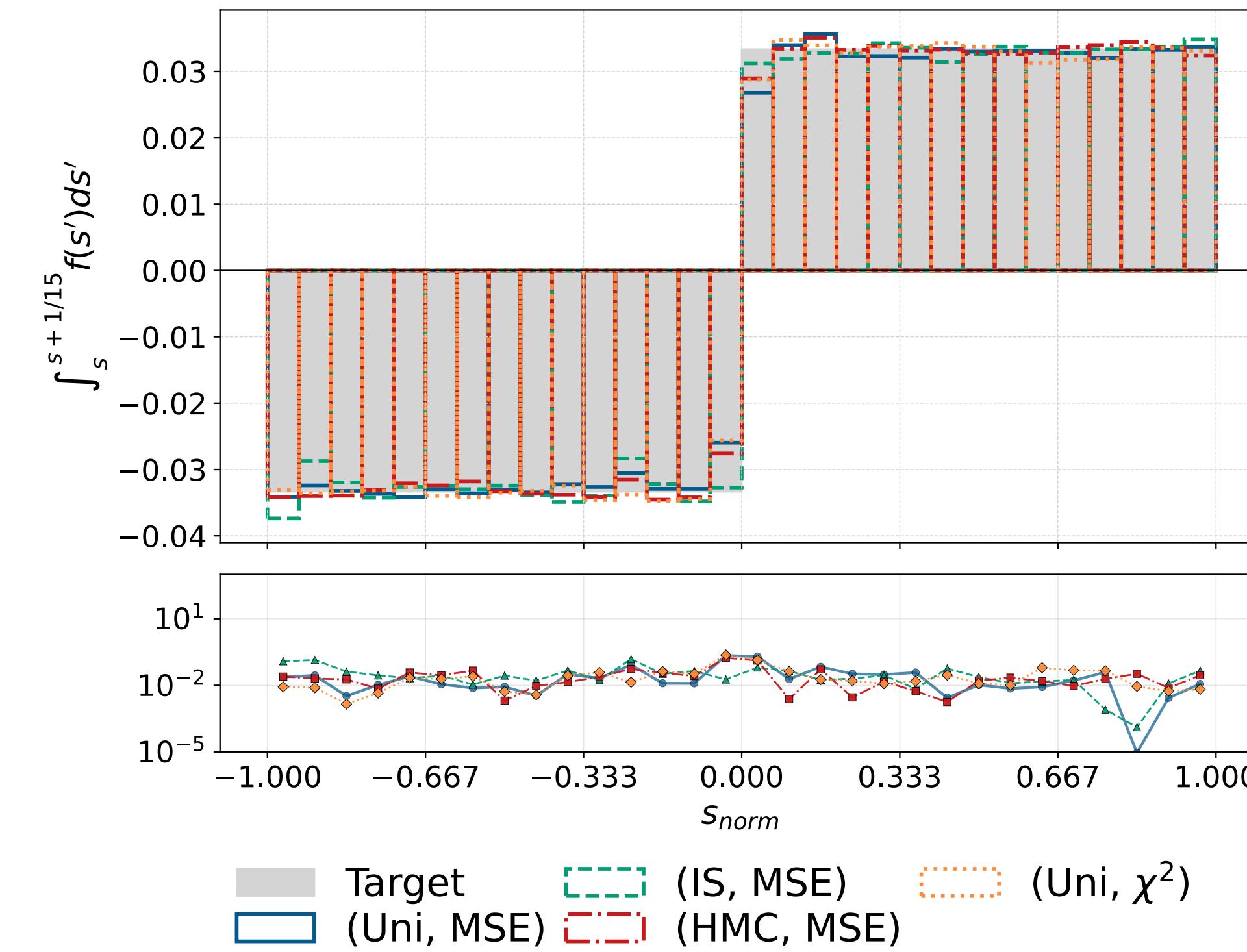
- Applies Softmax (σ) to treat outputs as probability distributions
- Captures the **global structure (shape)** of the integrand, not just point-wise accuracy.

Results (Complex Periodic Function)



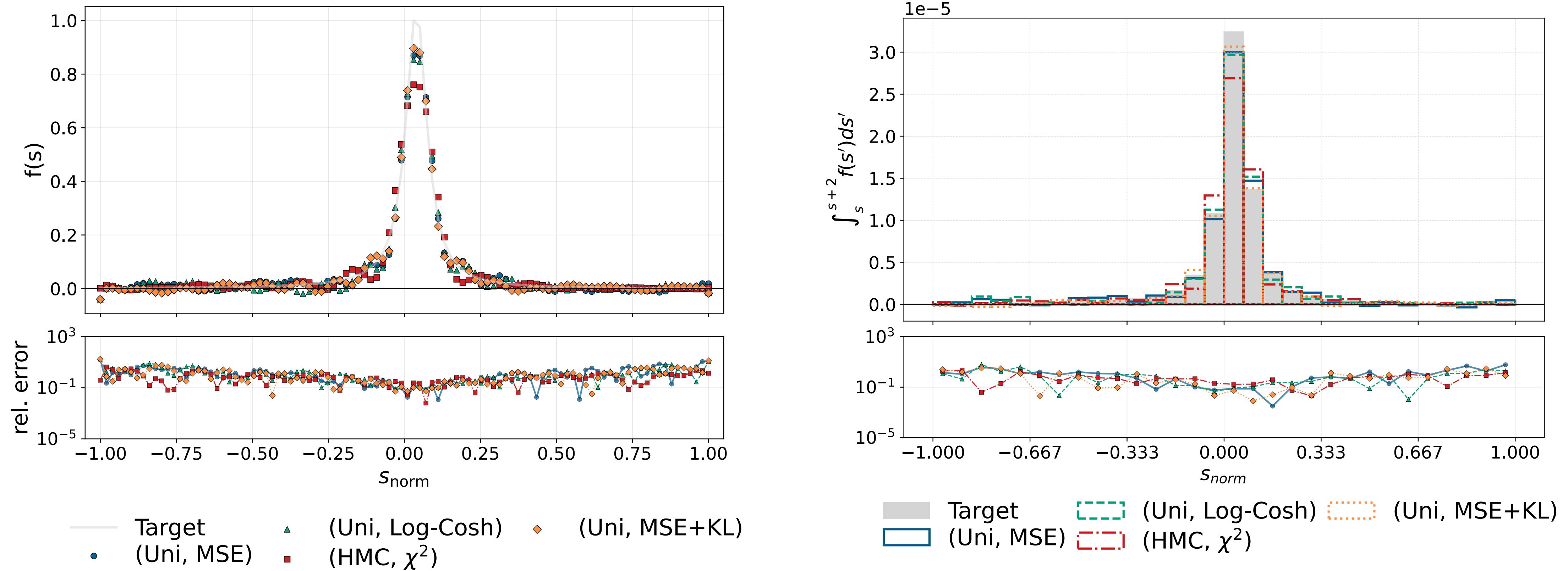
Training Strategy	R^2 (Deriv.)	W_1 (Int.)	$[0, \pi/2]$	$[-\pi/2, \pi/2]$	$[-\pi, \pi]$
(Uni., MSE)	0.9972	0.0635	1.0695 (0.22%)	2.1251 (0.42%)	0.0009
(IS, MSE + KL)	0.9982	0.0062	1.0707 (0.33%)	2.1293 (0.22%)	0.0015
(IS, MSE)	0.9977	0.0100	1.0679 (0.07%)	2.1256 (0.40%)	-0.0055
(HMC, MSE + KL)	0.9975	0.0123	1.0684 (0.12%)	2.1397 (0.25%)	0.0005

Results (Step Function)



Training Strategy	R^2 (Deriv.)	W_1 (Int.)	[0, 0.5]	[-0.5, 0]	[-0.5, 0.5]
(Uni., MSE)	0.9882	0.0067	0.2429 (2.83%)	-0.2370 (5.19%)	0.0058
(IS, MSE)	0.9856	0.0031	0.2443 (2.28%)	-0.2464 (1.40%)	-0.0021
(HMC, MSE)	0.9890	0.0040	0.2474 (1.03%)	-0.2460 (1.60%)	0.0013
(Uni., χ^2 Loss)	0.9879	0.0043	0.2492 (0.32%)	-0.2453 (1.88%)	0.0039

Results (HEP application)



Training Strategy	R^2 (Deriv.)	W_1 (Int.)	$[M_Z \pm 3\Gamma]$	$[M_Z \pm 5\Gamma]$	$[M_Z \pm 10\Gamma]$
(Uni., MSE)	0.9804	0.0084	6.4476 (5.07%)	6.7863 (4.57%)	6.9471 (5.58%)
(Uni., Log-Cosh)	0.9732	0.0074	6.5534 (3.51%)	6.7091 (5.65%)	6.9818 (5.11%)
(HMC, χ^2 Loss)	0.9472	0.0076	6.4752 (4.66%)	6.7543 (5.02%)	6.9806 (5.13%)
(Uni., MSE+KL)	0.9848	0.0106	6.5748 (3.20%)	6.7207 (5.49%)	6.9180 (5.98%)

Results (HEP application)

Sampling	Loss	Gate Error	Bit Flip	Depolarizing
Uni	MSE	6.9125(± 0.0755)(6.05%)	7.1493(2.83%)	7.0412(4.30%)
	Chisqr	5.8253(± 0.0561)(20.83%)	5.7385(22.01%)	5.7283(22.15%)
	Log-Cosh	7.1272(± 0.0598)(3.13%)	7.0292(4.47%)	7.0305(4.45%)
	MSE+KL	7.2659 (± 0.0711)(1.25%)	6.8596(6.77%)	7.3366 (0.29%)
IS	MSE	6.7596(± 0.760)(8.13%)	7.1136(3.32%)	7.0138(4.68%)
	Chisqr	6.6463(± 0.0483)(9.67%)	6.8816(6.47%)	6.9516(5.52%)
	Log-Cosh	6.6472(± 0.0947)(9.66%)	7.2050(2.08%)	6.7378(8.43%)
	MSE+KL	6.6799(± 0.1151)(9.21%)	6.9450(5.61%)	6.9068(6.13%)
HMC	MSE	6.9905(± 0.0817)(4.99%)	6.9769(5.18%)	7.0133(4.68%)
	Chisqr	6.8548(± 0.0507)(6.84%)	6.8018(7.56%)	6.7859(7.77%)
	Log-Cosh	6.8899(± 0.0933)(6.36%)	7.2212 (1.86%)	6.7862(7.77%)
	MSE+KL	7.5085(± 0.1215)(2.04%)	6.7414(8.38%)	7.0583(4.07%)

Calculate the BW distribution across $[M_Z \pm 10\Gamma]$ with noise 0.1% environment

Summary

VQC-based Integration Framework (QulInt-Net)

- Developed QulInt-Net, a VQC framework incorporating adaptive sampling and tailored loss functions to handle singular structures.

Flexible Evaluation of Integrals

- Approximates the antiderivative globally, enabling efficient evaluation over any arbitrary sub-interval without retraining.

Robustness against Hardware Noise

- Demonstrates robustness against NISQ noise (Gate, Bit-flip, Depolarizing)

Future Work

1. Qulnt-Net as a Starting point

- Qulnt-Net serves as a benchmark model for QML-based numerical integration.
- Establishes the feasibility of handling singular structures using variational quantum circuits.

2. Technical Extension

- High-Dimensionality: Scaling the framework to multi-dimensional phase-space integrals
- Real Hardware Implementation: Validating noise robustness on physical quantum processors (e.g., IonQ, IBM) beyond simulation

3. Evolution to Quantum Integral Calculation

- Extending the current supervised learning approach to Quantum Monte Carlo Integral.
- Utilizing quantum advantages (e.g., superposition, entanglement) not just for function approximation, but for direct, efficient sampling of the phase space.