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- Higher-order loops corrections

- Complex behaviors like singularities

Hard to evaluate !!!




Vlotivation
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Methodology (Qulint-Net)

/ Uniform, Inverse Transform, Adaptive \
®

Sampling strategy
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MethOdO|Ogy (Variational Quantum Circuit)

Basic ONN model

Data Re-uploading method
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MethOdOk)gy (Data construction)

Uniform Sampling |mportance Sampling HMC sampling
N N [ )

/

¢ 5 standard baseline for
comparison.

e Adapts Hamiltonian Monte Carlo
e Adopts a variance reduction (MCMC) to navigate complex

technique to prioritize probability distributions.

‘Important” regions

e Samples are generated from a

uniform distribution over the * Treats the integrand as a potential

Hormain * Generates samples based on the field: H(x, p) = U(x) + K(p) where
derivative of the integrand:
s Ux) = —log | f(x)]|
qtarget(x) x (f'(x))”.

e |nefficient for functions with
e Allows for large-scale

movements to escape local
minima and explore peaks

singular features (e.g., o Effectively captures sharp

resonances) due to slow . . . e e
variations and discontinuities.

convergence.
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MethOdOk)gy (Data construction)
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- Sampling method to prepare a training data: : Uniform
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MethOdOk)gy | oss function)

Mean-Squared Error (MSE)____ ¥~ -weighted loss
] < (q(x; ) = f(x)°
- [E - — 2 0) — )2 —
MSE = " 1—21 (q(x;; 0) — f(x;)) ZZ:‘ ()|
- Standard metric for regression - Inspired by the y* statistic to re-weight residuals

- Enhances sensitivity to lower-magnitude regions (tails of distributions)

Log-Cosh loss

- Eyog—Cosh = —Zlog(oosmq(x,,e) — f))
=1

- Smooth interpolation between MSE and Mean Absolute Error (MAE)

- Acts linearly for large errors, making it less sensitive to outliers

MSE+KL loss

N
- Enmserke = Emsg + Z KL(a(f) | 6(qy))
=1

- Applies Softmax (o) to treat outputs as probability distributions

- Captures the global structure (shape) of the integrand, not just point-wise accuracy.



Results (Complex Periodic Function)
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Results (Step Function)
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Results (HEP application)
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Results (HEP application)
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Sampling Loss Gate Error Bit Flip Depolarizing
MSE 6.9125(+0.0755)(6.05%) 7.1493(2.83%) 7.0412(4.30%)
Uni Chisqr 5.8253(+0.0561)(20.83%) 5.7385(22.01%) 5.7283(22.15%)
Log-Cosh 7.1272(+0.0598)(3.13%) 7.0292(4.47%) 7.0305(4.45%)
MSE+KL 7.2659(+0.0711)(1.25%) 6.8596(6.77%) 7.3366(0.29%)
MSE 6.7596(+0.760)(8.13%) 7.1136(3.32%) 7.0138(4.68%)
IS Chisqgr 6.6463(+0.0483)(9.67%) 6.8816(6.47%) 6.9516(5.52%)
Log-Cosh 6.6472(+0.0947)(9.66%) 7.2050(2.08%) 6.7378(8.43%)
MSE+KL 6.6799(+0.1151)(9.21%) 6.9450(5.61%) 6.9068(6.13%)
MSE 6.9905(+0.0817)(4.99%) 6.9769(5.18%) 7.0133(4.68%)
HMC Chisqr 6.8548(+0.0507)(6.84%) 6.8018(7.56%) 6.7859(7.77%)
Log-Cosh 6.8899(+0.0933)(6.36%) 7.2212(1.86%) 6.7862(7.77%)
MSE+KL 7.5085(+0.1215)(2.04%) 6.7414(8.38%) 7.0583(4.07%)

Calculate the BW distribution across [M, £ 10I'] with noise 0.1% environment



Summary

VQC-based Integration Framework (Quint-Net)

e Developed Qulint-Net, a VQC tramework incorporating adaptive sampling and tailored
loss functions to handle singular structures.

Flexible Evaluation of Integrals

» Approximates the antiderivative globally, enabling efticient evaluation over any arbitrary
sub-interval without retraining.

Robustness against Hardware Noise

e Demonstrates robustness against NISQ noise (Gate, Bit-tlip, Depolarizing)
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Future Work

1.

2.

3.
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Quint-Net as a Starting point

e Qulnt-Net serves as a benchmark model for QML-based numerical integration.

e Establishes the feasibility of handling singular structures using variational quantum circuits.

Technical Extension

e High-Dimensionality: Scaling the framework to multi-dimensional phase-space integrals

e Real Hardware Implementation: Validating noise robustness on physical quantum processors (e.g.,

onQ, IBM) beyond simulation

Evolution to Quantum Integral Calculation

e Extending the current supervised learning approach to Quantum Monte Carlo Integral.

e Utilizing quantum advantages (e.g., superposition, entanglement) not just for function
approximation, but for direct, efficient sampling of the phase space.



