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@Cern Photon Lab

For more accurate calculation,  
- Higher-order loops corrections  
- Complex behaviors like singularities

Hard to evaluate !!!
@KEK

3



Motivation

Monte-Carlo Integration

Machine Learning

@IBM Quantum

@Pennylane

Quantum phenomenon
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Methodology (QuInt-Net)

Optimized 
VQC Model ∫

xfinal

xinit

f(x)dx ≈ Q(xend; θopt.) − Q(xinit; θopt.)

Sampling strategy VQC Model 
Q(x; θ) = ⟨M(x; θ)⟩

Training data

q(x; θ) = ∂Q(x; θ)
∂xQC derivative 

Classical Optimizer

Update θ
Data

Loss : 𝔼 (f(x), q(x; θ))

Uniform, Inverse Transform, Adaptive

MSE, , MSE+KLχ2

QNN, QSP, DQC1

[Quantum Sci.Technol. 9 (2024) 3, 035053] Multi-variable integration with a variational quantum circuit 
[arXiv:2510.10501] Quantum Integration Network for Efficient Monte Carlo in High Energy Physics5



Methodology (Variational Quantum Circuit)

Data Re-uploading method

⏟ + CZ gate 

 : the trainable parameters

RX(θ0)RZ(θ1 ⋅ x)RY(θ2)

θ

Basic QNN model   Gives finite Fourier series→

 basis 
measurement

Z
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Methodology (Data construction)

• a standard baseline for 
comparison. 

• Samples are generated from a 
uniform distribution over the 
domain 

• Inefficient for functions with 
singular features (e.g., 
resonances) due to slow 
convergence.

•Adopts a variance reduction 
technique to prioritize 
"important" regions 

•Generates samples based on the 
derivative of the integrand: 

. 

•Effectively captures sharp 
variations and discontinuities.

qtarget(x) ∝ ( f′￼(x))2

• Adapts Hamiltonian Monte Carlo 
(MCMC) to navigate complex 
probability distributions. 

• Treats the integrand as a potential 
field:  where 

 

• Allows for large-scale 
movements to escape local 
minima and explore peaks

H(x, p) = U(x) + K(p)
U(x) = − log | f(x) |

Uniform Sampling Importance Sampling HMC sampling
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Methodology (Data construction)

(a) (b)

Uniform IS HMC Sampling method to prepare a training data: ⋅

× 10−5
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Methodology (Loss function)
Mean-Squared Error (MSE)  -weighted lossχ2

Log-Cosh loss

MSE+KL loss

-  

- Standard metric for regression

𝔼MSE =
1
N

N

∑
i=1

(q(xi; θ) − f(xi))2 -  

- Inspired by the  statistic to re-weight residuals 
- Enhances sensitivity to lower-magnitude regions (tails of distributions)

𝔼χ2 =
1
N

N

∑
i=1

(q(xi; θ) − f(xi))2

| f(xi) |

χ2

-  

- Smooth interpolation between MSE and Mean Absolute Error (MAE) 
- Acts linearly for large errors, making it less sensitive to outliers

𝔼Log−Cosh =
1
N

N

∑
i=1

log(cosh(q(xi; θ) − f(xi)))

-  

- Applies Softmax ( ) to treat outputs as probability distributions 
- Captures the global structure (shape) of the integrand, not just point-wise accuracy.

𝔼MSE+KL = 𝔼MSE +
N

∑
i=1

KL(σ(f) |σ(qθ))

σ
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Results (Complex Periodic Function)
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Results (Step Function)
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Results (HEP application)
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Results (HEP application)

Calculate the BW distribution across  with noise 0.1% environment[MZ ± 10Γ]
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Summary
VQC-based Integration Framework (QuInt-Net) 

•Developed QuInt-Net, a VQC framework incorporating adaptive sampling and tailored 
loss functions to handle singular structures. 

Flexible Evaluation of Integrals 

•Approximates the antiderivative globally, enabling efficient evaluation over any arbitrary 
sub-interval without retraining. 

Robustness against Hardware Noise 

•Demonstrates robustness against NISQ noise (Gate, Bit-flip, Depolarizing)
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Future Work
1. QuInt-Net as a Starting point 

• QuInt-Net serves as a benchmark model for QML-based numerical integration. 
•  Establishes the feasibility of handling singular structures using variational quantum circuits. 

2. Technical Extension 

• High-Dimensionality: Scaling the framework to multi-dimensional phase-space integrals 
• Real Hardware Implementation: Validating noise robustness on physical quantum processors (e.g., 

IonQ, IBM) beyond simulation 

3. Evolution to Quantum Integral Calculation 

• Extending the current supervised learning approach to Quantum Monte Carlo Integral. 
• Utilizing quantum advantages (e.g., superposition, entanglement) not just for function 

approximation, but for direct, efficient sampling of the phase space.
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