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• Investigating the invisible Higgs coupling at a MuC with a dedicated 
forward muon detector


• Clean experimental environment of MuC enables high sensitivity, 
especially when combined with ML techniques


• After observing a signal, it is crucial to verify whether the Higgs truly 
mediates the process


• ML-based hypothesis test provides strong discrimination between the 
signal and alternative models
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The signal model

Forwad muon pair; 
we can see

BSM particle pair; 
we cannot see, 
missing energy

ℒint. ⊃ −
1
Λ

|H |2 χ̄χ

μμ̄ → μμ̄χχ̄

χ : Heavy dirac fermion

At high energy,  is dominantZLZL → χχ̄
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4M2
χ )

s ≫ Mχ > mH, mZ



Discovery potential
Benchmark experiment scenario & detector setting

∙ s = 10 TeV
∙ ℒ = 10 ab−1

∙ |ηmain | < 2.44
∙ 2.44 < |ηforwad | < 6.0;

Only muons and antimuons are detected in this region
∙ δEforward = 10 % ;

Only uncertainties in the forward detector region



Discovery potential
Background consideration & baseline cut

Two types of backgrounds


1.  + Neutrinos


2.  + Visible particles escaping the main detector;

μμ̄ → μ̄μ

μμ̄ → μ̄μ

 

 

μμ̄ → μμ̄νν̄

μμ̄ → ττ̄, τ → μνν

μμ̄ → W−W+νν̄, W → μν

 

 

μμ̄ → μμ̄γ

μμ̄ → μμ̄ff̄, f ∈ {l, q}

μμ̄ → μμ̄W−W+, W → lν or qq̄

Undetected by forward muon detector 













ΔRμμ̄ = Δϕ2
μμ̄ + Δη2

μμ̄

Δϕμμ̄ = ϕμ − ϕμ̄

Δημμ̄ = ημ − ημ̄

Emin. = min(Eμ, Eμ̄)

pμμ̄
T = pμ

T + pμ̄
T

Suppress elastic scattering
μμ̄ → μμ̄

∙ 6.0 > |ημ(μ̄) |
∙ ημ > 0 > ημ̄

∙ ΔRμμ̄ > 0.4
∙ Emin > 500 GeV

← Select VBF

∙ pμμ̄
T > 50 GeV}



Discovery potential
Neural network

• Clean environment of a muon collider enables a well-reconstructed final state            
 Conventional kinematic variables are sufficient as input features: 





• We train NNs for each  and obtain optimal sensitivity limit
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Mμμ̄ = (pμ + pμ̄)2

M2
χχ̄ = (pi − pμ − pμ̄)2

pi = ( s, 0⃗)



NN
Mχ = 200 GeV



NN
Mχ = 200 GeV



NN
Mχ = 200 GeV



NN
Mχ = 200 GeV



NN
Mχ = 200 GeV



NN shapes the background to resemble the signal

NN
Mχ = 200 GeV



Discovery potential
Results

EFT does not apply

 discovery5σ



EFT does not apply

 discovery5σ

Discovery potential
Results

Is the signal truly from  
the -mediated model?H

Assuming a signal is 
confirmed at this point
(Mχ = 200 GeV, Λ = 460 GeV)



Mediator discrimination
Alternative models

• We introduce new BSM scalar  and pseudoscalar  , which give a similar signature. 
These fields are not involved in the EWSB. 





• Different coupling structures induce distinct  boson polarization contributions:


 is dominant at high energy 

• Helicity formalism reveals this difference as a characteristic angular correlation, .

S A

ℒS = 1
ΛS

SZμνZμν + gSSχ̄χ

ℒA = 1
ΛA

AZ̃μνZμν + gAAχ̄ (iγ5) χ

Z

Z±Z± → S/A → χχ̄

Δϕμμ̄

mS = mA = mH



Mediator discrimination
Helicity formalism

∙
dσH

dΔϕμμ̄
≈ CH

0

∙
dσS

dΔϕμμ̄
≈ CS

0 + CS
2 cos(2Δϕμμ̄)

∙
dσA

dΔϕμμ̄
≈ CA

0 − CA
2 cos(2Δϕμμ̄)

dσ
dΔϕμμ̄

= C0 + C1 cos(Δϕμμ̄) + C2 cos(2Δϕμμ̄) + S1 sin(Δϕμμ̄) + S2 sin(2Δϕμμ̄)

Surviving only with both 
CP-conserving and         
CP-violating terms



Mediator discrimination
Helicity formalism

The background covers the signal


 Distribution alone is insufficient for discrimination


 A hypothesis test is necessary

→

→

Mχ = 200 GeV After NN selection



Mediator discrimination
Hypothesis test

• Neyman-Pearson lemma:                                                               
Likelihood ratio test is universally most powerful


• Test statistic  as log-likelihood ratio: 




• Performing pseudoexperiments to obtain  distribution.


• Tail probability  in a symmetric way:                



• Separation power :                            

Λ

Λ = log
ℒ(ℍ1)
ℒ(ℍ0)

= log
ΠiP( ⃗xi |ℍ1)
ΠiP( ⃗xi |ℍ0)

= ∑
i

log
P( ⃗xi |ℍ1)
P( ⃗xi |ℍ0)

Λ

𝒫
𝒫 = P(Λ > Λ̂ |ℍ0) = P(Λ < Λ̂ |ℍ1)

Z

𝒫 = ∫
∞

Z̃

1

2π
exp(−x2/2)dx → Z = 2Z̃ [σ]

P(Λ |ℍ0) P(Λ |ℍ1)
Λ̂

IID



Mediator discrimination
Hypothesis test

• To extract , we construct an NN to classify events under two 
hypotheses,  and .


• Optimally trained NN with Cross-entropy loss function satisfies





• Test statistic becomes 





[P( ⃗xi |ℍ1)/P( ⃗xi |ℍ0)]
ℍ0 ℍ1

f( ⃗xi)
1 − f( ⃗xi)

=
P( ⃗xi |ℍ1)
P( ⃗xi |ℍ0)

Λ = ∑
i

log ( f( ⃗xi)
1 − f( ⃗xi) )



Mediator discrimination
Hypothesis test

• The absence of interference between signal models and backgrounds allows NN 
training without background events.


• Five input features encoding properties of the  coupling:
ZZX
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Mediator discrimination
Hypothesis testMχ = 200 GeV

After NN selection, alternative 
models ( , ) show distributions 
distinct from the -mediated 
signal, unlike the background


S A
H



Λ̂: 2.53
𝒫: 0.012
Z: 4.51σ

Λ̂: 2.13
𝒫: 0.017
Z: 4.26σ

Mediator discrimination
ResultsMχ = 200 GeV



Conclusion

• High-energy MuC with a forward muon detector is an ideal place to search for new 
Higgs couplings.


• Clean environment of a muon collider allows high sensitivity with a relatively simple 
neural network.


• ML-based hypothesis test is an effective procedure for verifying whether an observed 
signal truly originates from the Higgs mediation.



Thank you


