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Introduction

Investigating the invisible Higgs coupling at a MuC with a dedicated
forward muon detector

Clean experimental environment of MuC enables high sensitivity,
especially when combined with ML techniques

After observing a signal, it is crucial to verity whether the Higgs truly
mediates the process

ML-based hypothesis test provides strong discrimination between the
signal and alternative models
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Discovery potential

Benchmark experiment scenario & detector setting

. \/E = 10 TeV
e ¥ = 10 ab™!
® ‘nmain‘ < 244

e 244 < ‘nforwadl < 60,

Only muons and antimuons are detected 1n this region
° 5Eforward = 10% ;

Only uncertainties 1n the forward detector region



Discovery potential

Background consideration & baseline cut

Two types of backgrounds

1. uu — puu + Neutrinos

e 7, > 0 > n;

2. uu — uu + Visible particles escaping the main detector;
* AR ,; > 0.4

Undetected by forward muon detector
e E_.. > 500 GeV
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Discovery potential

Neural network

e Clean environment of a muon collider enables a well-reconstructed final state
— Conventional kinematic variables are sufficient as input features:
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« We train NNs for each M)( and obtain optimal sensitivity limit
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M. = 200 GeV
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M, = 200 GeV
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M, = 200 GeV
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M, = 200 GeV
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200 GeV

M, =
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M, = 200 GeV
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Discovery potential

Results
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Discovery potential

Results
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Mediator discrimination

Alternative models
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» We introduce new BSM scalar § and pseudoscalar A , which give a similar signature.
These fields are not involved in the EWSB.

' crp i}
SfS — A_SSZIM Z/,u/ + gSS)()(

1 ~ — /.
gA — A_AAZIMUZ//U/ + gAA)( (l}/s))(

« Different coupling structures induce distinct Z boson polarization contributions:
/.7, — SI/IA — yyis dominant at high energy

« Helicity formalism reveals this difference as a characteristic angular correlation, Agbﬂﬂ.



Mediator discrimination

Helicity formalism

qub = CO + C1 cos(Ang) + C2 cos(ZAng ) + Sl sm(Ang) + 52 sm(ZAqbﬂ

doy
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dog
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do,
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CH Surviving only with both
0 CP-conserving and
CP-violating terms
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Number of events
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Mediator discrimination

= 200 GeV After NN selection

Helicity formalism
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— Distribution alone is insufficient for discrimination

— A hypothesis test is necessary

3.0




Mediator discrimination

Hypothesis test

Neyman-Pearson lemma:
Likelihood ratio test is universally most powerful

Test statistic A as log-likelihood ratio: L
Z(H [T.P(x.|H P(x. | H

A — lOg ( 1) — lOg : (_)ll 1) — Z IQg (_)l‘ 1) 1.0 - P(A‘ Ho)
Z(Ho)yyp — HiP(x; [ Hy) l. P(x; | Hp)

Performing pseudoexperiments to obtain A distribution. 06+

Tail probability & in a symmetric way:

Separation power Z:

1 -
P = J exp(—x2/2)dx — 7 = 27 [o]
7 \/2¢




Mediator discrimination

Hypothesis test

» To extract [P(X;|H,)/P(X;| H,)], we construct an NN to classify events under two
hypotheses, H, and Hl,.

o Optimally trained NN with Cross-entropy loss function satisfies

&) PGIH)
1—fG)  PGi|Hy)

e TJest statistic becomes



Mediator discrimination

Hypothesis test

 The absence of interference between signal models and backgrounds allows NN
training without background events.

» Five input features encoding properties of the ZZX coupling:

log pi log pr AU FAU
20 GeV | 50 GeV | 12 T




Normalized events

Normalized events
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200 GeV Hypothesis test
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Mediator discrimination

M = 200 GeV
4 . Results
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Conclusion

High-energy MuC with a forward muon detector is an ideal place to search for new
Higgs couplings.

Clean environment of a muon collider allows high sensitivity with a relatively simple
neural network.

ML-based hypothesis test is an effective procedure for verifying whether an observed
signal truly originates from the Higgs mediation.
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