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l Dark Photon Search

Two model parameters:

. * Coupling constant €
* Light dark matter search: dark photon |. par photon mass m,
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l DarkSHINE Experiment

e DarkSHINE is a proposed fixed-target experiment that utilizing electron beam from SHINE aimed at

searching the light dark matter.

recoil tracker, ECAL and HCAL.

’

e The DarkSHINE detector system is consisted of tagging tracker

e Stagger strip
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l Signal and Background s\ esotul |
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* To differentiate signal from background, the key is to reconstruct the displaced vertex through tracking and vertexing.
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l Simulation and Reconstruction VaaN—util

= We use Geant4-based simulation to study the signal and background processes. CalcHEP generator is used

for signal production.

= We apply full chain reconstruction from hits to tracks and to vertexes. We adopt Kalman Filter algorithm
for both tracking (GenFit) and vertexing (Rave).

--------------------------------------------------------------------------------------------------------------
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l Challenge in Track Finding _NEsmun

e Track finding %1/

e Greedy algorithm + helix fit.
Q (&
e Start from seed layers and extend to other
layers. Target
* Good tracking efficiency for single-track
* 97% in tag-track case
* 60% in 3-track case g P =

_10 -

e Challenge in Track Finding

* Low momentum tracks suffer from multiple 20
IS
. . £
scattering effect, hard to find. =
=307 — track to
* In fixed-target experiment, most tracks is highly & ]
e hitstl
forward with small separate angles. It is easy to 011 3 nes DarkSHINE Simulation
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l GNN Track Finding: Strategy J’“THJTJ:\ o

e Build a graph that connects every hits in the adjacent tracker layers, predict the score for every edges.

e After the prediction of edge scores, use the clustering algorithm to form hits to tracks.
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l GNN Tracking: Build the Network

LinkNet

P

KNet——o T
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l GNN Tracking: Training

@® Dataset

* gamma conversion, e pair production, signal
with masses (20, 50, 100, 200, 500 MeV, € =
10~*). Each process 10° events.

e train:validation:test = 3:1:1

@® Loss function

* Binary cross-entropy with logit

o L=Y,[-9;log(c(y)) — (1 —9)log(1—o(¥;))]
® Optimization

e Adam algorithm
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l GNN Tracking: Result

e As a classification task, the scores for true and false edges are well separated.

- M\a=rsutul 1L

e According to the ROC curve, TrackNet yields better classification performance with AUC larger than 99.9%.
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ROC Curve (LinkNet)
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l GNN Tracking: Result

- M\a=rsutul 1L

e The output of GNN is the score of each edge. After cut on the score, we use the Dijkstra global search

algorithm to select the tracks with highest score.
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l Vertexing EVaaN=—<Will

e The reconstructed track is further used for vertex reconstruction.

e The vertexing algorithm is minimal chi-square + Kalman filter. Additional cuts are

applied to optimize the vertex resolution.

Track p > 0.5 GeV
Kinematics cut

. _ _ h_vertex_z_impParCutX0 ~ h_vertex_z_impParCutX0
Invariant mass > 20 MeV g 024 Entries 160 - Entries 244
S gaoE Mean 0.1938 S ¢ Mean 0.04508
. F Std Dev 2.709 0.16 Std Dev 3.244
2 = “E %2/ ndf 9.564 /14 - %2/ ndf 20.64/16
Reconstruction track Shared hlt num O 0.18 = Prob 0.7933 0.14— Prob 0.1928
= Constant 0.162+0.018 = Constant ~ 0.1283 +0.0111
cut 916 Mean  0.05445 +0.20498 012 Mean  -0.2206 +0.2088
Impact parameter cut 0.14 Sigma 2.326+0.179 E Sigma 2.926 +0.177
0.2 o =
= 0.08—
Recon vertex num >=1 iz r
0.08 0.06 |—
: : 008 0.04 -
Vertex dispersion < 0.4 mm - TE
Hiia - 0.02— |
Vertex parameter cut Vertex theta > 0.012 rad 93 'ﬁzlo ) 1|an L 210 L 0 ol 'wzlo' 1|0+. + 210
Vertex z [mm] Vertex z [mm]

Vertex projection — IP
distance
<0.3mm
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l Vertexing for Visible Decay Search

raeN—«uitif

e \We rely on the reconstructed vertex position to search for visible decay signal.

e Due to the statistics limit, we assume the ideal Gaussian shape of vertex z distribution after the vertex

quality cuts, so that we can define a region with no background.

a background

signal (m, =60 MeV, e=1.3x10")
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EOT: 3E14

Event num 7.5E12 4.3E11

Event num (after cut) 2.2E10 1.2E9
> 6.4 sigma

0.1 background range (19mm, 50mm)
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l Exclusion Limit asN—avutil

® After the definition of signal region for displaced vertex, we can calculate the signal yield, efficiency and
significance for each parameter space point.

® Thanks to around 2 times improvement on the signal efficiency, the result with GNN tracking can cover

more parameter space with small my,.
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l Summary BVaaN—<uitiR

e Summary

* We introduce a GNN-based track finding pipeline (LinkNet / TrackNet with CBAM and Gated
Fusion) for the DarkSHINE experiment.

* The network achieves excellent edge classification performance with AUC larger than 99.9%.

» After vertexing and physics cuts, the improved tracking yields about a factor of two gain in signal
efficiency.

* This directly enhances the sensitivity to visible dark photon decays, especially in the low-mass
region.

e Outlook

* Incorporate more realistic detector effects (noise, inefficiency, misalignment) into training.

* Explore end-to-end learning from hits to vertices and joint optimization of tracking and vertexing.
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l Hit Reconstruction  \F=rsutull ]

Strip clustering

Merge u, v layer

(u) _ (x1 cos 8, — y; sin 01)
X, cos 0, — y, sin 0,

\ 1 v
//\ 4 (cos 6, —sin0, )
* Cluster strip hits on single layer. = _ cosf, —sinb,

v oL X
e Use mean shift clustering, based \g\i @" : (y) =47 (ﬁ)
on the weighted distance (energy K \ \ZL’ ' Y. v) (03 ny> _ a1 (aﬁ auv) a-Hr
deposition of hits) to the center (x1, y1):“ k Txy Oy Owy  Op
of cluster. .

* Use transformation of coordinates,

- can handle any cases.
\/ * With error propagation.
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