Physics of Machine Learning

Gert Aarts
=5 Swansea
LEVERHULME W
=y, Prifysgol ROYAL
TRUST Abestawe SOCIETY

KEK, Jan 2026



ML and theoretical physics

commonality between methods used in ML and in theoretical physics

obvious examples: linear algebra, optimisation, stochastic dynamics, sampling, ...

many more intriguing connections: understand ML algorithms better, contribute new ideas
theoretical physicists are/should not satisfied with a ‘black-box’ algorithm

guantum field theory: extensive experience in analytical and computational studies of

systems with many fluctuating degrees of freedom —> fairly unique perspective



Outline: ML and theoretical physics

three examples:
o diffusion models and stochastic quantisation
o stochastic gradient descent and random matrix theory

o learning capability of neural networks and phase diagram of disordered systems



|. Diffusion models and stochastic
guantisation

very enjoyable collaboration with Lingxiao Wang, Kai Zhou

and

Diaa Habibi
Qianteng Zhu, Wei Wang

Thomas Ranner, Andreas lpp, David Mller



Lattice field theory: nonperturbative physics

o simulating strongly interacting matter e

o quarks and gluons on a four-dimensional spacetime lattice

o numerical evaluation of the (Euclidean) path integral A— __J[“

Z = / DU Dy Dip e~ Sm@+9M O / DU det M(U)e~ ()

I

gluon qugrk
o very high-dimensional integral, importance sampling

o numerically expensive, requires extensive HPC resources .

https://www.physik.uni-wuppertal.de/de/startseite-fachgruppe-physik/
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Generative Al for lattice field theory (LFT)

o generate ensembles of configurations, varying lattice spacing, volume, temperature, ...
o standard algorithm: Hybrid Monte Carlo (HMC) + variations
o can GenAl offer alternatives, complement HMC, or replace bottlenecks?

o pioneered by MIT group: normalising flow, learning an invertible transformation
MS Albergo, G Kanwar, PE Shanahan, Phys Rev D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]

o and by Akio Tomiya (see talk on Monday)

o in this talk: diffusion models, learning from data


https://arxiv.org/abs/1904.12072
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Score-Based Generative Modeling through
Stochastic Differential Equations

Yang Song, Jascha Sohl-Dickstein, Diederik P.
Kingma, Abhishek Kumar, Stefano Ermon, Ben
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Generative Al using diffusion models

Noise

Data < Generating samples by denoising

465-page review: C-H Lai, Y Song, D Kim, Y Mitsufuji, S Ermon
The Principles of Diffusion Models, 2510.21890 [cs.LG]

https://encord.com/blog/diffusion-models/
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Diffusion models: scalar fields

application to LFT straightforward: noise is applied at each lattice point separately
o forward Oip(z,t) = K(p(z,t),t] + g(t)n(x,t)

o backward 8,¢(z,7) = —K|[¢p(z,7),T — 7] + ¢*(T — 7)Vglog P(¢,T — 7) + g(T — 7)n(x,7)

score
o neural network approximates the time-dependent score
o learned by minimising a loss function sg(¢,t) ~ Vylog P(¢,1)
neural score

network
10



Diffusion model for 2d ¢* lattice scalar theory

o 327 lattice, choice of action parameters in symmetric and broken phase

o training data set generated using Hybrid Monte Carlo (HMC)
=025 7=05

o first application of diffusion models

in lattice field theory

generating configurations:
o broken phase

o “denoising” (backward process)

o large-scale clusters emerge, as expected

L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]



https://arxiv.org/abs/2309.17082

Diffusion models and stochastic quantisation

iSi (9¢(33, T)
o backward/denoising process P _ g2(T)V¢ log P(¢;7) + g(T)n(z, T)
score
o write the “time-dependent” distribution in terms of Som)
- ¢,
effective action P(¢:7) = € '
’ Z

o DMs resemble approach well known in LFT:
stochastic quantisation (Parisi and Wu 1981) Vs log P(gb, T) - _V¢S(¢’ T)

o but with time-dependent drift and O¢(z, T)

different approach to thermalisation or

— _V¢S(¢) + \/577(3% T)

12



Diffusion models and stochastic quantisation

o diffusion models as an alternative approach to stochastic quantisation

theory: p(¢) ~ e=5(®) » configurations
stochastic quantisation A
diffusion model,
e.g. HMC backward process
“denoising”
\ 4
configurations > random
configurations

diffusion model, forward process

L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]] see also Y Hirono, A Tanaka, K Fukushima, 2403.11262
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Incorporate (new/old) ideas in DM dynamics

use experience from stochastic quantisation and other well-tested approaches:

backward process (after
model has been trained):

O exactness: accept/reject step
Metropolis-adjusted Langevin algorithm

o thermalisation: annealing stage

o conditioning: reweighting from [, to 8

Q Zhu, W Wang, GA, K Zhou, L Wang, 2502.05504 [hep-lat]

B
o B S@)
b0 - Py <
t<0.01
$r—1
[
[
Y
12
I
b

................

Metropolis-Adjusted

14

_ /;—j,, aisg(de, t) +1 N(O, I)
be-1 , be —- < b7
\

~ \\ .

b0 o

oF

¢TA

Annealed Langevin 14


https://arxiv.org/abs/2502.05504

Physics conditioning: gauge theory

o action and drift scale with gauge coupling 8

. . . . e—ﬁ%S((I)) — 8 aisg(de, t) +1 N(O, I)
o motivated by stochastic quantisation:
: : Po (1 - er ) ¢ e 0
score is proportional to 8 ’ ' 4 ‘ §
t<0.01 \\
. . ................ 430 \\\\ éo
o train using data generated at (5, . G0 \
: I : \
: I
o employ at different 5 values - O

o applied to U(1) and U(2), SU(2) gauge theory

(latter are in preparation) o
Metropolis-Adjusted Annealed Langevin 15



2D U(1) gauge theory: vary the volume

o training: 30k configurations at § = 1 on 16 obtained using HMC
o generating: 1024 configsat 8 = 1,3,5,7,9,11 on 82,1672, 32°

Frequency density

10

f =1L =16, HMCvs DM

Lattice Size (L)

1 x 1 Wilson Loop

HMC DM Langevin Exact
8 0.447(72) 0.445(74) 0.443(80) 0.446
16 0.447(37) 0.446(37) 0.444(36) 0.446
32 0.446(18) 0.445(19) 0.445(18) 0.446
64 0.446(9) 0.446(11) 0.445(9) 0.446

increase the volume, after trainingon L = 16

16




2D U(1) gauge theory: vary the coupling

o training: 30k configurations at § = 1 on 16 obtained using HMC
o generating: 1024 configsat 8 = 1,3,5,7,9,11 on 82,1672, 32°

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

°or | | 3 HMCB=T7] . 1 x 1 Wilson Loop

551 | 5 @@ DMB=7 coupling (3)

501 | 0= HMC DM Langevin Exact
> 45 i i i I
@ 0] ; 3 0.811(17) 0.811(17) 0.809(17) 0.810
8 35-_ ; ]
2 30l ] E 5 0.894(9)  0.894(9) 0.891(10) 0.894
§§2 1] 7 0.926(7) 0.926(7) 0.924(6) 0.926

15 | ] 9 0.944(3)  0.942(4) 0.940(6)  0.942

0F e e

- .y L ] 11 0.954(3)  0.953(4) 0.950(5) 0.953
N A D D I N
B 7 S increase the coupling, after trainingat f =1

,8=7,L=16,H|V|CVS DM 17



Diffusion models: summary

implementation in LFT is relatively straightforward
trained on data: need high-quality ensembles

apply to larger volumes, different couplings

O O O O

relation to well-known algorithms in computational physics very useful |

further work:

o theories with a sign problem: GA, D Habibi, L Wang, K Zhou, JHEP 12 (2025) 160 [2510.01328 [hep-lat]]

o non-abelian SU(2) and U(2) gauge theories, using gauge equivariant networks (L-CNNs):

in preparation, with D Habibi, A Ipp, D Muller, T Ranner, L Wang, W Wang, Q Zhu

18


https://arxiv.org/abs/2510.01328

. Stochastic gradient descent and
random matrix theory

= GA, B Lucini, Chanju Park, Phys Rev E 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]

= GA, O Hajizadeh, B Lucini, Chanju Park, ML4PS NeurlPS 2024, 2411.13512 [cond-mat.dis-nn]

19


https://arxiv.org/abs/2407.16427
https://arxiv.org/abs/2411.13512

Feed-forward neural network

supervised learning: data set D = {x, y}, input x and associated output y

input data x outputy = f(x)

@
O
O
O
\'
©
®
O

NN is a “universal approximator”: y ~ y, should be able to generalise, predict y for unseen data x

combination of linear transformations (matrices) and nonlinear activations on the nodes



Stochastic gradient descent

o learn by minimising loss function

o network parameters are contained
in (rectangular) weight matrices

o stochastic gradient descent:
update weight matrices by averaging
gradient of loss over mini-batches of data

r o OL(0) _ 1
I/Vz.._VVZ a@VVij 5W3—|B|Z5Wb

o hyperparameters: learning rate and batch size: a, |B]

21



Stochastic weight matrix dynamics

0L
update using stochastic gradient descent: W — W/ =W +6W  with W = _QW
estimated using a batch B with batch size: oWy = Z oW,
beB
1
fluctuations controlled by finite batch size (central limit theorem): W VIoW)]
update is stochastic: §W = E[6W] + L\/V[cSW)] M with nij ~ N(0,1)

VIB|

in terms of the gradient ,
W =W — aIE

of the loss function \ /|B \/

mean variance 22



Stochastic matrix dynamics

work with symmetric combination X = W!W (real and positive eigenvalues)
what is the framework to consider stochastic matrix dynamics?

goes back to Wigner (1955) and Dyson (1962): random matrix theory (RMT)
stochastic matrix dynamics: Dyson Brownian motion (Dyson, 1962)

first applied to nuclear spectra (1950/60s)

applied in (lattice) QCD to spectrum of Dirac operator (1990-2000s)

23



Stochastic matrix dynamics:
Dyson Brownian motion and the Coulomb gas

o framework to consider stochastic matrix dynamics for symmetric matrix X

o Dyson Brownian motion (in continuous time):

dX,L
1 = K;;(X) + / Aijnij

o eigenvalues then evolve according to

o = Ki(w:) + P V2gin; VA = /2

J#1

Coulomb repulsion

- Wigner surmise for level spacing (universal)
24



Dyson Brownian motion and Coulomb gas

+v2g:m;

. , da:z
o eigenvalues dynamics = Ki(x;) + E

P x]

o stationary distribution for distribution of eigenvalues (via Fokker-Planck equation)
1 2
— 2. Vi(%i)/9;
P({zi}) = o [ ] lai — zjl e 20/
i<j

dVi(z;)

o with partition function Z = /dml ..dxy P,({z;}) anddrift K(z;) =— y
Zj

- Coulomb gas

25



Back to weight matrix dynamics

o stochasticdynamics X — X' = X +E[6X] + L V[0X)]n

VIB|

o what can be carried over from Dyson’s matrix dynamics? implications? universality?

o eigenvalue equation, with explicit learning rate and batch size dependence

: o’ gi a
ZCZ'—)QJZ-Z.T?;-FOZKZ'-I-F . .-|- \/ng"lh
| | j#i Li — &y V |B|
o only continuous time limit (SDE) in some weak sense a, |B| — 0
dz;(t G2 af/|B| =T
i) = Ki(z,t)+ T Ji 4 \/ﬁgmz- /18]
dt i — Tj

26



O

O

O

O

Coulomb gas: effective temperature

dt

~2
= Ki(z,t) + TZ L — V2T gm;
-4y

x.
g#i ot

1
distribution for fixed «, |B| :  Ps({z;}) = = H |z, — x| e” 22 Vi(@i)/g;

Z 44
1<)
make explicit dependence on learning rate and batch size
Q

9;i = —F—0Gi Vi(z;) = aVi(z;
N (z) = a¥i(z)

exponent scales with effective temperature: universal scaling
T =a/|B|

potential itself is problem, i.e. loss function, dependent

~

Vi(z:) 1 Vi(z;)

g

K;=-

" a/|B| 32

da:i 8I/VZ] diag

27




Linear scaling relation

o dependence on «/|B| in training has been observed before, empirically

v' P. Goyal, P. Dollar, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al.,

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour [1706.02677]
v' S.L. Smith and Q.V. Le,

A Bayesian Perspective on Generalization and Stochastic Gradient Descent [1710.06451]
v S.L. Smith, P. Kindermans and Q.V. Le,

Don’t Decay the Learning Rate, Increase the Batch Size [1711.00489]

o finds a natural place in the framework of Dyson Brownian motion and Coulomb gas

. . . . 28
GA, B Lucini, Chanju Park, PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]



https://arxiv.org/abs/2407.16427

Manifestations of RMT in weight matrix dynamics

RMT predicts universal behaviour:
o universal distribution of level spacing S; = x; 1 — x; :Wigner surmise P(S)
o Coulomb repulsion of eigenvalues

N
o spectral density is problem-specific p(z) = 1 o(x — x;)

N 4

1=1

o universal behaviour has indeed been observed for variety of ML algorithms and data sets

here: explore emergence of temperature further
29



1. Learning capability of neural networks and
phase diagram of disordered systems

= Chanju Park, B Lucini, GA, Mach Learn Sci Tech 6 (2025) 4, 045048 [2509.01349 [cond-mat.dis-nn]]

30


https://arxiv.org/abs/2509.01349

Neural networks as disordered systems

how well do NNs learn?
x 1073

o dependence on hyperparameters: 2.5
* learning rate
* batch size 10*
* weight matrix initialisation -
> 10

o treat as statistical system with fluctuating degrees of freedom
10~

o already identified temperature T = «/|B]

—> arrive at NN phase diagram

. 31
note: learning rate denoted as € from now on



Hyperparameters: initialisation

o already discussed T = €/|B| 10-3
10

o weight matrices need to be initialised
o usual choice W;; ~ N (0, o7y /1)

o introduces another hyperparameter oy

will demonstrate that a NN phase diagram
emerges in plane spanned by these

o draw analogy to disordered systems and spin glasses

. 32
note: learning rate denoted as € from now on



Feed-forward neural network: explicit function

ni—a
NN function: @i(xa; 9) = 27;(L) (SUa) = Z Wz'(L)¢ ( (£ 1)(5’7a))

J=1

pre-activations:

(z+1) ZW(H—l) ( ma))

no
1 1
2 () =Y Wz
j=1

RNV Zs—pra\ ‘/ F
gb(z(l)) ¢(Z(2)) ¢(Z(3)) ¢(Z(L—1))



Loss function example: mean squared error

|D| nr

activations on final hidden layer: features ~ @jo = ¢ (z§L_1)(xa))

p(zV) ¢(z2P)  P(z®) ... p(ztV)



Loss function example: mean squared error

£0)= Y € (0(za).§(20:0) () =5 3 (5~ 9

activations on final hidden layer: features Qo = ¢ (ZJ(-L_D(SUQ))

network prediction is 217: i ni_:l W(L)¢ 2
linear combination of ~ 2D L Yia - ij Pia
features D o = .
nr, nr— nr—
L L L
SE DM DO PR
a=1 =1 \j,k=1 j=1
| f |D| nr—-i |D| nr—1
express loss function as Jiibio®io — higtio + C
function of features 2|D| ;g:l 7RI D) Z Z JeTd 35

a=1 j=1



Neural network as a disordered system

loss function as a function of features:

Dl nL—1 D] np—1
L) = D 2. D Jibiatia — Z > hjatja
| |a 14,7=1 | |a 1 5=1
ny, nr
with couplings: Jij = W,gf)W,gJL), hjo = Zymm(f)
k=1 i=1

resembles disordered “spin” system: 1
(Ising model with local couplings) H = 2 Z JijSi8j + Z h;s;
1] J

36



VOLUME 35, NUMBER 26 PHYSICAL REVIEW LETTERS 29 DECEMBER 1975

Solvable Model of a Spin-Glass

David Sherrington* and Scott Kirkpatrick
IBM Thomas J. Watson Reseavch Centev, Yorktown Heights, New Yovk 10598
(Received 16 October 1975)

We consider an Ising model in which the spins are coupled by infinite-ranged random
interactions independently distributed with a Gaussian probability density. Both “spin-
glass” and ferromagnetic phases occur. The competition between the phases and the type
of order present in each are studied.

PARA
val
1.00
0.75 kL FERRO
— . Q.Q. Q. 0.50 |k SPIN GLASS
H > E Jij8i8; + E h;s;
] J 0.25 |
0.0 | | l |
0.0 0.25 0.50 0.75 1.00 1.25

Tol

FIG. 1. Phase diagram of spin-glass ferromagnet.



Neural network phase diagram

o trained a NN in the teacher-student setup
o teacher network has fixed weight matrices, student has to learn those, or equivalent ones
o two hidden layers [3,32,16,1]
o vary learning rate/batch size T = ¢/|B]
. e . . . (1) N 2
o vary initial weight matrix variance W;;j ~ (O, OW/nl_l)
o 100 runs for each choice of parameter combination

o monitor number of “observables”, loss, grad loss, feature alignment, ...

38



NN phase diagram: mean test loss

effective temperature f : no convergence

~ |learning rate/batch size - - (loss is large)
~ paramagnetic phase

T =¢€/|B|

Q
~—
D)

excellent learning
(loss is small)
~ ferromagnetic phase

no learning, jamming
~ spin glass phase

disorder ~ variance of weight matrices upon initialisation 39



Three distinct phases

evolution of singular values
of weight matrices

jamming x

x10°

I d T

" ¢/|B| =0.031, 1/ow =8

convergence

% 02 04 06 08 10 J




NN phase diagram: external field alignment

D| np_1 D| np—1

2|D| Z Z Jzy¢za¢]a T |D| Z Z h]a¢]a
a=1 1,7=1 a=1 j=1
<1075 0

alignment between features
and external field

1.75

hl ¢

1.50
1.25

1.00
most aligned in

0.75  ferromagnetic phase

0.50

41




Phase boundaries

find semi-analytical expression for the phase boundaries

o between ordered and disordered phase: (in)ability to learn, vanishing gradient problem
= features as “soft spins”

o between paramagnetic and other phases: strong fluctuations, no convergence
= signal-to-noise ratio of gradient of loss

o see paper for details

42
Chanju Park, B Lucini, GA, Mach Learn Sci Tech 6 (2025) 4, 045048 [2509.01349 [cond-mat.dis-nn]]



https://arxiv.org/abs/2509.01349

Collection of phase diagrams

mean
test loss

x 104

feature
alignment

0.8

0.6

0.4

0.2

0.0

2.0

1.5

1.0

0.5

0.0

different observables
probe different aspects
of the dynamics

time correlation
of features

time-averaged
rate of average
level spacing

Aty) = %k)g i(g))

43



Practical application: choice of hyperparameters

o identification of ferro, paramagnetic and jammed or spin glass phases

o helps in understanding which choice of hyperparameters is preferred

ey ()7
101 E E
: 10~ choose as large T' = ¢/|B| as possible
with initial variance of weight matrices
around 1
107°
mean
test loss

107

44




Summary: physics of machine learning

o deep connection between paradigms in ML and theoretical physics

three examples:

= diffusion models and stochastic quantisation
= stochastic gradient descent and random matrix theory
= |earning efficiency and phase diagrams

o all provide useful insight to understand and improve methods

o many opportunities ahead for theoretical physicists to contribute

45



BACKUP SLIDES



Transformer: nano-GPT

o four attention blocks with each four attention heads: many matrices

o each attention head: Main Points of Transformer Architecture
DECODER

= one key (K) matrix
= one query (Q) matrix
= one value (V) matrix

matrix sizes: M X N = 64 X 16 Outputer?beddi

Tokenization

about 2.1 X 10° parameters T

Entire input sequence Previous output

use AdamW optimiser

O O O O

trained on opus of Shakespeare

47
GA, O Hajizadeh, B Lucini, C Park, NeurlIPS 2024 workshop ML and the Physical Sciences, 2411.13512 [cond-mat.dis-nn]

https://botpenguin.com/glossary/transformer-architecture
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0.6-

Transformer: Wigner surmise

2 0.4]
o

0.2

0.0
0

o short-distance fluctuations: level spacing described by Wigner surmise

o remains approximately described by RMT prediction (shown K matrix of layer 1)

1.0 ' T ' T ' T - T - 1.0 ' T ' T ' T - T - 1.0 - | - , - , . ,
: ——  Wigner surmise 1 - ——  Wigner surmise . - ——  Wigner surmise
0.8F B Histogram, [teration:0 0.8 B Histogram, [teration:1000 0.8F B Histogram, [teration:5000 -
06 4 06 .
2 2]
R R
0.4 = 0.4 .
0.2 = 0.2 .
0'OO 1 2 3 4 5 O.OO 1 2 3 4 5
s 5 S
iteration 0 iteration 1000 iteration 5000

48
GA, O Hajizadeh, B Lucini, C Park, NeurlIPS 2024 workshop ML and the Physical Sciences, 2411.13512 [cond-mat.dis-nn]



https://arxiv.org/abs/2411.13512

Transformer: spectral density

o initialisation: eigenvalues of X = WV follow Marchenko-Pastur distribution

A
s _
Pyp (2;0%, A) = o——+/ (@4 —2)(z —2-) 0(z4 —2)0(z — z)
3.0 T I T I T I T I T
I —— MP Fit 02:0.34,4:0.99 1
2.5 Bl Histogram, Iteration:0

2.0
E15

1.0

0.5

O'%.O 0.2 0.4 0.6 0.8 1.0



Transformer: spectral density

o evolves from initial Marchenko-Pastur distribution to distribution with power decay

o shown K matrix of layer 1

3.0 ' I ' J ' J ' I ' 1.50 T T T T T T T T T T T 1.0 T T T T T T T T T
I —— MP Fit 6°:0.34,4:0.99 1 1 —— MP Fit 6%2:0.60,4:0.90 1 - —— MP Fit ¢%:0.76, A : 0.80
2.5 EE Histogram, Iteration:0 1.25 B Histogram, Iteration:1000 0.8F B Histogram, Iteration:5000 |
2.0 1.00
= ol
<197 = 0-75]
1.0 0.50
0.25

0. :
%.O 0.2 0.4 0.6 0.8 1.0 0 O%.O 0.5 1.0 1.5 2.0 2.9 3.0

xr €T xXr

iteration O iteration 1000 iteration 5000

50



Open gquestions

O

Dyson Brownian motion is present at “microscopic” level in weight matrix dynamics

how does it manifest itself for more advanced architectures?

is there universality beyond level repulsion (power law tails)?

phase diagrams of deeper NNs

practical implications: description of learning, algorithmic advances, ...

51



