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ML and theore,cal physics

o   commonality between methods used in ML and in theore5cal physics

o   obvious examples: linear algebra, op5misa5on, stochas5c dynamics, sampling, … 

o   many more intriguing connec5ons: understand ML algorithms be=er, contribute new ideas

o   theore5cal physicists are/should not sa5sfied with a ‘black-box’ algorithm

o   quantum field theory: extensive experience in analy5cal and computa5onal studies of
      systems with many fluctua5ng degrees of freedom à fairly unique perspec5ve 
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Outline: ML and theore,cal physics

three examples: 

o   diffusion models and stochas0c quan0sa0on

o   stochas0c gradient descent and random matrix theory

o   learning capability of neural networks and phase diagram of disordered systems
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I. Diffusion models and stochas,c 
quan,sa,on

very enjoyable collabora5on with Lingxiao Wang, Kai Zhou 
and
 
Diaa Habibi
Qianteng Zhu, Wei Wang
Thomas Ranner, Andreas Ipp, David Müller
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La<ce field theory: nonperturba,ve physics 

o   simulating strongly interacting matter

o   quarks and gluons on a four-dimensional spacetime lattice

o   numerical evaluation of the (Euclidean) path integral

o  very high-dimensional integral, importance sampling
 
o  numerically expensive, requires extensive HPC resources 5
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Genera,ve AI for la<ce field theory (LFT)

o  generate ensembles of configura5ons, varying laUce spacing, volume, temperature, … 

o  standard algorithm: Hybrid Monte Carlo (HMC) + varia5ons

o  can GenAI offer alterna5ves, complement HMC, or replace bo=lenecks?

o  pioneered by MIT group: normalising flow, learning an inver5ble transforma5on 
  MS Albergo, G Kanwar, PE Shanahan, Phys Rev D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]

o  and by Akio Tomiya (see talk on Monday)

o  in this talk: diffusion models, learning from data
6

https://arxiv.org/abs/1904.12072


§ LW, GA, KZ, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]; ML4PS NeurIPS 2023, 2311.03578 [hep-lat]

§ + D Habibi, Mach Learn Sci Tech 6 (2025) 2, 025004, ML4PS NeurIPS 2024 [2410.21212 [hep-lat]]

                JHEP 12 (2025) 160 [2510.01328 [hep-lat]]
§ + Q Zhu, W Wang, 2502.05504; ML4PS NeurIPS 2024, 2410.19602 [hep-lat]

§ + T Ranner, A Ipp, D Müller: in prepara5on (non-abelian gauge theories)

see also work by 

§ Y Hirono, A Tanaka, K Fukushima, 2403.11262 [cs.LG]
§ K Fukushima, S Kamata, Y Hirono, J Phys Soc Jap 94 (2025) 3, 031010 [2411.11297 [hep-lat]]
§ O Vega et al, 2510.26081 [hep-lat], 2512.19877 [hep-lat]
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denoising

Genera&ve Modeling by Es&ma&ng 
Gradients of the Data Distribu&on
Yang Song, Stefano Ermon
1907.05600 [cs.LG]

interpola@on

Score-Based Genera&ve Modeling through 
Stochas&c Differen&al Equa&ons
Yang Song, Jascha Sohl-Dickstein, Diederik P. 
Kingma, Abhishek Kumar, Stefano Ermon, Ben 
Poole, 2011.13456 [cs.LG]

https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456


Genera,ve AI using diffusion models

9
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465-page review: C-H Lai, Y Song, D Kim, Y Mitsufuji, S Ermon
The Principles of Diffusion Models, 2510.21890 [cs.LG]
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Diffusion models: scalar fields

applica5on to LFT straighnorward: noise is applied at each laUce point separately

o   forward

o   backward

o   neural network approximates the 5me-dependent score

o   learned by minimising a loss func5on

score

scoreneural 
network 
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Diffusion model for 2d 𝜙! la<ce scalar theory

o   32! laUce, choice of ac5on parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)

o   first applica5on of diffusion models 
      in laUce field theory

genera5ng configura5ons:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

11
L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]

https://arxiv.org/abs/2309.17082


Diffusion models and stochas,c quan,sa,on
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o   backward/denoising process

o   write the “5me-dependent” distribu5on in terms of
     effec5ve ac5on

o  DMs resemble approach well known in LFT: 
     stochas5c quan5sa5on (Parisi and Wu 1981)

o  but with 5me-dependent driq and 
     different approach to thermalisa5on

score



Diffusion models and stochas,c quan,sa,on

o   diffusion models as an alterna5ve approach to stochas5c quan5sa5on

configurations

theory:

e.g. HMC

configura5ons
stochas5c quan5sa5on

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configura5ons

L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]   see also Y Hirono, A Tanaka, K Fukushima, 2403.11262 

https://arxiv.org/abs/2309.17082
https://arxiv.org/abs/2403.11262


Incorporate (new/old) ideas in DM dynamics
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o exactness: accept/reject step
     Metropolis-adjusted Langevin algorithm

o thermalisa5on: annealing stage

o condi5oning: reweigh5ng from 𝛽" to 𝛽

use experience from stochas5c quan5sa5on and other well-tested approaches:

backward process (aqer 
model has been trained):

Q Zhu, W Wang, GA, K Zhou, L Wang, 2502.05504 [hep-lat]

https://arxiv.org/abs/2502.05504


Physics condi,oning: gauge theory

o   ac5on and driq scale with gauge coupling 𝛽

o   mo5vated by stochas5c quan5sa5on:
      score is propor5onal to 𝛽

o   train using data generated at 𝛽"

o   employ at different 𝛽 values

o   applied to U(1) and U(2), SU(2) gauge theory
      (la=er are in prepara5on) 
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2D U(1) gauge theory: vary the volume

o   training: 30k configura5ons at 𝛽 = 1 on 16! obtained using HMC
o   genera5ng: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8!, 16!, 32!

16𝛽 = 1, 𝐿 = 16, HMC vs DM

increase the volume, aqer training on 𝐿 = 16 



2D U(1) gauge theory: vary the coupling

o   training: 30k configura5ons at 𝛽 = 1 on 16! obtained using HMC
o   genera5ng: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8!, 16!, 32!

17𝛽 = 7, 𝐿 = 16, HMC vs DM

increase the coupling, aqer training at 𝛽 = 1



Diffusion models: summary

o   implementa5on in LFT is rela5vely straighnorward 
o   trained on data: need high-quality ensembles
o   apply to larger volumes, different couplings
o   rela5on to well-known algorithms in computa5onal physics very useful !

further work:
o   theories with a sign problem: GA, D Habibi, L Wang, K Zhou, JHEP 12 (2025) 160 [2510.01328 [hep-lat]]

o   non-abelian SU(2) and U(2) gauge theories, using gauge equivariant networks (L-CNNs): 
  in preparaEon, with D Habibi, A Ipp, D Müller, T Ranner, L Wang, W Wang, Q Zhu 
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II. Stochas,c gradient descent and 
random matrix theory

§  GA, B Lucini, Chanju Park, Phys Rev E 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]

§  GA, O Hajizadeh, B Lucini, Chanju Park, ML4PS NeurIPS 2024, 2411.13512 [cond-mat.dis-nn]
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https://arxiv.org/abs/2407.16427
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Feed-forward neural network

NN is a “universal approximator”: -𝒚	~	𝒚, should be able to generalise, predict 𝒚 for unseen data 𝒙

combina5on of linear transforma5ons (matrices) and nonlinear ac5va5ons on the nodes

input data 𝒙 output -𝒚 = 𝑓(𝒙)

supervised learning: data set 𝓓 = 𝒙, 𝒚 , input 𝒙 and associated output 𝒚 
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Stochas,c gradient descent

o learn by minimising loss function

o network parameters are contained 
      in (rectangular) weight matrices

o stochastic gradient descent: 
     update weight matrices by averaging 
     gradient of loss over mini-batches of data

o hyperparameters: learning rate and batch size:

𝑊#	 𝑊!	 𝑊$	 …𝑊&'#	 𝑊&	

input output
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Stochas,c weight matrix dynamics

o   update using stochas5c gradient descent:     with 

o   es5mated using a batch      with batch size: 

o   fluctua5ons controlled by finite batch size (central limit theorem):

o   update is stochas5c:       with

o   in terms of the gradient 
      of the loss func5on 

22mean        variance



Stochas,c matrix dynamics

o   work with symmetric combina5on         (real and posi5ve eigenvalues) 

o   what is the framework to consider stochas5c matrix dynamics?

o   goes back to Wigner (1955) and Dyson (1962): random matrix theory (RMT)

o   stochas5c matrix dynamics: Dyson Brownian mo5on (Dyson, 1962)

o   first applied to nuclear spectra (1950/60s)

o   applied in (laUce) QCD to spectrum of Dirac operator (1990-2000s)
23



Stochas,c matrix dynamics: 
Dyson Brownian mo,on and the Coulomb gas

o   framework to consider stochas5c matrix dynamics for symmetric matrix 

o   Dyson Brownian mo5on (in con5nuous 5me):

o   eigenvalues then evolve according to

         

24

Coulomb repulsion
à Wigner surmise for level spacing (universal)



Dyson Brownian mo,on and Coulomb gas

o   eigenvalues dynamics

o   sta5onary distribu5on for distribu5on of eigenvalues (via Fokker-Planck equa5on)

o   with par55on func5on         and driq
 
à  Coulomb gas

25



Back to weight matrix dynamics 
o   stochastic dynamics

o   what can be carried over from Dyson’s matrix dynamics? implications? universality?

o   eigenvalue equation, with explicit learning rate and batch size dependence

o   only continuous time limit (SDE) in some weak sense
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Coulomb gas: effec,ve temperature

o   distribu5on for fixed  : 

o   make explicit dependence on learning rate and batch size

o   exponent scales with effec5ve temperature: universal scaling

o   poten5al itself is problem, i.e. loss func5on, dependent    

27



Linear scaling rela,on
o  dependence on    in training has been observed before, empirically

ü P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al., 
 Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour [1706.02677]
ü S.L. Smith and Q.V. Le, 
 A Bayesian PerspecCve on GeneralizaCon and StochasCc Gradient Descent [1710.06451]
ü S.L. Smith, P. Kindermans and Q.V. Le, 
 Don’t Decay the Learning Rate, Increase the Batch Size [1711.00489]

o  finds a natural place in the framework of Dyson Brownian mo5on and Coulomb gas

GA, B Lucini, Chanju Park, PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]
28
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Manifesta,ons of RMT in weight matrix dynamics

RMT predicts universal behaviour:

o   universal distribu5on of level spacing         : Wigner surmise

o   Coulomb repulsion of eigenvalues

o   spectral density is problem-specific

o   universal behaviour has indeed been observed for variety of ML algorithms and data sets

here: explore emergence of temperature further 
29



III. Learning capability of neural networks and 
phase diagram of disordered systems

§  Chanju Park, B Lucini, GA, Mach Learn Sci Tech 6 (2025) 4, 045048 [2509.01349 [cond-mat.dis-nn]]
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Neural networks as disordered systems 
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how well do NNs learn?
o   dependence on hyperparameters: 

• learning rate
• batch size
• weight matrix ini5alisa5on

o   treat as sta5s5cal system with fluctua5ng degrees of freedom

o   already iden5fied temperature

  à arrive at NN phase diagram
31note: learning rate denoted as 𝜖 from now on



Hyperparameters: ini,alisa,on

o already discussed

o weight matrices need to be ini5alised

o usual choice

o introduces another hyperparameter

will demonstrate that a NN phase diagram 
emerges in plane spanned by these 

o draw analogy to disordered systems and spin glasses
32
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Feed-forward neural network: explicit func,on

𝑛"	 𝑛#	 𝑛!	 𝑛$ 	 …	 𝑛&'#	 𝑛&	

𝑊#	 𝑊!	 𝑊$	 …𝑊&'#	 𝑊&	

𝑥(;* :𝑦+(𝑥*)

𝜙 𝑧 ! 	 𝜙 𝑧 " 	 𝜙 𝑧 # 	… 	𝜙(𝑧(%&!))	

pre-ac5va5ons:

NN func5on:



Loss func,on example: mean squared error

ac5va5ons on final hidden layer: features

𝜙 𝑧 ! 	 𝜙 𝑧 " 	 𝜙 𝑧 # 	… 	𝜙(𝑧(%&!))	



Loss func,on example: mean squared error

ac5va5ons on final hidden layer: features

network predic5on is 
linear combina5on of 
features

express loss func5on as
func5on of features 35



Neural network as a disordered system

loss func5on as a func5on of features:

with couplings:

resembles disordered “spin” system:
(Ising model with local couplings)

36
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Neural network phase diagram
o trained a NN in the teacher-student setup 

o teacher network has fixed weight matrices, student has to learn those, or equivalent ones

o two hidden layers [3,32,16,1]

o vary learning rate/batch size

o vary ini5al weight matrix variance

o 100 runs for each choice of parameter combina5on  

o monitor number of ‘’observables’’, loss, grad loss, feature alignment, …

38



excellent learning 
(loss is small)
~ ferromagne5c phase

no convergence
(loss is large)
 ~ paramagne5c phase

no learning, jamming 
~ spin glass phase

effec5ve temperature
~ learning rate/batch size

disorder ~ variance of weight matrices upon ini5alisa5on
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NN phase diagram: mean test loss
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of weight matrices
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NN phase diagram: external field alignment
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Phase boundaries

find semi-analy5cal expression for the phase boundaries

o between ordered and disordered phase: (in)ability to learn, vanishing gradient problem

  ➔  features as “soq spins”

o between paramagne5c and other phases: strong fluctua5ons, no convergence

 ➔   signal-to-noise ra5o of gradient of loss

o see paper for details

42
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Collec,on of phase diagrams
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Prac,cal applica,on: choice of hyperparameters

o   iden5fica5on of ferro, paramagne5c and jammed or spin glass phases
o   helps in understanding which choice of hyperparameters is preferred

choose as large                 as possible
with ini5al variance of weight matrices 
around 1

mean
test loss
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o   deep connec5on between paradigms in ML and theore5cal physics

three examples:

§   diffusion models and stochas5c quan5sa5on
§   stochas5c gradient descent and random matrix theory
§   learning efficiency and phase diagrams

o   all provide useful insight to understand and improve methods
o   many opportuni5es ahead for theore5cal physicists to contribute

45

Summary: physics of machine learning



BACKUP SLIDES
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Transformer: nano-GPT

o   four a=en5on blocks with each four a=en5on heads: many matrices

o   each a=en5on head: 
§ one key (𝐾) matrix
§ one query (𝑄) matrix
§ one value (𝑉) matrix 

o   matrix sizes: 𝑀	×	𝑁 = 64	×	16
o   about 2.1	×	10, parameters 
o   use AdamW op5miser
o   trained on opus of Shakespeare h"
ps
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GA, O Hajizadeh, B Lucini, C Park, NeurIPS 2024 workshop ML and the Physical Sciences, 2411.13512 [cond-mat.dis-nn] 
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Transformer: Wigner surmise

o   short-distance fluctua5ons: level spacing described by Wigner surmise
o   remains approximately described by RMT predic5on (shown 𝐾 matrix of layer 1)
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Transformer: spectral density

o   ini5alisa5on: eigenvalues of          follow Marchenko-Pastur distribu5on
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MP Fit ‡2 : 0.34, A : 0.99
Histogram, Iteration:0
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Transformer: spectral density

o   evolves from ini5al Marchenko-Pastur distribu5on to distribu5on with power decay 
o   shown 𝐾 matrix of layer 1
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o   Dyson Brownian mo5on is present at “microscopic” level in weight matrix dynamics

o   how does it manifest itself for more advanced architectures?

o   is there universality beyond level repulsion (power law tails)?

o   phase diagrams of deeper NNs

o   prac5cal implica5ons: descrip5on of learning, algorithmic advances, … 

Open ques,ons
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