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The Dream of Unfolding
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Detector-level measurement 

What we have

Particle-level distribution

What we want



The Dream of Unfolding
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Detector-level measurement 

What we have

Particle-level distribution

What we want

Interesting physics at particle/parton-level

Efficiently testing new parameters 

Direct access to theory parameters

…

Why?



The Dream of Unfolding
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Detector-level measurement 

What we have

Particle-level distribution

What we want

How?



The Dream of Unfolding?
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Target

Quest:

Find “the” particle-level distribution that 
reproduces the detector-level 

measurement under the given forward 
model. 

p(x) = ∫ p(y) p(x |y) dy

Measurement Forward model



The Dream of Unfolding?
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Loss of information

Limited statistics

p(x) = ∫ p(y) p(x |y) dy

Measurement Forward model

Quest:

Find “the” particle-level distribution that 
reproduces the detector-level 

measurement under the given forward 
model. 



The Dream of Unfolding?

7

p(x) = ∫ pa(y) p(x |y) dy = ∫ pb(y) p(x |y) dy

Challenge:

Different particle-level distributions can give 
rise to the same detector-level distribution 

Every particle-level distribution that can 
reproduce the detector-level measurement is 

a valid solution



The Dream of Unfolding?
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→ introduce bias to physical solutions 

p(x) = ∫ pa(y) p(x |y) dy = ∫ pb(y) p(x |y) dy

Challenge:

Different particle-level distributions can give 
rise to the same detector-level distribution 

Every particle-level distribution that can 
reproduce the detector-level measurement is 

a valid solution



Unfolding — Two Avenues
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pMC(y)

pd(x |y) = pMC(x |y) ≡ p(x |y)

pMC(x)

punfold(y)

pd(x)

❓



Unfolding — Two Avenues
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pMC(y)

pd(x |y) = pMC(x |y) ≡ p(x |y)

pMC(x)

punfold(y)

pd(x)

❓

Numerical inversion “ ”

Large variance, unless regularised

Matrix Unfolding, TUnfold, SpinUp

p(x |y)−1

punfold(y) = arg min
p(y) [ pd(x) − ∫ p(y) p(x |y) dy ]

https://arxiv.org/pdf/1205.6201
https://arxiv.org/pdf/2507.15084


Unfolding — Two Avenues
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Probabilistic inversion 

Only well-defined for a given prior 

IBU, Omnifold, Generative Unfolding

p(y |x)

punfold(y) = ∫ pd(x) p(y |x) dx

p(y)

pMC(y)

pd(x |y) = pMC(x |y) ≡ p(x |y)

pMC(x)

punfold(y)

pd(x)

❓

Numerical inversion “ ”

Large variance, unless regularised

Matrix Unfolding, TUnfold, SpinUp

p(x |y)−1

punfold(y) = arg min
p(y) [ pd(x) − ∫ p(y) p(x |y) dy ]

https://arxiv.org/pdf/1010.0632
https://arxiv.org/pdf/1911.09107
https://arxiv.org/pdf/1205.6201
https://arxiv.org/pdf/2507.15084


Generative Unfolding

12

Learn to sample from conditional probability 
 with generative network 

Training data: 

→ per definition 

p(y |x)

x, y ∼ pMC(x, y)

p(y |x) ∝ pMC(y)

x ∼ p(x)

y ∼ p(y |x)

z ∼ 𝒩(0,1)

punfold(y) = ∫ pd(x) p(y |x) dx



Generative Unfolding
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Which generative network? 

GAN

INN
Diffusion & CFM

Time

Performance

How to GAN away Detector 
Effects

Bellagente et al. arXiv:1912.00477

Invertible Networks or from 
Partons to Detector and back 

again

Bellagente et al.
 arXiv:2006.06685

An unfolding method based on 
Conditional  Invertible Neural 

Networks (cINN) using iterative 
training 

Backes et al. arXiv:2212.08674

The landscape of unfolding with 
machine learning

Huetsch et al.
arXiv:2404.18807

End-To-End Latent Variational 
Diffusion Models for Inverse 

Problems in High Energy 
Physics

Shmakov et al. 
arXiv:2305.10399

…

https://inspirehep.net/literature/2781602
https://inspirehep.net/literature/2781602
https://arxiv.org/pdf/2404.18807
https://arxiv.org/abs/2305.10399


Updating your prior
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pMC(y) update punfold(y)

pMC(x, y) update ?

    Classifier-based: 

    Generator-based:  

w(y) =
punfold(y)
pMC(y)

pMC(x) update ∫ dy p(x |y) punfold(y)

Generative network



Updating your prior
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p(i)
MC(y)

p(x |y)

p(i)
MC(x)

p(i)
unfold(y)

p(i)(y |x) ∝ p(i)
MC(y)

pd(x)

Iterations



Application to Z + jets
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Detector-level measurement 
(6d jet observables)

What we have

Particle-level distribution
(6d jet observables)

What we want

Prior-dependence 
(two different Pythia simulations for data and MC)

Prior-independence



Application to Z + jets

17

Detector-level measurement 
(6d jet observables)

What we have What we want

Prior-dependence 
(two different Pythia simulations for data and MC)
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Application to Z + jets
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Detector-level measurement 
(6d jet observables)

What we have What we want?

Prior-dependence 
(Herwig and Pythia for data and MC)
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Application to Z + jets
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What we want?
Main assumption (for any unfolding algorithm):

What about summary statistics, like jets? 

Generally, 

pd(x |y) = pMC(x |y) = p(x |y)

p(x |J) = ∫ dy p(x |y)p(y |J)

pd(y |J) ≠ pMC(y |J)

Option 1: Treat non-closure as systemic uncertainty

ATLAS arXiv:2405.20041

https://arxiv.org/pdf/2405.20041
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Option 2: Scale things up?
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What we want?Unfolding ~  dimensional 
phase spaces

= 

Training a generative network to 
reproduce phase space of varying 

multiplicity to %-level precision  
 
 

+ 
 
 

Conditioned on a second high-
dimensional phase space distribution 

of varying multiplicity

𝒪(100)

❗ ML task becomes much harder



Option 2: Scale things up!
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1. Step: Closure on MC-MC unfolding

Unfolding ~  dimensional 
phase spaces

High dimensional correlations are 
unfolded to %-level

𝒪(100)
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Option 2: Scale things up!
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2. Step: Closure on data-MC

Under 
construction



Boosted top decays
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BUT leading uncertainty: choice of  in simulation
→ Could generative unfolding help? 
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Data
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Previously done in CMS with TUnfold 
(classical binned unfolding algorithm)

CMS 2211.01456

Tag side

Reconstruct triple jet mass 
 to measure  Mjjj mt

 GeVpT,J > 400

https://arxiv.org/pdf/2211.01456


Application to Boosted Tops
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Detector-level measurement 
(3 jets 4-momenta)

What we have

Particle-level distribution
(3 jets 4-momenta)

What we want

Prior-dependence 
(Different top masses for data and MC)

Prior-independent top mass 
measurement



Model-Dependence?
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Model-Dependence!
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Train with full CMS simulation with 
 GeV

Unfolded distribution of triple jet mass 
within  of truth particle-level 

BUT: Test data also simulation with 
 GeV

mt = 172.5

𝒪(1%)

mt = 172.5

For pseudo-data with different top masses : 
Algorithm falls back to prior (  GeV)mt = 172.5
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Model-Dependence!
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For pseudo-data with different top masses : 
Algorithm falls back to prior (  GeV)mt = 172.5



Removing Model-Dependence
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pMC(y |ms)

p(x |y)

pMC(x |ms)

punfold(y |ms, md)

pmodel(y |x, ms)

pd(x |md)



Removing Model-Dependence
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→ Solution: Strengthen  dependence, but how? md

1. Augment training data with simulation from different top masses
2. Estimate batch-wise weighted-median( ) on detector-levelmd ≈ Mbatch

jjj

pMC(y |ms)

p(x |y)

pMC(x |ms)

punfold(y |ms, md)

pmodel(y |x, ms)

pd(x |md)



Removing Model-Dependence!
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❗ ML task becomes much harder
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Mass Measurement 
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For a fixed top mass:

Choose subset of test data of 
41000 detector-level events 

Unfolded 1000 bootstrapped 
replicas

Estimate covariance matrix and 
mean by 1000 different unfolded 

distributions

→  Reliably measure top mass without bias
→ Reducing systematic uncertainty by 60% and statistical by up to 36%



Full Phase Space Unfolding (12d)
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Full Phase Space Unfolding  d? 𝒪(100)
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High dimensional correlations are 
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1. Step: MC-MC unfolding



Imagine a scenario…
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Generative unfolding 
is cool!



Imagine a scenario…

35

Background?

Generative unfolding 
is cool!

Efficiency?

Acceptance?



The Dream of Unfolding
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Detector-level measurement 

=

Signal + Background inside detector-level fiducial region

What we have

Particle-level distribution

=

Signal inside particle-level fiducial region

What we want



Imagine a scenario…
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Background?

Relax, it’s not that 
complicated

Efficiency?

Acceptance?



Getting there
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pd(x) �b pd,s(x) ⇥� pd,s(x)g Unfold pd,s(y)r ⇥✏ pd,s(y)

1. Step:
Background Subtraction

3. Step:
Unfolding

4. Step:
Prior Removal

5. Step:
E�ciency correction

2. Step:
Acceptance correction

Detector-level measurement Particle-level distribution



Background subtraction 
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pd,s(x) = pd(x) − pd,b(x) = pd(x) − pMC,b(x) > 0

1. Assumption:

Data background = MC background

2. Assumption:

No local background-only region

! !

    Classifier-based: 

    Generator-based:  

ν(x) =
C(x)

1 − C(x)
≈

pd(x) − pMC,b(x)
pd(x)

pmodel,s(x) ≈ pd(x) − pMC,b(x)

arXiv:2105.04448, 
arXiv:1912.08824

https://arxiv.org/pdf/2105.04448
https://arxiv.org/pdf/1912.00477


Acceptance Correction
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Local acceptance probability 

with global acceptance probability 

pd,s(g |x) =
p(g)pd,s(x)g

p(g)pd,s(x)g + p(ḡ)pd,s(x)ḡ
= pMC,s(g |x)

p(g) =
Ng

Ntotal

1. Multiply 

2. Hit or miss with probability 

δ(x)pd,s(x)

δ(x)

!

1. Assumption:

Data acceptance = MC acceptance

Classifier-based: δ(x) =
p(g)pMC,s(x)g

p(g)pMC,s(x)g + p(ḡ)pMC,s(x)ḡ

arXiv:2310.07752

https://arxiv.org/pdf/2310.07752


Efficiency Correction
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Local efficiency probability 

with global efficiency probability 

pd,s(r |y) =
p(r)pd,s(y)r

p(r)pd,s(y)r + p(r̄)pd,s(y)r̄
= pMC,s(r |y)

p(r) =
Nr

Ntotal

1. Multiply 

2. Oversample from  
Hit or miss with with probability 

ϵ(y)pd,unfold(y)

pd,unfold(y)
ϵ(y)

!

1. Assumption:

Data efficiency = MC efficiency

Classifier-based: ϵ(y) =
p(r)pMC,s(y)r + p(r̄)pMC,s(y)r̄

p(r)pMC,s(y)g

arXiv:2310.07752

https://arxiv.org/pdf/2310.07752


Application to Z + jets
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Detector-level measurement 
(6d jet observables)

=

Signal (Z + jets) 

+ Background (Z + V) 

inside detector-level fiducial region

 pT,r > 150 GeV

What we have

Particle-level distribution
(6d jet observables)

=

Signal (Z + jets) 

inside particle-level fiducial region

pT,g > 150 GeV

What we want

Prior-dependence 
(two different Pythia simulations for data and MC)

Prior-independence



Subtracting (Z + V)-bkg
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Subtracting (Z + V)-bkg
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8 % background contamination

Able to correct global background effects

AND local background effects



Acceptance correction
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Acceptance effects are rather small (2%)

Detector-level and particle-level cut strongly correlated

Able to correct for local and global effects 



Efficiency
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Efficiency effects are larger (6%)

Able to correct for local and global effects 



Final Performance
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Detector-level measurement Particle-level unfolding



And now what?
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Generative unfolding is cool and analysis-ready

Correcting for background, efficiency and acceptance is 
easy peasy

Correcting for prior-dependence can be tricky, but possible

Let’s use it!


