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How to unfold top decays, Favaro et al., arXiv:2501.12363
Analysis-ready Generative Unfolding, Butter et al., arXiv:2509.02708
Generative Unfolding of Jets and their Substructure, Petitjean et al., arXiv:2510.19906



https://arxiv.org/pdf/2501.12363
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The Dream of Unfolding

What we have What we want

Detector-level measurement Particle-level distribution



The Dream of Unfolding

What we have What we want

Detector-level measurement

Particle-level distribution

Why?

Interesting physics at particle/parton-level
Efficiently testing new parameters

Direct access to theory parameters



The Dream of Unfolding

What we have What we want

Detector-level measurement

Particle-level distribution

How?



The Dream of Unfolding?

Target

Quest:
(x) = d Find “the” particle-level distribution that
P B Y reproduces the detector-level

measurement under the given forward
model.

Measurement Forward model




The Dream of Unfolding*?

Limited statistics

Quest:
(x) = d Find “the” particle-level distribution that
P B Y reproduces the detector-level

measurement under the given forward
model.

Measurement Forward model

N

Loss of information




The Dream of Unfolding*?

px) = [.p(xw) dy = J-p(ﬂy) dy

Challenge:

Different particle-level distributions can give
rise to the same detector-level distribution

Every particle-level distribution that can
reproduce the detector-level measurement is
a valid solution



The Dream of Unfolding*?

px) = [.p(xw) dy = J-p(ﬂy) dy

Challenge:

Different particle-level distributions can give
rise to the same detector-level distribution

Every particle-level distribution that can

reproduce the detector-level measurement is
a valid solution

— introduce bias to physical solutions



Unfolding — Two Avenues

Puc(y) Puntold(y)

P/x|y) = pycx|y) = px|y) ‘ ‘ ?

Puc®) ——————  Pyx)



Unfolding — Two Avenues

Puc(y) Puntold(y)

Pix|Y) = pycx|y) = plx|y) ?
pMC(x) r—— p d(x)

Numerical inversion “p(x | y)~!”

Punfordy) = arg H?I)l px)— | py) p(x|y) dy
P\Y i d i

Large variance, unless regularised

Matrix Unfolding, TUnfold, SpinUp
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https://arxiv.org/pdf/1205.6201
https://arxiv.org/pdf/2507.15084

Unfolding — Two Avenues

Pac(y) Punfold(Y)
Pax1y) = pyc(x|y) = p(x|y) ?
Puc(X) — P4(x)
Numerical inversion “p(x | y)~ ' Probabilistic inversion p(y | x)
Pungordy) = arg min :pd(X) - : p() p(x|y) dy: Punfoldy) = J pa(x) p(y|x) dx
Large variance, unless regularised Only well-defined for a given prior p(y)

Matrix Unfolding, TUnfold, SpinUp IBU, Omnifold, Generative Unfolding
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https://arxiv.org/pdf/1010.0632
https://arxiv.org/pdf/1911.09107
https://arxiv.org/pdf/1205.6201
https://arxiv.org/pdf/2507.15084

Generative Unfolding

Punfordy) = J p/x) p(y|x) dx

.

Learn to sample from conditional probability

x ~ p(x) p(y | x) with generative network
|/\ l Training data:
z~ N(0,1) —» —_— . Xy Y NpMC(xay)

y ~p(y|x) — per definition p(y | x) & py;e(y)
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Generative Unfolding

Performance

Which generative network?

How to GAN away Detector
Effects

Bellagente et al. arXiv:1912.00477

Diffusion & CFM

Invertible Networks or from
Partons to Detector and back
again

Bellagente et al.
arXiv:2006.06685

An unfolding method based on
Conditional Invertible Neural
Networks (cINN) using iterative
training

Backes et al. arXiv:2212.08674

End-To-End Latent Variational
Diffusion Models for Inverse
Problems in High Energy
Physics

Shmakov et al.
arXiv:2305.10399

The landscape of unfolding with
machine learning

Huetsch et al.
arXiv:2404.18807
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https://inspirehep.net/literature/2781602
https://inspirehep.net/literature/2781602
https://arxiv.org/pdf/2404.18807
https://arxiv.org/abs/2305.10399

Updating your prior

update

Puc(y) > Punfold(y)

update

Puc(X,y) > 7

Punfold)
Puc(y)

Classifier-based: w(y) =

update
Generator-based: p;,(x) > de P|Y) Pungora(y)

Generative network
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Updating your prior

Iterations
pY (y) — D (y)
MC Punfold™Y
(1) ()
p(x|y) pY(y|x) < py(y)
P&)C(x) — Pa(x)
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Application to Z + jets

What we have

Detector-level measurement
(6d jet observables)

Prior-dependence
(two different Pythia simulations for data and MC)

What we want

Particle-level distribution
(6d jet observables)

Prior-independence
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Application to Z + jets

What we have

Detector-level measurement
(6d jet observables)

Prior-dependence

(two different Pythia simulations for data and MC)

number of events
p— N w AN
o o () o
o () () o
o () O o
o o () o

ratio
O = =

What we want

pd,s(y)r

pMC,s(y)r

(1)
p GenFoldC(y )7”

(8)
p GenFoldC(y )’”

10 20 30 40
Jet multiplicity N
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Application to Z + jets

(6d jet observables)

o 12 E
Prior-dependence g 1.0 —
(Herwig and Pythia for data and MC) 0-8 . . .

10 20 30 40 50 60
Jet multiplicity N

What we have What we want?
80000 -

i I I I v — pas(y)
5 — palx)
L 60000 Pd
> ==D
uq_). — P E}Se)nFoldc(y )
© 40000 — ® (y)

Detector-level measurement E OmniFold

& 20000
-
-
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Application to Z + jets

What we want?
Main assumption (for any unfolding algorithm):

Pix|y) = pycx|y) = p(x]y) 80000 — o)
5 60000 — Palx)
3 = — Pinroiac(y)
What about summary statistics, like jets? S 40000 _ ifse)nFOIdc(i)
‘-q;) =\E OmniFold
& 20000
x|J) = |dy p(x J = _ ’
px|J) [ y px[y)p(y1J) N e
12 = &
B 1.01- ..
Generally, p,(y |J) # prc(y ) 038

10 20 30 40 50 60
Jet multiplicity N

Option 1: Treat non-closure as systemic uncertainty

ATLAS arXiv:2405.20041 19



https://arxiv.org/pdf/2405.20041

Option 2: Scale things up?

Unfolding ~O(100) dimensional What we want?
phase spaces
= % SO0 — Ppas(y)
S — pq(x)
L . O 60000 Pd
Training a generative network .to E = — p® ()
reproduce phase space of varying S 40000 —® ()
multiplicity to %-level precision g — Pomnirold
£ 20000
-
-

+ 0
ol g B
g 1ot~ =
0.8
Conditioned on a second high- 10 20 30 40 50 60
dimensional phase space distribution Jet multiplicity N

of varying multiplicity

ML task becomes much harder
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Option 2: Scale things up!

Unfolding ~O(100) dimensional

phase spaces

High dimensional correlations are

unfolded to %-level

1. Step: Closure on MC-MC unfolding

0.08 -

0.06-

Normalized

Z+]ets

part
reco

Transf.
L-GAIr

Model

ML task becomes much harder
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Option 2: Scale things up!

2. Step: Closure on data-MC

|
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Boosted top decays

Previously done in CMS with TUnfold

> 400 GeV (classical binned unfolding algorithm)
Pty €

008 BB 13 TV
— © - CMS —— Data -
S T o m, =169.5 GeV _
© 0.03 — m,=1725GeV —
© - s t
Reconst:uct triple jet mass S|§ : - = 1755 GeV -
]]] O measure m, mo b = - | -
S e
0.011 - —
l Tag side E——
> EEEE _
j S| I S

120 140 160 180 200 220
m. . [GeV]

jet

CMS 2211.01456

BUT leading uncertainty: choice of m, in simulation
— Could generative unfolding help? o1


https://arxiv.org/pdf/2211.01456

Application to Boosted Tops

What we have

Detector-level measurement
(3 jets 4-momenta)

Prior-dependence
(Different top masses for data and MC)

What we want

Particle-level distribution
(3 jets 4-momenta)

Prior-independent top mass
measurement
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Model-Dependence?

Train with full CMS simulation with 0.06- —179.5 GeV
m, = 172.5 GeV - o e ge’;
iﬁ) 0.04. unfolded
Unfolded distribution of triple jet mass =
within O(1%) of truth particle-level g 0.02-
BUT: Test data also simulation with .00- _—
m, = 172.5 GeV (I, Y. SO Y | W= ' Y-
% sobb R
120 140 160 180 200 220
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Model-Dependence!

Train with full CMS simulation with
m, = 172.5 GeV

Unfolded distribution of triple jet mass
within O(1%) of truth particle-level

BUT: Test data also simulation with
m, = 172.5 GeV

For pseudo-data with different top masses
Algorithm falls back to prior (m, = 172.5 GeV)

Normalized

S
o
o)

o
(@)
=~

gen m,:
173.5 GeV

-== 172.5 GeV

unfolded
rec
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Model-Dependence!

Train with full CMS simulation with
m, = 172.5 GeV

Unfolded distribution of triple jet mass
within O(1%) of truth particle-level

BUT: Test data also simulation with
m, = 172.5 GeV

For pseudo-data with different top masses
Algorithm falls back to prior (m, = 172.5 GeV)

O
o
o)

Normalized
=
(-
~

O
o
IO

gen m,:
171.5 GeV

-== 172.5 GeV

0.00

unfolded
rec

212
3
S 0.75

— 10.0

o :
S, 1.0

bt

120 140 160

M;

180
ii 1GeV]

200
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Removing Model-Dependence

pMC(y ‘ ms) punfold(y ‘ m, md)

p(x ‘ y) medel(y ‘ As ms)

pMC('x ‘ ms) > pd(x ‘ md)

28



Removing Model-Dependence

pMC(y ‘ ms) punfold(y ‘ M, %)

X
p( ‘)’) medel(y ‘x’ ms)

pMC('x ‘ ms) > pd(x ‘ md)

— Solution: Strengthen 1, dependence, but how?

1. Augment training data with simulation from different top masses

2. Estimate batch-wise m; ~ weighted-median(l\@?]’.;mh) on detector-level

29



Removing Model-Dependence!

Train with full CMS simulation with
m, = [172.5 GeV, 169.5 GeV,

175.5 GeV]

Test by unfolding simulation with
m,= 171.5 GeV & 173.5 GeV

Unfolded distribution of triple jet
mass within O(1%) of truth particle-
level without bias

N

0.06
go
D,
N 0.0
©
=
S 0.0
Z.

m, =173.5 GeV

gen
unfolded

0 ML task becomes much harder

30



Mass Measurement

—
0]

} CEM, 4d, 5 bins CFM., 6d, 5 bins

For a fixed top mass:

% CFM., 4d. 10 bins % CFM, 6d, 10 bins

} CFM. 4d, 20 bins CFM. 6d, 20 bins

Choose subset of test data of

Extracted m, - true m, [GeV]

41000 detector-level events I -
Unfolded 1000 bootstrapped 0.5 ]
replicas I ! -
Estimate covariance matrix and o ¢n | Ta | o .--.--._.-.'.-. ..... 6 B
mean by 1000 different unfolded I ]
distributions - -
-0.5—
171.5 172.5 173.5

True m, [GeV]
— Reliably measure top mass without bias
— Reducing systematic uncertainty by 60% and statistical by up to 36%
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Full Phase Space Unfolding (12d

w/ cut w/ cut 1 w/cut
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Full Phase Space Unfolding ©(100) d?

1. Step: MC-MC unfolding

0.08 - tt
o
Unfolding ~@O(100) dimensional L 0.06-
phase spaces '71"3'
g 0.04 -
High dimensional correlations are Z.

unfolded to O(1) %-level with 0.02-
equivariant network

Model
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Imagine a scenario...

Generative unfolding
is cool!
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Imagine a scenario...

Generative unfolding @
is cool!
Background?
Acceptance?

k
.




The Dream of Unfolding

What we have What we want

Detector-level measurement Particle-level distribution

Signal + Background inside detector-level fiducial region Signal inside particle-level fiducial region
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Imagine a scenario...

Relax, it’s not that @
complicated
Background?
Acceptance?

k
.




Getting there

Detector-level measurement Particle-level distribution
1. Step: 2. Step: 3. Step: 5. Step:
Background Subtraction Acceptance correction Unfolding Efficiency correction
pd(x)pd,s(fﬂ)pd,s(fﬂ)g pd,s(y)rH@—>pd,s(y)
> 7
4. Step:

Prior Removal
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Background subtraction

pd,S(x) — pd(X) — pd,b(x)!: pd(x) — pMC,b(X) ; 0

1. Assumption: ° L 2. Assumption:

Data background = MC background No local background-only region

C(x)  PdX) = Pycpx)
- Ck) Pa(x)

Classifier-based: v(x) =

Generator-based: p, .1 (X) R PAX) — Ppsc p(X)

arXiv:2105.04448,
arXiv:1912.08824
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https://arxiv.org/pdf/2105.04448
https://arxiv.org/pdf/1912.00477

Acceptance Correction

N P(8)D4(x), |
Local acceptance probability p,; (g |x) = - = Disc (&%)
P(8)P4s(X)g + P(8)Das(X)z w
N,
with global acceptance probability p(g) = N 1. Assumption:
Data acceptance = MC acceptance
p(g)pMC’S(x)g ] 1. Multiply 5(X)pd,s()€)
Classifier-based: o(x) = -
P@)Pmc,s(X)g + P(&IPmc,s(X); J 2. Hit or miss with probability 5(x)

arXiv:2310.07752 40



https://arxiv.org/pdf/2310.07752

Efficiency Correction

pP(Np5(y), ! .
p(r)pd,s(y)r p(f_‘)pa,,s(y)}7 ‘pMC,s Y

Local efficiency probability p; (r|y) =

with global efficiency probability p(7) = 4 ‘ 1. Assumption:
Ntotal

Data efficiency = MC efficiency

_ 1. Multiply e(y)p (y)
PPy s, + PPy ) d-untold

P(Pycs(V)g

Classifier-based: ¢(y) =

2. Oversample from p; iro1d(Y)
Hit or miss with with probability e(y)

\—  ——

arXiv:2310.07752 4



https://arxiv.org/pdf/2310.07752

Application to Z + jets

What we have

Detector-level measurement
(6d et observables)

Signal (Z + jets)
+ Background (Z + V)
inside detector-level fiducial region

pr,> 150 GeV

Prior-dependence
(two different Pythia simulations for data and MC)

What we want

Particle-level distribution
(6d jet observables)

Signal (Z + jets)
inside particle-level fiducial region

pr, > 150 GeV

Prior-independence

42



Subtracting (Z + V)-bkg

— Pas(x)

— pa(x)

— v pq(x)
Pmodel,s(X)

8 % background contamination

Able to correct global background effects 10%-

number of events

ratio
— =
S DN

O o
o0

0.1 0.2 0.3 0.4 0.5
Groomed momentum fraction g

43



Subtracting (Z + V)-bkg

30000-
hé f%%
8 % background contamination 5 = =
5 20000-
Gy
8 — P4 s(x)—i
Able to correct global background effects 3 _
2 10000- pa(x)
§ — v pg(x) g
: p (x) -
AND local background effects models \
9
=

0.2 0.4 0.6 0.8 1.0 1.2
N-subjettiness ratio T,
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Acceptance correction

Acceptance effects are rather small (2%) :ﬂ) 10%-
TR
qa ]
3.
Detector-level and particle-level cut strongly correlated 10 | = — (%)
e d,s g
E - pds(x)
= 10° — & pg,(x) Lt
Able to correct for local and global effects 4.8 —
O 1 2 ...................................................................................................................................................................................................................................................................................................................................................................... F ..................................
L0 —————— S
= 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Jet width w
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Efficiency effects are larger (6%)

Able to correct for local and global effects

Efficiency

number of events

40000 -

ratio
O
@)

o (\®) V)
- - -
- - -
- - -
- - -

-
N O

p—
-

— Pgs(y)

Y GenFoldC(.y )r
- € pGenFoldC(y)r

10 20 30 40 50 60
Jet multiplicity N
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Detector-level measurement

o, 400001 — pas(y)
]
o 30000 — Palx)
5 - pGenFoldC(y )
G
8 200001 pGenFoldG(y)
D)
E
5 10000 1
o
0
o 1.2
§ 1.0
0.8
0 10 20 30 40 50 60
Jet mass m [GeV]
600001
E - pd,s(y)
8 — pa(x)
S i
v 40000 - pGenFoldC(y)
G
8 P GenFoldG(y )
.-8 20000 -
=
s
o
0
o 1.2
| e et -
§ 1.0
0.8

20 30 40 50 60

Jet multiplicity N

Final Performance

&z
S 10
>
D]
B =_
5 103_ - pd,s(.y) _%§
s — pa(x) =_
= =
-3 - pGenFoldC(y ) E;‘
= 1021 i
p GenFoldG(.y ) g
ol2 ~ ri
§ 1.0
0.8
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Jet width w
30000 1
2
c
S
o 20000
o
(@)
—
v =
Fg 10000 = — pa(x) o
=3 = - pGenFoldC(.y )
ﬁ :'=.
01 - p GenFoldG(y )
1.2 =
.S 10 %Eﬁad__ e e s T
= o g e e — e
S gl 3 4 BB
0.8 o u i
0.2 0.4 0.6 0.8 1.0 1.2

N-subjettiness ratio T,

30000+
e ﬁ%
5 = =
5 200001 -
QS |
— F pd,s(y)
,“-é 10000 — pa(x) -
) - pGenFoldC(y )
=
0- e p GenFoldG(y ) E¥
= 5 P W 1
g 12
)
S
—
-12  -10 -8 6 4 5
Groomed mass log p
wn _E,= - pd,s(y)
= =
§ - e — pa(x)
v é% - pGenFoldC(.y )
Gy
© P GenFoldG(.y )
E 104_
e
=
5
=
=
o 12
4§ 1.0
0.8

0.1 0.2 0.3 0.4 0.5
Groomed momentum fraction Zq

Particle-level unfolding
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And now what?

Generative unfolding is cool and analysis-ready

Correcting for background, efficiency and acceptance is
easy peasy

Correcting for prior-dependence can be tricky, but possible

Let’s use it!

48



