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Outline

e \What (complex) inverse problems are we dealing with?

e Schroedinger equation
e spectral function reconstruction
e neutron star mass-radius

e \What are Deep Neural Networks?

e Application of Deep-Learning in solving these problems
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Problem # |;

inverse Schroedinger Equation solver

reference: SS, Zhou, Zhao, Mukherjee, Zhuang, PhysRevD.105.014017



1. Schroedinger Equation
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1. Schroedinger Equation

V(r)
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V(r) known = {E ,y (1)} W(n)}

numerical methods established.
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1. Schroedinger Equation

. V?2
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V(r) known = {E ,y (1)} Wi(n)}
V(r) numerical methods established.
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Realistic Example: Quarkonium Spectrum
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How to learn V(r) from {E, }?

® parameterize the potential V(7| @), scan the whole @-space,

minimize y* = Z (H,ET)Z
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How to learn V(r) from {E, }?

® parameterize the potential V(7| @), scan the whole @-space,

minimize y? = Z (H,ET)Z

l

® a gradient-descent based method:
e goal -- find the @-point that V,y* = 0
e update @ iteratively according to A@ « V, ¥?
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How to learn V(r) from {E, }?

® parameterize the potential V(7| @), scan the whole @-space,

minimize y? = Z (H,ET)Z

l

® general unbiased parameterization scheme’”? Deep Neural Network!
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How to learn V(r) from { E, } using DNN? 05

Schrodinger equation
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How to learn V(r) from { E, } using DNN? 05

Schrodinger equation
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Can we really learn V(r) from { £, }?

continuous J
discrete, finite
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Can we really learn V(r) from {E, }? initial potential
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Can we really learn V(r) from { £, }?

learn V(r) according to
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Can we really learn V(r) from { £, }?

-- Yes! (for a certain r range) current potential

learn V(r) according to

37 11 15 19
(E ) = {—,—, = }Gev

target spectrum { 5

Deviate from the exact potential

where all yy, — 0, oL

OE, = (y, | V(1) |y,)
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Bottomonium mass and thermal width, lattice QCD with finite mg 07
Mass — Thermal Width
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Lattice QCD: Phys.Rev.D100,074506(2019),Phys.Lett.B800,135119(2020),Phys.Rev.D102,114508(2020)



Bottomonium mass and thermal width, lattice QCD with finite m 07

Mass - Ihermal Width
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Finite Temperature Heavy-Quark Potential




Finite Temperature Heavy-Quark Potential 08
*

200;—'|""|""|""|S"~_; e
100 3 E L box: Lattice :
: —: 600/— _¢
0;_'0_"0_‘* {)_.- - E - open: HTL nS -
S0 0 e " solid: DNN
TS L B R IR 400— N -
50 2P g i .
XL X% % T E | R
—~ 50 & % i 200 4 —L o —
%—1005— | | % ] 8 = : ‘—-_' 0 o =
s | | — . Jg_‘ﬁr‘ —- oo -
~ OFOE—W--m----- a ---28S-.__-m1 > L O®TT O ----- Q- - - Q.
S = - —] = Ll | | V
S 50 D 4 2 [ | | | -V
100} : - %
— 100 L] L _ TP
S | T | ; 200l nP -
O F— 5 TP ¥ _ _
20— ¥ — e _
_402_ &k _; i +_ 10
—60 | | T 200} —% - 5
o 45 x 2 ; 0.3 T (fm)
O_'O—";‘. “““““““ 1 - - = =3 I _.|._'F i 0
10 o o°o° ¢ o Lo B 8 & i
-20F ') —3 T T
Y S D | | | |




What physics we have learned from VpnN (7, 7)?
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What physics we have learned from VpnN (7, 7)?
--- compare with HTL potential model
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What physics we have learned from VpnN (7, 7)?

PHYSICAL REVIEW D 105, 054513 (2022)

10

Static quark-antiquark interactions at nonzero temperature
from lattice QCD

Dibyendu Bala,' Olaf Kaczmarek,' Rasmus Lalrsean,z Swagato Mukherjee,3 Gaurang Parkar,” Peter Pet\reczky,3
Alexander Rothkopf,” and Johannes Heinrich Weber"

(HotQCD Collaboration)

'Fakulidr fiir Physik, Universitit Bielefeld, D-33615 Bielefeld, Germany
’F aculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
*Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
‘Instinat fiir Physik & IRIS Adlershof, Humboldr-Universitiit zu Berlin, D-12489 Berlin, Germany

@™ (Received 5 November 2021; accepted 11 February 2022; published 24 March 2022)

PHYSICAL REVIEW D 105, 014017 (2022)

Heavy quark potential in the quark-gluon plasma: Deep neural network
meets lattice quantum chromodynamics

Shuzhe Shi,"" Kai Zhou®,>" Jiaxing Zhao,” Swagato Mukherjee # and Pengfei Zhuang3

ll)epartmem of Physics, McGill University, Montreal, Quebec H3A 218, Canada
’Frankfurt Institute for Advanced Studies, Ruth Moufang Strasse 1, D-60438,
’ Frankfurt am Main, Germany
3Department of Physics, Tsinghua University, Beijing 100084, China
*Physics Depariment, Brookhaven National Laboratory, Upton, New York 11973, USA

M (Received 27 May 2021; revised 5 November 2021; accepted 3 January 2022; published 21 January 2022)




What physics we have learned from VpnN (7, 7)?
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T (r,T)/T

rT

1.5 i | | | | ! | !
| J
B X -
| O %.
05 i
0 A .
151 MeV ———
05 & 173 MeV = |
' { 193 MeV o
1l e 251 MeV ~ + |
= 273 MeV
15t v 334 MeV ——~—
T pe 411 MeV + +
. 470 MeV —e—
2 o 581 MeV =
2 5 © | | | 6|67 MeV :—@.—{
0 0.2 0.4 0.6 0.8 1 1.0
r [fm]
2-5 | | | | | | ! |
: n
1.5 | . o i
| o %
i o U )
T % . \ 151 MeV
_ & i 173 MeV =
_ : ¥ \ 193 MeV @
05 | %% | 251 MV “
_ ? 273 MeV
: ? 334 MeV v
ol i 411 MeV +
: 470 MeV e
: 581 MeV &
_0 5 i l l l l l 667 I\l/lev .@
0 0.2 0.4 0.6 0.8 1 1.0 1.4

PHYSICAL REVIEW D 105, 054513 (2022)

10

Static quark-antiquark interactions at nonzero temperature
from lattice QCD

Dibyendu Bala,' Olaf Kaczmarek, Rasmus LaLrse;’n,‘2 Swagato Mukheljee,3 Gaurang Parkar,” Peter Per.reczky,3
Alexander Rothkopf,” and Johannes Heinrich Weber"

(HotQCD Collaboration)

'Fakulrir fiir Physik, Universitir Bielefeld, D-33615 Bielefeld, Germany
’F aculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway

*Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
‘Instinat fiir Physik & IRIS Adlershof, Humboldr-Universitiit zu Berlin, D-12489 Berlin, Germany

® (Received 5 November 2021; accepted 11 February 2022; published 24 March 2022)




What physics we have learned from VpnN (7, 7)?
-
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What physics we have learned from VpnN (7, 7)?
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Problem # Il:

spectral function reconstruction
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SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547;

Wang, SS, Zhou, Phys. Rev. D 106, L051502;
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3. spectral function <=> correlation
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Can one learn the spectral function from correlation?
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Can one learn the spectral function from correlation?

p(w) [GeV?]
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Can one learn the spectral function from correlation? 13
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Can one learn the spectral function from correlation? 13
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iIl-posedness of inverse KL convolution 14

D(k) = —

Y/

(@)

1J'°° w dw
— ow
0 a)2+k2p

Linear operator in continuous space,
Maps Rig +e0) 10 R +00) -

R0 100): Real function definec
in the domain [0, + 00).



iIl-posedness of inverse KL convolution 14

1 [ wdw
D(k)=—J ———p(w)

p(w
Ty, w*+k?

Linear operator in continuous space,

Maps Rig +e0) 10 R +00) -

One can define its eigenfunctions and eigenvalues:
1 J'°° @ dw

— | ———w(w) = 2 y(k),
O V@) = A

JT

R0 100): Real function definec
in the domain [0, + 00).



eigenfunctions and eigenvalues of KL convolution: 15

1r° 090 )= 1wk,
), arart @ =4y

infinite amount of solutions, labeled by (continuous) s:
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relook at the discrepancy
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relook at the discrepancy
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Then, why Deep Learning?

DNN is a natural implementation of smoothness regularization!
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Then, why Deep Learning?
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Problem # llI:
Neutron Star: EoS <=> {M,R}

Ronghao Li, Sophia Han, Zidu Lin, Lingxiao Wang, Kai Zhou, SS,
Phys. Rev. D, 111, 074026 + work In progress



Neutron Star 18

Neutron Star Nucleus

Mass
(Mo)

~ 1092 x 107>’

Radlius ~ 10 7% 10° ~ 107"
(km)



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

Continuation equation: |
density

m(r + dr) = m(r) + 4zr’ e(r) dr,
thickness

s 7/
/7

o m(r + dr)

NS -



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

" Balance of force:
P(r +dr) 4xr’ P(r) = 4x(r + dr)?P(r + dr) + F (1),
Noel - < m(r + dr) G m(r) 4rr? 8dr
- — — FG — rz
distance-squaread



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

| Balance of force:

P(r +dr) 4xr’ P(r) = 4x(r + dr)?P(r + dr) + F (1),

h \\\\: o - m(r + dr) G m(r) 4rr? 8dr
—_ FG — rz
................................................................................................. .d.i.s.ta.nse:.sq..u..a.r.e..d..............)f@R.?ﬂ?@t.............
dm 3
—=47Zl"28, d_P= (m+47rr P)(P+8)

dr dr = r2—2mr



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

Equation of state:

E = gEOS(P) o

< N ,:/’//’/ m(r + dr) e(r) = egg(P(1)),
........ i Ty
_m=4ﬂr28, d_PZ_(m+47rrP)(P+e)’ e = e(P).

dr dr r2—2mr



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

O 7y boundary conditions:
\\\\\\~_’//,/ WL(F'-l-dI")
~_-__-" m(r:()):(), M(l”:R):M,
Pir=0)=P_, P(r=R) =0
L e
—=47zr28, d_Pz_(m+47rrP)(P+8)’ e = e(P).

dr dr r2—2mr



Tolman-Oppenheimer-Volkoft equations

18

Tolman-Oppenheimer-Volkoff equations:  m(r = 0) =0,
Tolman, Phys.Rev. 55 (1939) 364-373

Oppenheimer, Volkoft, Phys.Rev. 55 (1939) 374-381

dm — Arr2e P (m+ 47r°P)(P + €)
dr | dr r2—2mr




Tolman-Oppenheimer-Volkoft equations 19
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Tolman-Oppenheimer-Volkoft equations 19
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2.0 \ =
g 1 5 | _-
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Tolman-Oppenheimer-Volkoft equations

19

18 observations
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gradient: linear response of TOV

20

Input:
EoS

I

@ B (m + 4xr’P)(P + 8)\

dr r2—2mr




gradient: linear response of TOV

@ B (m + 4xr’P)(P + 8)\

input: :> (f’” rf=2mr output:
m
FoS — =dzur’e, M-R curve

TOV equation: functional mapping EoS to M-R;

Inverse TOV: functional derivatives!

Jn P
Change in EoS (M'R)desired - (M'R)curr.
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closure test
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closure test: with phase transition
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closure test: with phase transition
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Summary

e Develop new algorithm employing DNN to solve inverse problems.

e Extracted HF complex V(7, r) from LQCD results of bottomonium m and I

e Can be applied to learn Neutron Star EOS from Mass-Radius observations.

e Discussed application and limitations in reconstructing spectral function.



