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Outline

• What (complex) inverse problems are we dealing with?


• Schroedinger equation

• spectral function reconstruction

• neutron star mass-radius


• What are Deep Neural Networks?


• Application of Deep-Learning in solving these problems 
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Problem # I:
inverse Schroedinger Equation solver

reference: SS, Zhou, Zhao, Mukherjee, Zhuang, PhysRevD.105.014017



1. Schroedinger Equation

Ĥ ψn = −
∇2

2m
ψn + V(r) ψn = En ψn

V(r)

{ψn(r)}

{En}
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Ĥ ψn = −
∇2

2m
ψn + V(r) ψn = En ψn

 known ⟹ : 

numerical methods established.
V(r) {En, ψn(r)}

 known ⟹ :     ???{En} V(r)

V(r)

{ψn(r)}

{En}
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information of interest
observations

1. Schroedinger Equation



V(r) = −
α
r

+ σ r

03Realistic Example: Quarkonium Spectrum

c c̄ b b̄

Cornell Potential



How to learn  from ?V(r) {En}

• parameterize the potential , scan the whole -space, 

minimize  

V(r |θ) θ
χ2 ≡ ∑

i
(Eθ,i − Ei

δEi
)2
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How to learn  from ?V(r) {En}

• parameterize the potential , scan the whole -space, 

minimize  

• a gradient-descent based method: 
• goal -- find the -point that  
• update  iteratively according to 

V(r |θ) θ
χ2 ≡ ∑

i
(Eθ,i − Ei

δEi
)2

θ ∇θ χ2 = 0
θ Δθ ∝ ∇θ χ2
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How to learn  from ?V(r) {En}

• parameterize the potential , scan the whole -space, 

minimize  

• general unbiased parameterization scheme? Deep Neural Network!

V(r |θ) θ
χ2 ≡ ∑

i
(Eθ,i − Ei

δEi
)2
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How to learn  from  using DNN?V(r) {En} 05

δEn = ⟨ψn |δV(r) |ψn⟩
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Ĥ ψn = −
∇2

2m
ψn + V(r) ψn = En ψn

How to learn  from  using DNN?V(r) {En} 05

δEn = ⟨ψn |δV(r) |ψn⟩

P(Vθ)dV = Posterior(θ |data)dNθuncertainty:



Can we really learn  from ?V(r) {En}

discrete, finite
continuous 
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target spectrum "ta
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tia

l 

initial potential 
current potential 

r (GeV−1)

|ψ
n | 2+

E
n

or
V

(G
eV)

Deviate from the exact potential 

where all ψn → 0,

δEn = ⟨ψn |δV(r) |ψn⟩

learn  according to
V(r)

{En} = {3
2

,
7
2

,
11
2

,
15
2

,
19
2 } GeV

-- Yes! (for a certain r range)
Can we really learn  from ?V(r) {En} 06



Lattice QCD: Phys.Rev.D100,074506(2019),Phys.Lett.B800,135119(2020),Phys.Rev.D102,114508(2020) 
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Lattice QCD: Phys.Rev.D100,074506(2019),Phys.Lett.B800,135119(2020),Phys.Rev.D102,114508(2020) 
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can not be understood by existing modeling of potential!
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Finite Temperature Heavy-Quark Potential 08
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spectral function reconstruction

SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547;

   Wang, SS, Zhou, Phys. Rev. D 106, L051502;
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D(p) = ∫
∞

0
K(p, ω) ρ(ω) dω K(p, ω) ≡

π−1 ω
ω2 + p2

information of interest observations

3. spectral function <=> correlation 12

p
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resolved by increasing # of -points?k

• No!!! The problem is ill-posed!!!
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ill-posedness of inverse KL convolution

D(k) =
1
π ∫

∞

0

ω dω
ω2 + k2

ρ(ω)

Linear operator in continuous space,  
maps  to  . ℝ[0,+∞) ℝ[0,+∞)

: Real function defined 
in the domain . 
ℝ[0,+∞)

[0, + ∞)
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ill-posedness of inverse KL convolution

D(k) =
1
π ∫

∞

0

ω dω
ω2 + k2

ρ(ω)

Linear operator in continuous space,  
maps  to  . 
One can define its eigenfunctions and eigenvalues:

ℝ[0,+∞) ℝ[0,+∞)

: Real function defined 
in the domain . 
ℝ[0,+∞)

[0, + ∞)

1
π ∫

∞

0

ω dω
ω2 + k2

ψ(ω) = λ ψ(k) ,
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1
π ∫

∞

0

ω dω
ω2 + k2

ψ(ω) = λ ψ(k) ,

infinite amount of solutions, labeled by (continuous) :s

ψs,+(x) =
cos(s ln(x/a))

π x/a
,

ψs,−(x) =
sin(s ln(x/a))

π x/a
,

λs,± =
1

2 cosh(πs/2)
.

� � � � ����

���

���

���

���

���

�

λ �
�±

contains non-zero but 
arbitrarily small eigenvalues, 
non-invertible given finite 
numerical precision.

eigenfunctions and eigenvalues of KL convolution: 15
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decomposition into the eigen-space

relook at the discrepancy 16
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Then, why Deep Learning?
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DNN is a natural implementation of smoothness regularization!
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Then, why Deep Learning?

DNN is a natural implementation of smoothness regularization!
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Neutron Star: EoS <=> {M,R}
Problem # III:

Ronghao Li, Sophia Han, Zidu Lin, Lingxiao Wang, Kai Zhou, SS, 

Phys. Rev. D, 111, 074026 + work in progress



Neutron Star

Neutron Star Sun

Mass

Radius

Nucleus

Density

10.5 ～ 2

7 × 105∼ 10

∼ 100∼2 × 10−57

∼ 10−18

∼ 5 × 10−3

(M⨀)

(km)

(M⨀ /km3)
∼ 7 × 10−19 ∼ 3 × 10−3
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r
P(r)

Pressure at radius :  

Mass density at :   

Mass enclosed within shell: 

r P(r)
r ε(r)

m(r)

r + dr P(r + dr)
m(r + dr)

m(r)

ε(r)

dm
dr

= 4πr2ε ,

Continuation equation:

area

density

thickness
m(r + dr) = m(r) + 4πr2 ε(r) dr ,

Tolman-Oppenheimer-Volkoff equations 18



r
P(r)

Pressure at radius :  

Mass density at :   

Mass enclosed within shell: 

r P(r)
r ε(r)

m(r)

r + dr P(r + dr)
m(r + dr)

m(r)

ε(r)

dm
dr

= 4πr2ε ,

Balance of force:

distance-squared

m1 m2
4πr2 P(r) = 4π(r + dr)2P(r + dr) + FG(r) ,

FG =
G m(r) 4πr2εdr

r2

Tolman-Oppenheimer-Volkoff equations 18



r
P(r)

Pressure at radius :  

Mass density at :   

Mass enclosed within shell: 

r P(r)
r ε(r)

m(r)

r + dr P(r + dr)
m(r + dr)

m(r)

ε(r)

dm
dr

= 4πr2ε ,

Balance of force:

distance-squared

m1 m2
4πr2 P(r) = 4π(r + dr)2P(r + dr) + FG(r) ,

FG =
G m(r) 4πr2εdr

r2

+GR effect
dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

Tolman-Oppenheimer-Volkoff equations 18



r
P(r)

Pressure at radius :  

Mass density at :   

Mass enclosed within shell: 

r P(r)
r ε(r)

m(r)

r + dr P(r + dr)
m(r + dr)

m(r)

ε(r)

dm
dr

= 4πr2ε , dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

Equation of state:

ε = ε(P) ,

ε = εEoS(P) ,
ε(r) = εEoS(P(r)) ,

Tolman-Oppenheimer-Volkoff equations 18



r
P(r)

Pressure at radius :  

Mass density at :   

Mass enclosed within shell: 

r P(r)
r ε(r)

m(r)

r + dr P(r + dr)
m(r + dr)

m(r)

ε(r)

dm
dr

= 4πr2ε , dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
, ε = ε(P) ,

boundary conditions:

m(r = 0) = 0,
P(r = 0) = Pcen,

m(r = R) = M,
P(r = R) = 0.

Tolman-Oppenheimer-Volkoff equations 18



dm
dr

= 4πr2ε , dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
, ε = ε(P) ,

m(r = 0) = 0,
P(r = 0) = Pcen,

m(r = R) = M,
P(r = R) = 0.

Tolman-Oppenheimer-Volkoff equations:
Tolman, Phys.Rev. 55 (1939) 364-373 

Oppenheimer, Volkoff, Phys.Rev. 55 (1939) 374-381

Tolman-Oppenheimer-Volkoff equations 18



dm
dr

= 4πr2ε , dP
dr

= −
(m + 4πr3P)(P + ε)
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gradient: linear response of TOV 

input: 
EoS

output: 
M-R curve

dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

dm
dr

= 4πr2ε ,

ε = ε(P) ,
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gradient: linear response of TOV 

input: 
EoS

output: 
M-R curve

dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

dm
dr

= 4πr2ε ,

ε = ε(P) ,

(M-R)desired - (M-R)curr.change in EoS

TOV equation: functional mapping EoS to M-R; 
Inverse TOV: functional derivatives!

 (M-R)δ
 (EoS)δ

20



χ2 = ∑
i

(mi − mobs
i

Δmi
)2 + (Ri − Robs

i

ΔRi
)2

Black: ground truth 
Red: DNN recons.
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closure test

χ2 = ∑
i

(mi − mobs
i

Δmi
)2 + (Ri − Robs

i

ΔRi
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Black: ground truth 
Red: DNN recons.
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closure test

χ2 = ∑
i

(mi − mobs
i

Δmi
)2 + (Ri − Robs

i

ΔRi
)2

Black: ground truth 
Red: DNN recons.

[unknown at training]

reconstruct EOS at region  
~ central pressures
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Black: ground truth 
Red: DNN recons.

[unknown at training]
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Black: ground truth 
Red: DNN recons.

[unknown at training]

able to capture first-order 
phase transition

closure test: with phase transition 21
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reconstruction 
w/ finite number?



reconstruction power for different uncertainties

ideal realistic

ground truth

marginal posterior distribution of phase transition pressure and latent heat

assign different level of uncertainties and perform BA.
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• Develop new algorithm employing DNN to solve inverse problems.


• Extracted HF complex  from LQCD results of bottomonium  and .


• Can be applied to learn Neutron Star EOS from Mass-Radius observations.


• Discussed application and limitations in reconstructing spectral function.

V(T, r) m Γ

Summary


