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Outline

e \What (complex) inverse problems are we dealing with?

e Schroedinger equation
e spectral function reconstruction
e neutron star mass-radius

e \What are Deep Neural Networks?

e Application of Deep-Learning in solving these problems
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Problem # |;

inverse Schroedinger Equation solver

reference: SS, Zhou, Zhao, Mukherjee, Zhuang, PhysRevD.105.014017



1. Schroedinger Equation
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1. Schroedinger Equation

V(r)
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V(r) known = {E ,y (1)} W(n)}

numerical methods established.
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1. Schroedinger Equation

. V?2
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V(r) known = {E ,y (1)} Wi(n)}
V(r) numerical methods established.
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Realistic Example: Quarkonium Spectrum
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How to learn V(r) from {E, }?

® parameterize the potential V(7| @), scan the whole @-space,

minimize y* = Z (H,ET)Z
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How to learn V(r) from {E, }?

® parameterize the potential V(7| @), scan the whole @-space,

minimize y? = Z (H,ET)Z

l

® a gradient-descent based method:
e goal -- find the @-point that V,y* = 0
e update @ iteratively according to A@ « V, ¥?
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How to learn V(r) from {E, }?

® parameterize the potential V(7| @), scan the whole @-space,

minimize y? = Z (H,ET)Z

l

® general unbiased parameterization scheme’”? Deep Neural Network!
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How to learn V(r) from { E, } using DNN? 05

Schrodinger equation
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How to learn V(r) from { E, } using DNN? 05

Schrodinger equation
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Can we really learn V(r) from { £, }?

continuous J
discrete, finite
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Can we really learn V(r) from {E, }? initial potential
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Can we really learn V(r) from { £, }?

learn V(r) according to
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Can we really learn V(r) from { £, }?

-- Yes! (for a certain r range) current potential

learn V(r) according to

37 11 15 19
(E ) = {—,—, = }Gev

target spectrum { 5

Deviate from the exact potential

where all yy, — 0, oL

OE, = (y, | V(1) |y,)
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Bottomonium mass and thermal width, lattice QCD with finite mg 07
Mass — Thermal Width
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Lattice QCD: Phys.Rev.D100,074506(2019),Phys.Lett.B800,135119(2020),Phys.Rev.D102,114508(2020)



Bottomonium mass and thermal width, lattice QCD with finite m 07

Mass - Ihermal Width
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Finite Temperature Heavy-Quark Potential




Finite Temperature Heavy-Quark Potential 08
*

200;—'|""|""|""|S"~_; e
100 3 E L box: Lattice :
: —: 600/— _¢
0;_'0_"0_‘* {)_.- - E - open: HTL nS -
S0 0 e " solid: DNN
TS L B R IR 400— N -
50 2P g i .
XL X% % T E | R
—~ 50 & % i 200 4 —L o —
%—1005— | | % ] 8 = : ‘—-_' 0 o =
s | | — . Jg_‘ﬁr‘ —- oo -
~ OFOE—W--m----- a ---28S-.__-m1 > L O®TT O ----- Q- - - Q.
S = - —] = Ll | | V
S 50 D 4 2 [ | | | -V
100} : - %
— 100 L] L _ TP
S | T | ; 200l nP -
O F— 5 TP ¥ _ _
20— ¥ — e _
_402_ &k _; i +_ 10
—60 | | T 200} —% - 5
o 45 x 2 ; 0.3 T (fm)
O_'O—";‘. “““““““ 1 - - = =3 I _.|._'F i 0
10 o o°o° ¢ o Lo B 8 & i
-20F ') —3 T T
Y S D | | | |




What physics we have learned from VpnN (7, 7)?
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What physics we have learned from VpnN (7, 7)?
--- compare with HTL potential model
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What physics we have learned from VpnN (7, 7)?
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What physics we have learned from VpnN (7, 7)?
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T (r,T)/T

rT

1.5 i | | | | ! | !
| J
B X -
| O %.
05 i
0 A .
151 MeV ———
05 & 173 MeV = |
' { 193 MeV o
1l e 251 MeV ~ + |
= 273 MeV
15t v 334 MeV ——~—
T pe 411 MeV + +
. 470 MeV —e—
2 o 581 MeV =
2 5 © | | | 6|67 MeV :—@.—{
0 0.2 0.4 0.6 0.8 1 1.0
r [fm]
2-5 | | | | | | ! |
: n
1.5 | . o i
| o %
i o U )
T % . \ 151 MeV
_ & i 173 MeV =
_ : ¥ \ 193 MeV @
05 | %% | 251 MV “
_ ? 273 MeV
: ? 334 MeV v
ol i 411 MeV +
: 470 MeV e
: 581 MeV &
_0 5 i l l l l l 667 I\l/lev .@
0 0.2 0.4 0.6 0.8 1 1.0 1.4

PHYSICAL REVIEW D 105, 054513 (2022)

10

Static quark-antiquark interactions at nonzero temperature
from lattice QCD

Dibyendu Bala,' Olaf Kaczmarek, Rasmus LaLrse;’n,‘2 Swagato Mukheljee,3 Gaurang Parkar,” Peter Per.reczky,3
Alexander Rothkopf,” and Johannes Heinrich Weber"

(HotQCD Collaboration)

'Fakulrir fiir Physik, Universitir Bielefeld, D-33615 Bielefeld, Germany
’F aculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway

*Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
‘Instinat fiir Physik & IRIS Adlershof, Humboldr-Universitiit zu Berlin, D-12489 Berlin, Germany

® (Received 5 November 2021; accepted 11 February 2022; published 24 March 2022)




What physics we have learned from VpnN (7, 7)?
-
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What physics we have learned from VpnN (7, 7)?
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Problem # Il:

spectral function reconstruction
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SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547;

Wang, SS, Zhou, Phys. Rev. D 106, L051502;
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3. spectral function <=> correlation
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Can one learn the spectral function from correlation?
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Can one learn the spectral function from correlation?

p(w) [GeV?]
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Can one learn the spectral function from correlation? 13
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Can one learn the spectral function from correlation? 13
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iIl-posedness of inverse KL convolution 14

D(k) = —

Y/

(@)

1J'°° w dw
— ow
0 a)2+k2p

Linear operator in continuous space,
Maps Rig +e0) 10 R +00) -

R0 100): Real function definec
in the domain [0, + 00).



iIl-posedness of inverse KL convolution 14

1 [ wdw
D(k)=—J ———p(w)

p(w
Ty, w*+k?

Linear operator in continuous space,

Maps Rig +e0) 10 R +00) -

One can define its eigenfunctions and eigenvalues:
1 J'°° @ dw

— | ———w(w) = 2 y(k),
O V@) = A

JT

R0 100): Real function definec
in the domain [0, + 00).



eigenfunctions and eigenvalues of KL convolution: 15

1r° 090 )= 1wk,
), arart @ =4y

infinite amount of solutions, labeled by (continuous) s:
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relook at the discrepancy
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relook at the discrepancy
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Then, why Deep Learning?

DNN is a natural implementation of smoothness regularization!
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Then, why Deep Learning?
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Problem # llI:
Neutron Star: EoS <=> {M,R}

Ronghao Li, Sophia Han, Zidu Lin, Lingxiao Wang, Kai Zhou, SS,
Phys. Rev. D, 111, 074026 + work In progress



Neutron Star 18

Neutron Star Nucleus

Mass
(Mo)

~ 1092 x 107>’

Radlius ~ 10 7% 10° ~ 107"
(km)



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

Continuation equation: |
density

m(r + dr) = m(r) + 4zr’ e(r) dr,
thickness

s 7/
/7

o m(r + dr)

NS -



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

" Balance of force:
P(r +dr) 4xr’ P(r) = 4x(r + dr)?P(r + dr) + F (1),
Noel - < m(r + dr) G m(r) 4rr? 8dr
- — — FG — rz
distance-squaread



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

| Balance of force:

P(r +dr) 4xr’ P(r) = 4x(r + dr)?P(r + dr) + F (1),

h \\\\: o - m(r + dr) G m(r) 4rr? 8dr
—_ FG — rz
................................................................................................. .d.i.s.ta.nse:.sq..u..a.r.e..d..............)f@R.?ﬂ?@t.............
dm 3
—=47Zl"28, d_P= (m+47rr P)(P+8)

dr dr = r2—2mr



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

Equation of state:

E = gEOS(P) o

< N ,:/’//’/ m(r + dr) e(r) = egg(P(1)),
........ i Ty
_m=4ﬂr28, d_PZ_(m+47rrP)(P+e)’ e = e(P).

dr dr r2—2mr



Tolman-Oppenheimer-Volkoft equations 18

Pressure at radius r: P(r)
Mass density at r: &(r)

Mass enclosed within shell: m(r)

O 7y boundary conditions:
\\\\\\~_’//,/ WL(F'-l-dI")
~_-__-" m(r:()):(), M(l”:R):M,
Pir=0)=P_, P(r=R) =0
L e
—=47zr28, d_Pz_(m+47rrP)(P+8)’ e = e(P).

dr dr r2—2mr



Tolman-Oppenheimer-Volkoft equations

18

Tolman-Oppenheimer-Volkoff equations:  m(r = 0) =0,
Tolman, Phys.Rev. 55 (1939) 364-373

Oppenheimer, Volkoft, Phys.Rev. 55 (1939) 374-381

dm — Arr2e P (m+ 47r°P)(P + €)
dr | dr r2—2mr




Tolman-Oppenheimer-Volkoft equations 19
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Tolman-Oppenheimer-Volkoft equations 19
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2.0 \ =
g 1 5 | _-
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Tolman-Oppenheimer-Volkoft equations

19

18 observations
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gradient: linear response of TOV

20

Input:
EoS

I

@ B (m + 4xr’P)(P + 8)\

dr r2—2mr




gradient: linear response of TOV

@ B (m + 4xr’P)(P + 8)\

input: :> (f’” rf=2mr output:
m
FoS — =dzur’e, M-R curve

TOV equation: functional mapping EoS to M-R;

Inverse TOV: functional derivatives!

Jn P
Change in EoS (M'R)desired - (M'R)curr.
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closure test
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closure test: with phase transition
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closure test: with phase transition
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Summary

e Develop new algorithm employing DNN to solve inverse problems.

e Extracted HF complex V(7, r) from LQCD results of bottomonium m and I

e Can be applied to learn Neutron Star EOS from Mass-Radius observations.

e Discussed application and limitations in reconstructing spectral function.



