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Introduction

Many-fold Learning: A generalized approach to modeling

m Problem Setup: Represent the problem as a map between separable

spaces F: G — H.

m Modelling Setup: Parameterize the target space G using a modelling
method (or architecture) A : RM — G.

m Mathematical Analysis: Prove tractability of gradient based optimization,

usually by showing F is “well-behaved” and then carrying it over to F o A.

m Optimization: Optimize using an appropriate gradient flow variant.

m Error Correction: Boost initial performance by perturbing/expanding A.
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Introduction

Gradient Flows: Are they too incredibly useful? Why? How?

m Pros: Gradient flows work for many problems with a small trick-set

m Cons: Problems — nonlinear, Architectures — nonlinear, Optimization —

nonlinear + stochastic, Formal analysis — intractable??

Motivation: Build a generic theory covering many kinds of problems and

architectures. ldeally, one that can be empirically useful

m Inspirations: Neural Tangent Kernels, Spectral Theory, PDEs, QM, QFT

Applications: PDE solvers, Shape/Visual recognition, Classification, etc
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Introduction

A Universal Convergence Theorem

m Problem: F: G — H, where G, H are separable Hilbert spaces

m Architecture: A € *(RY, G), produces models in G, M is countable

m Solution: &, exists and the problem satisfies some conditions near it

Assumption 1: Problem F is “well-behaved”

Assumption 2: Architecture A is “well-initialised”

m Claim: A Gradient flow strategy will get us to ®
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Introduction

Setting the table: A problem is well-behaved if

m it can be cast as a map between separable Hilbert spaces F: G — H,

m 3 € G with a neighbourhood Bg, and a coercive nominal loss
L € €°(G,R), s.t.  is a global minimum for both (F[g]|F[g]),, and L[g],

m L satisfies the following Lojasiewicz inequality (LI) [Ref. D]:

IL[g] — L[®]|* < C|IVL[g]ll, g€ By, a€[1/2,1), C>0 (1.1)

Let F be well-behaved with the associated nominal loss being L. Then

O(e™ ), ifa=1

Se() = VL), g0) € B — (-0 =¢ ° "
O(t7=-1), ifa > 1
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Introduction

A well-behaved problem is solved by gradient flows (in principle)
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Introduction

LI is not Convexity and vice versa

Smooth and Convex near the solution but does not satisfy Lojasiewicz
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Introduction

Examples of well-behaved problems

m Regression problems [7], Polynomial-fitting problems, etc

m Scientific ODEs/PDEs [2, 5], such as the nonlinear Poisson Eqn (nPBE):

Flg] = —Ag +sinh(g) + h, G =W>*(R"™), H = L*(R™)

Shape/Visual recognition solvers [4] using Wasserstein distances b/w a
Euclidean distribution(s) ® and manifold(s) of model distributions A:

Flel = (/ <I>(q)dq> - (/X g(q)dq> , G=2(R),H=R

m Classification problems [3]. Slide too small for F!!, but G = [*(Q) ® H,
where (Q, F,P) is a probability space, L?(Q) is the space of square

integrable Bochner measurable functions, and H is some apt Hilbert space.
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Introduction

Well-behaved problems seem easy enough. Why do we need Architectures?

m Nominal loss dynamics are usually in infinite dimensional spaces

m Computers can only handle finite dimensional dynamics.

We need to parametrize G through some M parameter architecture A

Linear A are great if dist(®, {A(w) : w € RM}) is small. Such guarantees
are impossible if dim(G) > M, let alone dim(G) = oo

m Nonlinear A can use a finite number of parameters to cover G more

densely than linear methods. But too many local minimum
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Introduction

1 Parameter, Linear Architecture
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Introduction

1 Parameter, Nonlinear Architecture
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Introduction

Setting the table: Architectures

m Architectures: A € W*?(RM, G) are M-parameter maps that produce
models A(w) € G. Derivatives and adjoints are denoted by A, and Al,.

m Model set: Gy = {A(w)} C G: Set of models produced by A.

9= Al Aw, ©:=ALAL, u(w) = inf(Spec(©) — {0})

m © and ¢ share their non-zero spectrum.

m Gy is usually an M dimensional immersed submanifold in G near almost

all A(w). Alternatively, 9 is invertible almost everywhere on RY.

B Goo = UMEN Gu is dense in G (Universal Approximation Theorems [A]).
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Introduction

Architecture Examples

m Linear methods like Fourier Series, Chebyshev polynomials, etc

Input/Output maps between Euclidean spaces modeled by Neural Nets

m Binary Classifiers

Audio Signal Processing

® Image and Visual Recognition techniques
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Introduction

Architecture Examples: A “deep” Fourier Method

@ N’(w)(-):wo—f—iwgisin (w2i10)) @

=1

w, w

(i)
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Introduction

Parametric Optimization

m Parametric Loss and Gradient Flow: Z[w] := L[A(w)], w = —V.Z[w]

m Well-initialization: A is well-initialized with parameters w(0), if under a

parametric gradient flow, there exists t € RT s.t. A(w(t)) € Bo.

Parametric gradient flows are given by the following equation:
W(t) = —VuZLA(t)] = —ALVLIA(®)] (12)

m These translate into the following flows on the model-set Gu
A(t) = Awi(t) = — A AL VLIA(2)] = —O(£)VL[A(t 1.3
(¥) (1) [A(D)] (6)VLIA(2)] (1.3)

NTK++
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Introduction

When is . well-behaved too?

Assume F is well-behaved with L as the associated nominal loss and A is

well-initialised. Then £[w] is a well-behaved map in the neighbourhood of all
its critical points w* s.t. A(w") € Bo, if

Ja* € (0,1/2],C* > 0, s.t. | L[w] — Lw*]|*" < C*|VLIw]| for all
S Bw*.

% is analytic and M € N.
A is analytic and M € N.
B ¥(w") is a Fredholm operator.

Gm is a “weakly” singular manifold.
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Four kinds of optimization

A simple example: Convex L and effectively linear A

m In the large width regimes, we have: a = oo, F[A(w)] = A(w) — ¢

If £ = (F[g]|F[g]), then VL[A(w)] = A(w) — &
= A(t) = —©(1)[A(t) — P]
m As a — 0o, the operator © tends to a static object, giving us
A(t) = & + e PO 4(0) — @]
m Even for finite M, we have
At = 0+ e %40y — 0]

m Classical NTK results obtained/generalized (with rigor) 1!
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Four kinds of optimization

How does mathematical analysis come into play for specific problems?

m Practically speaking, the strategy is to either directly establish .Z is
well-behaved or that F is well-behaved and carry it over: A is an

immersion almost everywhere for almost any conventional choice.

m Example 1: For the nPBE, we prove DF is invertible and pair the problem
with an analytic A (see [2])

m Example 2: For infinite parameter regimes p(t) = u(0) [B]

m Example 3: Z[w] is analytic for classification [3] and shape recognition [4]

m Example 4: In general, we can estimate p(t) for real NNs (at huge costs

[1]), in situ during optimization without needing new computations
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Four kinds of optimization

When does the gradient flow for a fixed A stop?

mw(t) = —ALVLA(t)] = A(t) = —O(t)VL[A(t)]

m w” is a critical point iff one or more of the following conditions hold:
(i) VLIA(W")] =0, (i) w(w*) =0, (i) VL[A(W")] € ker(©)

m Ll ensures (i) holds only at A(w) = ®. If A is an immersion, as is the case

in most applications, (ii) holds with O probability.

m We combat (iii) by either using a stochastic method with an apt annealing

schedule or using iterative architecture expansions (IAE)
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Four kinds of optimization

lterative Architecture Expansions (IAE)

sin

sin -

@ N(w)(-) = wo + szl sin (wzl 1(+) ) @

x‘ w,

There exists an architecture A € €*(R™, G) s.t. given any M and any
w e RY, A(w) = Ap(w).

Lemma
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Four kinds of optimization

Error Correction via lterative Architecture Expansions

Theorem

Assume Goo is a dense subspace of G, A; is well-initialized, and each A; is an

immersion almost everywhere in RM'. Then, A;(w}) —— ¢

11— 00
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Four kinds of optimization

Applications for Neural Network Differential Equation solvers

Relative Errors across different F, A/, and optimization methods

System (Baseline Codebase)  Baseline IAE Total flops (103)
(1074 (10%)  (Baseline, EC)

1D+1D Burgers (RAR-PINN) 36.3  0.908 (7.3, 14.6)
2D+1D Henon Heiles (HNN) 12.9  0.0933 (10.5, 21.0)
2D+1D Heat (XPINN) 26.7 22.7 (0.3, 0.6)
1D+1D NL Oscillator (HNN) 4.76  0.00488 (10.3, 20.6)
2D nPBE (PINN) 436 0.37 (20.3, 40.6)
4D nPBE (PINN) 87.3 0.491 (20.5, 41.0)

2D Poisson (SPINN) 4.35 2.34 (4.9, 9.8)
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Four kinds of optimization

Applications in shape and visual recognition, classification and anomaly

detection, boosted optimization dynamics, and model reduction

m FINDER [3]: An anomaly detection tool + a general theory for binary
classification that efficiently builds stochastic features that allow faster

and more accurate identification in noisy datasets

m SHAPER [4]: a tool for defining and computing shape observables within
collider physics datasets that generalizes several related methods

m Pruning [6]: Iterative Magnitude Pruning, a common sparsification tool in

ML, was shown to be a renormalization process, with insight into how and

where it does and does not work and how it could be more efficient.

m Koopman training [7]: A technique that identifies, estimates, and makes
use of the Koopman operators associated with ML optimization dynamics

to evolve parameters at lower computation costs
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Four kinds of optimization
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Four kinds of optimization
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Four kinds of optimization
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