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Many-fold Learning: A generalized approach to modeling

Problem Setup: Represent the problem as a map between separable
spaces F : G ! H.

Modelling Setup: Parameterize the target space G using a modelling
method (or architecture) A : RM ! G .

Mathematical Analysis: Prove tractability of gradient based optimization,
usually by showing F is “well-behaved” and then carrying it over to F ◦ A.

Optimization: Optimize using an appropriate gradient flow variant.

Error Correction: Boost initial performance by perturbing/expanding A.
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Gradient Flows: Are they too incredibly useful? Why? How?

Pros: Gradient flows work for many problems with a small trick-set

Cons: Problems ! nonlinear, Architectures ! nonlinear, Optimization !

nonlinear + stochastic, Formal analysis ! intractable??

Motivation: Build a generic theory covering many kinds of problems and
architectures. Ideally, one that can be empirically useful

Inspirations: Neural Tangent Kernels, Spectral Theory, PDEs, QM, QFT

Applications: PDE solvers, Shape/Visual recognition, Classification, etc
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A Universal Convergence Theorem

Problem: F : G ! H, where G , H are separable Hilbert spaces

Architecture: A ∈ C 2(RM , G), produces models in G , M is countable

Solution: Φ, exists and the problem satisfies some conditions near it

Assumption 1: Problem F is “well-behaved”

Assumption 2: Architecture A is “well-initialised”

Claim: A Gradient flow strategy will get us to Φ
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Setting the table: A problem is well-behaved if

it can be cast as a map between separable Hilbert spaces F : G ! H,

∃Φ ∈ G with a neighbourhood BΦ, and a coercive nominal loss
L ∈ C 2(G ,R), s.t. Φ is a global minimum for both ⟨F[g ]|F[g ]⟩H and L[g ],

L satisfies the following Lojasiewicz inequality (LI) [Ref. D]:

|L[g ] − L[Φ]|α ≤ C∥∇L[g ]∥, g ∈ BΦ, α ∈ [1/2, 1), C > 0 (1.1)

Theorem

Let F be well-behaved with the associated nominal loss being L. Then

d
dt g(t) = −∇L[g(t)], g(0) ∈ BΦ =⇒ ∥g(t) − Φ∥ =

O(e−Ct), if α = 1
2

O(t
−α

2α−1 ), if α > 1
2
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A well-behaved problem is solved by gradient flows (in principle)
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CAUTION: LI is not Convexity and vice versa
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Examples of well-behaved problems

Regression problems [7], Polynomial-fitting problems, etc

Scientific ODEs/PDEs [2, 5], such as the nonlinear Poisson Eqn (nPBE):

F[g ] = −∆g + sinh(g) + h, G = W 2,2(Rnin ), H = L2(Rnin )

Shape/Visual recognition solvers [4] using Wasserstein distances b/w a
Euclidean distribution(s) Φ and manifold(s) of model distributions A:

F[g ] =
(∫ x

−∞
Φ(q)dq

)−1

−
(∫ x

−∞
g(q)dq

)−1

, G = P2(Rd), H = R

Classification problems [3]. Slide too small for F!!, but G = L2(Ω) ⊗ H,
where (Ω, F ,P) is a probability space, L2(Ω) is the space of square
integrable Bochner measurable functions, and H is some apt Hilbert space.
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Well-behaved problems seem easy enough. Why do we need Architectures?

Nominal loss dynamics are usually in infinite dimensional spaces

Computers can only handle finite dimensional dynamics.
We need to parametrize G through some M parameter architecture A

Linear A are great if dist(Φ, {A(w) : w ∈ RM}) is small. Such guarantees
are impossible if dim(G) > M, let alone dim(G) = ∞

Nonlinear A can use a finite number of parameters to cover G more
densely than linear methods. But too many local minimum
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1 Parameter, Linear Architecture
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1 Parameter, Nonlinear Architecture
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Setting the table: Architectures

Architectures: A ∈ W 2,2(RM , G) are M-parameter maps that produce
models A(w) ∈ G . Derivatives and adjoints are denoted by Aw and A†

w.

Model set: GM := {A(w)} ⊂ G : Set of models produced by A.

ϑ := A†
wAw, Θ := AwA†

w, µ(w) = inf(Spec(Θ) − {0})

Θ and ϑ share their non-zero spectrum.

GM is usually an M dimensional immersed submanifold in G near almost
all A(w). Alternatively, ϑ is invertible almost everywhere on RM .

G∞ =
⋃

M∈N GM is dense in G (Universal Approximation Theorems [A]).
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Architecture Examples

Linear methods like Fourier Series, Chebyshev polynomials, etc

Input/Output maps between Euclidean spaces modeled by Neural Nets

Binary Classifiers

Audio Signal Processing

Image and Visual Recognition techniques
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Architecture Examples: A “deep” Fourier Method
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Parametric Optimization

Parametric Loss and Gradient Flow: L [w] := L[A(w)], ẇ = −∇L [w]

Well-initialization: A is well-initialized with parameters w(0), if under a
parametric gradient flow, there exists t ∈ R+ s.t. A(w(t)) ∈ BΦ.

Parametric gradient flows are given by the following equation:

ẇ(t) = −∇wL [A(t)] = −A†
w∇L[A(t)] (1.2)

These translate into the following flows on the model-set GM

Ȧ(t) = Awẇ(t) = − AwA†
w︸ ︷︷ ︸

NTK++

∇L[A(t)] = −Θ(t)∇L[A(t)] (1.3)
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When is L well-behaved too?

Theorem

Assume F is well-behaved with L as the associated nominal loss and A is
well-initialised. Then L [w] is a well-behaved map in the neighbourhood of all
its critical points w∗ s.t. A(w∗) ∈ BΦ, if

1 ∃α∗ ∈ (0, 1/2], C∗ > 0, s.t. |L [w] − L [w∗]|α
∗

< C∗∥∇L [w]∥ for all
w ∈ Bw∗ .

2 L is analytic and M ∈ N.

3 A is analytic and M ∈ N.

4 ϑ(w∗) is a Fredholm operator.

5 GM is a “weakly” singular manifold.
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A simple example: Convex L and effectively linear A

In the large width regimes, we have: a = ∞, F[A(w)] = A(w) − Φ

If L = ⟨F[g ]|F[g ]⟩, then ∇L[A(w)] = A(w) − Φ

=⇒ Ȧ(t) = −Θ(t)[A(t) − Φ]

As a ! ∞, the operator Θ tends to a static object, giving us

A(t) = Φ + e−Θ(0)t [A(0) − Φ]

Even for finite M, we have

A(t) = Φ + e−
∫ ∞

t
µ(s)ds [A(0) − Φ]

Classical NTK results obtained/generalized (with rigor) !!!!
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How does mathematical analysis come into play for specific problems?

Practically speaking, the strategy is to either directly establish L is
well-behaved or that F is well-behaved and carry it over: A is an
immersion almost everywhere for almost any conventional choice.

Example 1: For the nPBE, we prove DF is invertible and pair the problem
with an analytic A (see [2])

Example 2: For infinite parameter regimes µ(t) = µ(0) [B]

Example 3: L [w] is analytic for classification [3] and shape recognition [4]

Example 4: In general, we can estimate µ(t) for real NNs (at huge costs
[1]), in situ during optimization without needing new computations
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When does the gradient flow for a fixed A stop?

ẇ(t) = −A†
w∇L[A(t)] =⇒ Ȧ(t) = −Θ(t)∇L[A(t)]

w∗ is a critical point iff one or more of the following conditions hold:

(i) ∇L[A(w∗)] = 0, (ii) µ(w∗) = 0, (iii) ∇L[A(w∗)] ∈ ker(Θ)

LI ensures (i) holds only at A(w) = Φ. If A is an immersion, as is the case
in most applications, (ii) holds with 0 probability.

We combat (iii) by either using a stochastic method with an apt annealing
schedule or using iterative architecture expansions (IAE)
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Iterative Architecture Expansions (IAE)

Lemma

There exists an architecture A ∈ C 2(R∞, G) s.t. given any M and any
w ∈ RM , A(w) = AM(w).
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Error Correction via Iterative Architecture Expansions

Theorem

Assume G∞ is a dense subspace of G, A1 is well-initialized, and each Ai is an
immersion almost everywhere in RMi . Then, Ai(w∗

i ) −−−!
i!∞

Φ
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Applications for Neural Network Differential Equation solvers
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Applications in shape and visual recognition, classification and anomaly
detection, boosted optimization dynamics, and model reduction

FINDER [3]: An anomaly detection tool + a general theory for binary
classification that efficiently builds stochastic features that allow faster
and more accurate identification in noisy datasets

SHAPER [4]: a tool for defining and computing shape observables within
collider physics datasets that generalizes several related methods

Pruning [6]: Iterative Magnitude Pruning, a common sparsification tool in
ML, was shown to be a renormalization process, with insight into how and
where it does and does not work and how it could be more efficient.

Koopman training [7]: A technique that identifies, estimates, and makes
use of the Koopman operators associated with ML optimization dynamics
to evolve parameters at lower computation costs
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