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In a nutshell

* New method for simulation non-Abelian lattice gauge theories in any”
dimension

* | will show: ground state properties of SU(2) pure gauge

e Can be extended to: SU(N), time evolution,

) *GPU RAM dependent




Why study the strong force?
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Perturbation theory doesn’t work




SU(2) pure gauge in the
Hamiltonian formalism



Hamiltonian lattice gauge theories

 Continuum theory -> discrete spacial lattice
* Regularises the theory

e Quantum many body problem
 H - n X n matrix

« Y - vector size n

» Solve: H|Y¥Y) = E|Y¥Y) for the lowest E
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Hamiltonian lattice gauge theories

 Continuum theory -> discrete spacial lattice
* Regularises the theory

e Quantum many body problem
o H -n X n matrix

« Y - vectorsizen

» Solve: H|W¥) = E|W) for the lowest E



SU(2) Hamiltonian

Basic degrees of freedom

X+U X+ U+UV U U M(X) e SUQ2)

e.g.
U (x) = 0.545 - 0.766: 0.331 4+ 0.0871
K —0.331 + 0.087:1 0.545 + 0.766i




SU(2) Hamiltonian

X+ u+v Hamiltonian:

7 = g;v; ) (1-57(n))

Kinetic +4 potential

electric +4 magnetic




SU(2) Hamiltonian

X+ u+v Hamiltonian:

Kinetic +4 potential

electric +4 magnetic

/1=g



SU(2) Hamiltonian

X+ X+u+v Plaguette:
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SU(2) Hamiltonian

x4 X+u+v Derivative:

U ﬂ(x) = exp(— iaaA/f(x))

U, (x+ ) 0
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SU(2) Hamiltonian

x4 X+u+v Derivative:

U ﬂ(x) = exp(— iaaA/f(x))

U,(x + p) v




Neural wavefunctions




Some definitions: wavefunction



Some definitions: wavefunction

, Let [¥) = 2%“%)

l



Some definitions: wavefunction

, Let [¥) = 2%“%)

l

e 2 qubits, spin basis: |¥) =a,|00) +a;|01) +a,|10) +a;|11)



Some definitions: wavefunction

, Let [¥) = 2%“%)

l

e 2 qubits, spin basis: |¥) =a,|00) +a;|01) +a,|10) +a;|11)

* “Finding ground state” == finding four®™ numbers



Some definitions: variational wavefunction

Let |¥) = Zaih/fi)

l

e 2 qubits, spin basis: |¥) =a,|00) +a;|01) +a,|10) +a;|11)

* “Finding ground state” == finding a function that gives four® numbers

W) = D fow) [y



Some definitions: variational wavefunction

W) = ) fowd) [y



Some definitions: variational wavefunction
W) = ) fowd) [y

(o | W) = Z wo | fo(w) Lys) = fowp)



Some definitions: variational wavefunction
W) = ) fowd) [y

(o | W) = Z wo | fo(w) Lys) = fowp)

N\ e

“Configuration in, amplitude out”



Some definitions: variational wavefunction
W) = ) fowd) [y

(o | W) = Z wo | fo(w) Lys) = fowp)

N\ e

“Configuration in, amplitude out”
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Neural wavefunctions for LGTs

(Ui} ~ [Wy)
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Neural wavefunctions for LGTs

(Ui} ~ [ ¥y)
foUp)
fo(Ui)
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Neural wavefunctions for LGTs

(U} ~ 1%y)

| fU)
fUy)
fU;)
f5(Uy)

—|WPy) = Zfé’(Ui) |U;)
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Gauge invariance

Equivariant layers Invariant layer
Plag. equi. Node equi.

W(x-p+v)  W(x+v)  W(X+p+v)

o @ —<—0

) 1= i

X" U ()
W(x-p-v)  W(x-v)  W(X+u-v)

Yo

g Y > Jo(wo)

U (x)=¢ (U (x)

[
U'p(x)=€“(x)U”(x)
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Gauge invariance

Equivariant layers Invariant layer
Plag. equi. Node equi.

Continuous basis

W(x-p+v)  W(x+v)  W(X+p+v)

e W) = ) S |vs)
Wo > fo(wp) o e i
W(X-p-V) W(I;(-v) W(x+-V)
P w0 Gauge invariant

U (x)=¢ (U (x)

[
U'p(x)=€“(x)U”(x)
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Benchmark simulations




Simulation 1
"= DD (1-57(n))

e [ attice of size 12x12

» Goal: find the lowest ground state energy at various As
 Ansatze:
* simple, invariant-only, ansatz -> Jastrow

 multi-layer equivariant+invariant ansatz -> Equivariant
* Relative energy decrease coming from new ansatz:

Lp

quivariant — “—Jastrow

OF =

EJastrow 17
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Simulation 1

grange ~2.5-0.6

EEquivariant I EJastrow

ok =
E]astrow
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grange ~2.5-0.6
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Simulation 2

o Lattice of size 12x12 and 4x4x4
* (Goal: measure physical observables
* Ansatze:

* Equivariant

» Average 1x1 Wilson loop (W)

<W1><1><W2><2>

e Creutz ratio y = — log ( (WIX2)(W2x1)

)

20



grange ~ 2.5-0.6

Simulation 2

— == high A pert.

- == low A pert.
LG-NWF

Perturbative estimates from Chin, S. A. et al. (1985) Phys Rev D 31, 3201
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In closing



LGTs and neural wavefunctions

* What has been done:
* Abelian theories in 2D
 What we have just done
* Non-Abelian theories in 2 and 3D
 What can now be done
* Time evolutionlll and quantum information entropies/2l
o SU(2) with fermions
« SU(3)
* Open to suggestions/collaborations (our code is public, see arXiv:2509.72323)

[1] Carleo, G. Troyer, M. Science 355, Schmitt, M. & Heyl, M., Phys. Rev. Lett. 125 and many more...
[2] TS et al. Mach. Learn. Sci. Tech. 6 015042, Sinibaldi, A. et al. arXiv:2502.09725
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Backup slides




Plaquette equivariant layer

U,x)— P, (x) > Ap > Ap = P, (x) = U (x)

P, (x)=U,0U,x

WU (x

CNN

Eigenvalue decomposition

VU, (x)

U, (x) = P, ,(x) * (U,(x + U, (x + 1)U ()~

W(x-p+v) = W(x+v)  W(X+p+v)

-----------------------------------------
.............
-----

Eigenvalue recomposition




Node equivariant layer

U'V(x)=av(x)UV(x)

®
U'“(x)=£”(x)Uu(x)

U,(x) = CL(x) = €,,(0 = €, ,(0U,(x)

EIM(X) = e i zi }/Mai[cli,l/(x)]aH

CpusX) = {P, (). P (). P_,, (). P_, (1)}



Gauge symmetry

Our new SU(2) invariant ansatz
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Gauge symmetry

Our new SU(2) invariant ansatz

Equivariant Invariant
U, (x) AU &) 2(AU,(x)) (8(fU()))) w_
QWU x) AQXU,x)  g(AQR)U, X)) (8(AQM)U,(x))))

(L)L)



