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In a nutshell

• New method for simulation non-Abelian lattice gauge theories in any* 
dimension


• I will show: ground state properties of SU(2) pure gauge


• Can be extended to: SU(N), time evolution, fermions

*GPU RAM dependent2
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Why study the strong force?

≈ Perturbation theory doesn’t work
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SU(2) pure gauge in the 
Hamiltonian formalism



Hamiltonian lattice gauge theories

• Continuum theory -> discrete spacial lattice


• Regularises the theory


• Quantum many body problem


•  -  matrix


•  - vector size 


• Solve:  for the lowest 

H n × n

Ψ n

H |Ψ⟩ = E |Ψ⟩ E
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 is huge, if not infiniten



SU(2) Hamiltonian
Basic degrees of freedom
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x x + μ

x + ν x + μ + ν Uμ(x) ∈ SU(2)

Uμ(x) = ( 0.545 − 0.766i 0.331 + 0.087i
−0.331 + 0.087i 0.545 + 0.766i)

Uμ(x)
e.g.



SU(2) Hamiltonian
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x x + μ

x + ν x + μ + ν

Uμ(x)

Hamiltonian:

∑
p

(1 −
1
2

Tr (Pp))ℋ = −
1
2 ∑

l

∇2
l +λ

kinetic +  potentialλ

electric +  magneticλ



SU(2) Hamiltonian
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x x + μ

x + ν x + μ + ν

Uμ(x)
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∑
p

(1 −
1
2

Tr (Pp))ℋ = −
1
2 ∑

l

∇2
l +λ

kinetic +  potentialλ

electric +  magneticλ

λ =
4
g4



SU(2) Hamiltonian
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x x + μ

x + ν x + μ + ν

Uμ(x)

Uν(x + μ)

U†
μ(x + ν)

U†
μ(x)

Plaquette:

non-Abelian



SU(2) Hamiltonian
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x x + μ

x + ν x + μ + ν

Uμ(x)

Uν(x + μ)

U†
μ(x + ν)

U†
μ(x)

Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)

Plaquette:

non-Abelian



SU(2) Hamiltonian

8

x x + μ

x + ν x + μ + ν

Uμ(x)

Uν(x + μ)

U†
μ(x + ν)

U†
μ(x)

Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)

Pμ,ν(x)

Plaquette:

non-Abelian



SU(2) Hamiltonian
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SU(2) Hamiltonian
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x x + μ

x + ν x + μ + ν

Uμ(x)

Uν(x + μ)

U†
μ(x + ν)

U†
μ(x)

Derivative:

∇ ∼
∂

∂Aμ

Uμ(x) = exp(−iσaAa
μ(x))



SU(2) Hamiltonian
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Neural wavefunctions
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Some definitions: variational wavefunction 

• Let 


• 2 qubits, spin basis: 


• “Finding ground state” == finding a function that gives four* numbers

|Ψ⟩ = ∑
i

ai |ψi⟩

|Ψ⟩ = a0 |00⟩ + a1 |01⟩ + a2 |10⟩ + a3 |11⟩

|Ψθ⟩ = ∑
i

fθ(ψi) |ψi⟩
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⟨ψ0 |Ψθ⟩ = ∑
i

⟨ψ0 | fθ(ψi) |ψi⟩ = fθ(ψ0)

“Configuration in, amplitude out”
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Neural wavefunctions for LGTs
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fθ(Ui′￼
)

{Ui} ∼ |Ψθ⟩

NN 
θ
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JAX
∂θEθ
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Gauge invariance

“Configuration in, amplitude out”

ψ0 fθ(ψ0)

g ⋅ ψ0 fθ(ψ0)

Equivariant layers

xN

ψ(U)

U

Invariant layer
Plaq. equi. Node equi. 

`̀

P-µ,ν(x)

Pµ,-ν(x)P-µ,-ν(x)

Pµ,ν(x)

x
U'µ(x)=εµ(x)Uµ(x)

U'ν(x)=εν(x)Uν(x)ε

f(W)

U'µ(x)x

P'µ,ν(x)

µ
ν

W(x-ν)

W(x+µ+ν)

W(x+µ)

W(x+µ-ν)

W(x+ν)W(x-µ+ν)

W(x-ν)W(x-µ-ν)

x

Pµ,ν(x)

Uµ(x)

U'
(a)

(b)

(c)
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Gauge invariance

|Ψθ⟩ = ∑
i

fθ(ψi) |ψi⟩

Continuous basis

Gauge invariantGauge invariant

“Configuration in, amplitude out”

ψ0 fθ(ψ0)

g ⋅ ψ0 fθ(ψ0)

Equivariant layers

xN

ψ(U)

U

Invariant layer
Plaq. equi. Node equi. 
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Pµ,ν(x)
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U'
(a)

(b)

(c)
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Benchmark simulations



Simulation 1 

• Lattice of size 12x12 


• Goal: find the lowest ground state energy at various s


• Ansätze: 


• simple, invariant-only, ansatz -> Jastrow


• multi-layer equivariant+invariant ansatz -> Equivariant

λ

17

∑
p

(1 −
1
2

Tr (Pp))ℋ = −
1
2 ∑

l

∇2
l +λ

• Relative energy decrease coming from new ansatz:


• δE =
EEquivariant − EJastrow

EJastrow



Uμ(x) Uμ(x)

U′￼μ(x)

U′￼′￼μ(x)

× N

Jastrow Equivariant

Pμ,ν(x) P̃μ,ν(x)
18

Ψθ(U) Ψθ(U)



δE =
EEquivariant − EJastrow

EJastrow

Simulation 1 ∑
p

(1 −
1
2

Tr (Pp))ℋ = −
1
2 ∑

l

∇2
l +λ

19

g range ~ 2.5 - 0.6



δE =
EEquivariant − EJastrow

EJastrow

Simulation 1 ∑
p

(1 −
1
2

Tr (Pp))ℋ = −
1
2 ∑

l

∇2
l +λ

Equivariant layers needed to learn a better representation of the 
ground state

19

g range ~ 2.5 - 0.6



Simulation 2

• Lattice of size 12x12 and 4x4x4


• Goal: measure physical observables


• Ansätze: 


• Equivariant


• Average 1x1 Wilson loop


• Creutz ratio χ = − log ( ⟨W1×1⟩⟨W2×2⟩
⟨W1×2⟩⟨W2×1⟩ )

⟨W1×1⟩

20



Simulation 2

Perturbative estimates from Chin, S. A. et al. (1985) Phys Rev D 31, 3201 

21

g range ~ 2.5 - 0.6



Simulation 2

Ground state representation physically agrees with theoretical 
predictions

Perturbative estimates from Chin, S. A. et al. (1985) Phys Rev D 31, 3201 

21

g range ~ 2.5 - 0.6



In closing



LGTs and neural wavefunctions
• What has been done:


• Abelian theories in 2D


• What we have just done


• Non-Abelian theories in 2 and 3D


• What can now be done


• Time evolution[1] and quantum information entropies[2] 


• SU(2) with fermions


• SU(3)


• Open to suggestions/collaborations (our code is public, see arXiv:2509.12323)

[1] Carleo, G. Troyer, M. Science 355,  Schmitt, M. & Heyl, M., Phys. Rev. Lett. 125 and many more… 

[2] TS et al. Mach. Learn. Sci. Tech. 6 015042, Sinibaldi, A. et al. arXiv:2502.0972523



Thank you for listening  
Eliska Greplova Jannes NysJuan Carrasquilla 



Backup slides



Plaquette equivariant layer 

Eigenvalue decomposition

Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)
Eigenvalue recomposition

CNN

U′￼μ(x) = P′￼μ,ν(x) * (Uν(x + μ)U†
μ(x + ν)U†

ν (x))−1

Uμ(x) → Pμ,ν(x) → λP → λ′￼P → P′￼μ,ν(x) → U′￼μ(x)

Equivariant layers

xN

ψ(U)

U

Invariant layer
Plaq. equi. Node equi. 

`̀

P-µ,ν(x)

Pµ,-ν(x)P-µ,-ν(x)

Pµ,ν(x)

x
U'µ(x)=εµ(x)Uµ(x)

U'ν(x)=εν(x)Uν(x)ε

f(W)

U'µ(x)x

P'µ,ν(x)

µ
ν

W(x-ν)

W(x+µ+ν)

W(x+µ)

W(x+µ-ν)

W(x+ν)W(x-µ+ν)

W(x-ν)W(x-µ-ν)

x

Pµ,ν(x)

Uµ(x)

U'
(a)

(b)

(c)



Node equivariant layer

Uμ(x) → Ci
μ,ν(x) → ϵμ,ν(x) → ϵμ,ν(x)Uμ(x)

Ci
μ,ν(x) = {Pμ,ν(x), Pμ,−ν(x), P−μ,ν(x), P−μ,−ν(x)}i

ϵμ(x) = ei∑i γμ,i[Ci
μ,ν(x)]aH

Equivariant layers

xN

ψ(U)

U

Invariant layer
Plaq. equi. Node equi. 

`̀

P-µ,ν(x)

Pµ,-ν(x)P-µ,-ν(x)

Pµ,ν(x)

x
U'µ(x)=εµ(x)Uµ(x)

U'ν(x)=εν(x)Uν(x)ε

f(W)

U'µ(x)x

P'µ,ν(x)

µ
ν

W(x-ν)

W(x+µ+ν)

W(x+µ)

W(x+µ-ν)

W(x+ν)W(x-µ+ν)

W(x-ν)W(x-µ-ν)

x

Pµ,ν(x)

Uµ(x)

U'
(a)

(b)

(c)



Equivariant Invariant 

Gauge symmetry
Our new SU(2) invariant ansatz

Uμ(x) f(Uμ(x)) g( f(Uμ(x))) h(g( f(Uμ(x))))
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Equivariant Invariant 

Gauge symmetry
Our new SU(2) invariant ansatz

Uμ(x) f(Uμ(x)) g( f(Uμ(x))) h(g( f(Uμ(x))))

Ω(x)Uμ(x) f(Ω(x)Uμ(x)) g( f(Ω(x)Uμ(x))) h(g( f(Ω(x)Uμ(x))))

h(Ω(x)g( f(Uμ(x))))


